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NONPARAMETRIC ESTIMATION

product-limit estimator) of H(r) without assuming a distributional form is

" i R i R t d: ~
Ht) = =) logl =P~ B; =) - =Hw
i=! =1 J

=1

13 ) ii known as the Nelson—Aalen estimator of H(¢;). Thus ; ) =1-

exp[—ﬁ ()] is another nonparametric estimator for F(t;).

(a) Give conditions to assure a good agreement between H (#;) and I:; (t;) and
thus between Fi (t;) and F ().

(b) Use the dflta method to compute approximate expressions for Var[ﬁ 1
and Var[ﬁ (¢;)]. Comment on the expression(s) you get.

(¢) Compute Nelson—-Aalen estimate of F(t) and compare with the estimate
computed in Exercise 3.20. Describe similarities and differences.

(d) Show that A(r;) < H(;) and that F(r;) < F (1.

(e) Describe suitable modifications of the estimator that can be used when
failure and censoring times are grouped into common intervals.

CHAPTER 4

Location-Scale-Based
Parametric Distributions

Objectives

This chapter explains:

« Important ideas behind parametric models in the analysis of reliability data.

= Motivation for important functions of model parameters that are of interest in
reliability studies.

« The location-scale family of probability distributions.

* Properties and the importance of the exponential distribution.

« Properties and the importance of log-location-scale distributions such as the
Weibull, lognormal, and loglogistic distributions.

» How to generate pseudorandom data from a specified distribution (such random
data are used in simulation evaluations in subsequent chapters).

Overview

This chapter introduces some basic ideas of parametric modeling and the most im-
portant parametric distributions. Parametric distributions are used extensively in sub-
sequent chapters. Section 4.1 explains some of the basic concepts and motivation for
using parametric models. Section 4.2 describes important functions of parameters like
failure probabilities and distribution quantiles. Section 4.3 introduces the important
location-scale family of distributions. Sections 4.4—4.11 give detailed information on
these and the important log-location-scale distributions. Subsequent chapters require
at least a basic understanding of the characteristics and notation for the exponential,
Weibull, and lognormal distributions. Applications for the other distributions follow
without difficulty. Physical motivation for these and the other distributions is help-
ful in practical modeling applications. Section 4.12 describes alternative choices for
parameters. Section 4.13 describes methods for generating simulated values from a
specified distribution. In various parts of this book we will use simulation to develop



76 LOCATION-SCALE-BASED PARAMETRIC DISTRIBUTIONS

4.1 INTRODUCTION

As we saw in Chapter 3, it is possible to make certain kinds of inferences without
having to assume a particular parametric form for a failure-time distribution. There
are, however, many problems in reliability data analysis where it is either useful or
essential to use a parametric distribution form. This chapter describes a number of
simple probability distributions that are commonly used to model failure-time pro-
cesses. Chapter 5 does the same for other important and useful, but more complicated,
distributions. The discussion in these chapters concerns underlying continuous-time
models, although much of the material also holds for discrete-time models.

As explained in Chapter 2, a natural model for a continuous random variable,
say, T, is the cumulative distribution function (cdf). Specific examples given in this
chapter and in Chapter 5 are of the form Pr(T = 1) = F(t; @), where @ is a vector of
parameters. In this book, we use T to denote positive random variables like failure
time, so that 7 > 0; correspondingly, we will use ¥ to denote unrestricted random
variables so that —o < Y = log(T) < oo. Unlike the “basic parameters” in @
and p used in the “nonparametric” formulation in Chapters 2 and 3, the parametric
models described in this chapter will have a @ containing a small fixed number
of parameters. The most commonly used parametric probability distributions have
between one and four parameters, although there are some distributions with more
than four parameters. More complicated models could contain many more parameters
involving mixtures, competing failure modes, or other combinations of distributions
or models that include explanatory variables. One simple example that we will use
later in this chapter is the exponential distribution for which

PHT <1)= F(r;0) = 1 — exp(—%), t>0 @.1)

where 6 is the single scalar parameter of the distribution (equal to the mean or first
moment, in this example).

Use of parametric distributions complements nonparametric techniques and pro-
vides the following advantages:

» Parametric models can be described concisely with just a few parameters, instead
of having to report an entire curve.

» It is possible to use a parametric model to extrapolate (in time) to the lower or
upper tail of a distribution.

» Parametric models provide smooth estimates of failure-time distributions.

In practice it is often useful to do various parametric and nonparametric analyses of
a data set.

4.2 QUANTITIES OF INTEREST IN RELIABILITY APPLICATIONS

Starting in Chapter 7, we will focus on the problem of estimating the parameters @ and
important functions of 8. In this section we describe ideas behind parameterization of
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a probability distribution and describe a number of particular functions of parameters
that are of interest for reliability analysis.

In most practical problems, interest centers on quantities that are functions of @ and
the ML estimates of these functions will not depend on the particular parameterization
that is used to specify the parametric model. The quantities of interest discussed here
extend the list introduced in Chapter 2, and now these quantities will be expressed as
functions of the small set of parameters 8. Specifically, for distributions of positive
and continuous random variables (there are similar definitions for discrete and/or
nonpositive random variables):

The “probability of failure” p = Po(T = 1) = F(r; @) by a specified . For
example, if T is the time of failure of a unit, then p is the probability that the
unit will fail before r.

The “p quantile” of the distribution of T is the smallest value ¢ such that
F(t;0) = p. We will express the p quantile as 1, = F~Y(p; 8). For the failure-
time example, f, is the time at which 100p% of the units in the product population
will have failed. The median is equal to ¢ 5.

The “hazard function” (hf) is defined as

f(t;0)
1—F@;0)

h(r) = 4.2)
As described in Section 2.1.1, the hazard function is of particular interest in
reliability applications because it indicates, for surviving units, the propensity
to fail in the following small interval of time, as a function of age.

LTS

The mean life (also known as the “average,” “expectation,” or “first moment™)
of T

E(T) = / tf(; ) dt = / [1 = F(r; O] dr 4.3)
0 0

is a measure of the center of f(r; 8). When f(r; 0) is highly skewed, the mean
may differ appreciably from other measures of central tendency like the median.
The mean is sometimes, but not always, one of the distribution parameters. For
some pdfs, the value of the integral will be infinite. Then it is said that the mean
of T “does not exist.” When T is time to failure, the mean is sometimes referred
to as the MTTF, for mean time to failure.

 The variance (also known as the “second central moment”) of T

Var(T) = / m[r — E(MPf; 0)dr
0

is a measure of spread of the distribution of T. Var(T') is the average squared
deviation of T from its mean. Again, if the value of the integral is infinite, it is
said that the variance of T “does not exist.” The quantity SD(T) = +/Var(T),
known as the “standard deviation” of T, is easier to interpret because it has the
same units as 7.
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* The unitless quantity v, = SD(T)/E(T), known as the “coefficient of variation”
of T, is useful for comparing the relative amount of variability in different
distributions. The quantity 1/, = E(T)/SD(T) is sometimes known as the
“signal-to-noise ratio.”

 The unitless quantity

_ Jolt — E(DPf(; 0)dr
[Var(T)P*/?

known as the “standardized third central moment” or “coefficient of skewness”
of T, is a measure of the skewness in the distribution of 7. When a distribution
is symmetric, y3 = 0. It is, however, possible to have y; = 0 for a distribution
that is not perfectly symmetric (e.g., the Weibull distribution, discussed in
in Section 4.8, has y3; = 0 when 8 = 3.602, but the distribution is only
approximately symmetric). Usually, however, when v; is positive (negative),
the distribution of T is skewed to the right (left).

For reliability applications, quantiles, failure probabilities, and the hazard function
are typically of higher interest than distribution moments. In subsequent chapters we
will describe point estimation and, at the same time, emphasize methods of obtaining
confidence intervals (for scalars) and confidence regions (for simultaneous inference
on a vector of two or more quantities) for parameters and important functions of
parameters. Confidence intervals and regions quantify the uncertainty in parameter
estimates arising from the fact that inferences are generally based on only a finite
number of observations from the process or population of interest.

4.3 LOCATION-SCALE AND LOG-LOCATION-SCALE DISTRIBUTIONS

A random variable Y belongs to the location-scale family of distributions if its cdf
can be expressed as

P(Y =y)=F(;u,0)=® (%) ,

where @ does not depend on any unknown parameters. In this case we say that
—oo < u < wisalocation parameter and that ¢ > 0is a scale parameter. Substitution
shows that b is the cdf of ¥ when u = Oand o = 1. Also, ® is thecdf of (Y — ) /0.
Location-scale distributions are important for a number of reasons including:

» Many of the widely used statistical distributions are either location-scale distri-
butions or closely related. These distributions include the exponential, normal,
Weibull, lognormal, loglogistic, logistic, and extreme value distributions.

» Methods of data analysis and inference, statistical theory, and computer software
developed for the location-scale family can be applied to any of the members
of the family.

* Theory for location-scale distributions is relatively simple.
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In cases where ® does depend on one or more unknown parameters (as with a number
of the distributions described in Chapter 5), Y is not a member of the location-scale
family, but the location-scale structure and notation will still be useful for us.

A random variable T belongs to the log-location-scale family distribution if
Y = log(T) is a member of the location-scale family. The Weibull, lognormal,
and loglogistic distributions are the most important members of this family.

4.4 EXPONENTIAL DISTRIBUTION

When 7T has an exponential distribution, we indicate this by T ~ EXP(6, v). The
two-parameter exponential distribution (to distinguish it from the more commonly
used one-parameter exponential distribution) has cdf, pdf, and hf

F(:0,7) = 1— exp(— '_Ty) ,

) 1 _-v
f(t,0,7)~oexr>( 0 )
1
/1(!;9,‘)’)=§, t >y,

where 6 > 0 is a scale parameter and vy is both a location and a threshold parameter.
For y = O this is the well-known one-parameter exponential distribution (and often
known simply as the exponential distribution). When T has this simpler distribution,
we indicate it by T ~ EXP(6). The cdf, pdf, and hf are graphed in Figure 4.1 for
9=.51,and2andy = 0.

For integer m > 0, E(T — y)"] = m! 6™, Thus the mean and variance of the
exponential distribution are, respectively, E(T) = y + 0 and Var(T) = 6%. The /]
quantile of the exponential distribution is t, = y — log(l — p) 6.

The one-parameter exponential distribution, where y = 0, is the simplest dis-
tribution that is commonly used in the analysis of reliability data. The exponential
distribution has the important characteristic that its hf is constant (does not depend
on time f). A constant hf implies that, for an unfailed unit, the probability of failing in
the next small interval of time is independent of the unit’s age. Physically, a constant
hf suggests that the population of units under consideration is not wearing out or
otherwise aging. The exponential distribution is a popular distribution for some kinds
of electronic components (e.g., capacitors or robust, high-quality integrated circuits).
This exponential distribution would not be appropriate for a population of electronic
components having failure-causing quality defects (such defects are difficult to rule
out completely and are a leading cause of electronic system reliability problems).
On the other hand, the exponential distribution might be useful to describe failure
times for components that exhibit physical wearout if the wearout does not show up
until long after the expected technological life of the system in which the compo-
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Figure 4.1. Exponential cdf, pdf, and hf for = .5, 1, and 2 and y = 0.

nent would be installed (e.g., electronic components in computing equipment having
failures caused by random external events).

Under very special circumstances, the exponential distribution may be appropriate
for the times between system failures, arrivals in a queue, and other interarrival time
distributions. Specifically, the exponential distribution is the distribution of interval
times of a homogeneous Poisson process. See Chapter 3 of Thompson (1988) and
Chapter 16 for more information on homogeneous Poisson processes.

The exponential distribution is usually inappropriate for modeling the life of
mechanical components (e.g., bearings) subject to some combination of fatigue,
corrosion, or wear. It is also usually inappropriate for electronic components that
exhibit wearout properties over their technological life (e.g., lasers and filament
devices). A distribution with an increasing hf is, in such applications, usually more
appropriate. Similarly, for populations containing mixtures of good and bad units
the population hf may decrease with life because, as the bad units fail and leave the
population, only the stronger units are left.

4.5 NORMAL DISTRIBUTION

When Y has a normal distribution, we indicate this by Y ~ NOR(u, ). The normal
distribution is a location-scale distribution with cdf and pdf
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Fip,0) = 4@(%) )

l —
fOoim, o) = ;d’nor(—_y U'L) , —o<y<o,

where duoc(2) = (1/v/2m) exp(=22/2) and Ppor(2) = [=,, duor(w) dw are, respec-
tively, the pdf and cdf for the standardized NOR(n = 0,0 = 1) distribution. Here
—o0 < 4 < oo is a location parameter and o > 0 is a scale parameter. When there
is no useful simplification of the hf definition in (4.2), as with the normal distribu-
tion, the definition will not be repeated. The normal distribution pdf, cdf, and hf are
graphed in Figure 4.2 forp = Sand o0 = .3, .5, .8.

For integer m > 0, E[(Y — )"} = 0 if m is odd and E[(Y — p)"] = mlo™/
[2"/2(m /2)!} if m is even. From this, the mean and variance of the normal distribution
are, respectively, E(Y) = w and Var(Y) = o, The p quantile of the normal distri-
bution is y, = p + P l(p)o, where @1 (p) = z, is the p quantile of the standard
normal distribution.

As a model for variability, the normal distribution has a long history of use in
many areas of application. This is due to the simplicity of normal distribution theory
and the central limit theorem. The central limit theorem states that the distribution of
the sum of a large number of independent identically distributed random quantities
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Figure 4.2. Normal cdf, pdf, and hf with location parameter (mean) p. = 5 and scale parameter (standard
deviation) o =.3, .5, and .8.
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has, approximately, a normal distribution. In reliability data analysis, the use of the
normal distribution is, however, less common. As seen from Figure 4.2, the normal
distribution has an increasing hf that begins to increase rapidly near, but before, the
point of median life. The normal distribution has proved to be a useful distribution for
certain life data when g > 0 and the coefficient of variation (o/ ) is small. Examples
include electric filament devices (e.g., incandescent light bulbs and toaster heating
elements) and strength of wire bonds in integrated circuits (component strength is
often used as an easy-to-obtain surrogate measure or indicator of eventual reliability).
Also, as described in Section 4.6, the normal distribution is often a useful model for
the logarithms of failure times (see the next section).

4.6 LOGNORMAL DISTRIBUTION
When T has a lognormal distribution, we indicate this by 7 ~ LOGNOR(u, o). If

T ~ LOGNOR(u, o) then Y = log(T) ~ NOR(u, o). The lognormal cdf and pdf
are

Ft; ) = oo ["’gii_—”} , @.4)
FE 1) = = uer [M} . 1>0, @5)
ot g

where ¢por and @y, are pdf and cdf for the standardized normal. The median ts =
exp(u) is a scale parameter and o > 0 is a shape parameter. The lognormal cdf, pdf,
and hf are graphed in Figure 4.3 for o = .3,.5, and .8 and p. = 0, corresponding to
the median £5 = exp(u) = 1.

The most common definition of the lognormal distribution uses base e (natural)
logarithms. Base 10 (common) logarithms are also used in some areas of application.
Bottom-line answers for important reliability metrics (e.g., estimates of failure prob-
abilities, failure rates, and quantiles) will not depend on the base that is used. The
definition of the parameters 1 (mean of the logarithm of T) and & (standard deviation
of the logarithm of T) will, however, depend on the base that is used. For this reason
it is important to make consistent use of one particular base. In this book we will
generally use base ¢ (natural) logarithms for the lognormal distribution definition.

Forintegerm > 0, E(T"™) = exp(mu+m?a?/2). From this it follows that the mean
and variance of the lognormal distribution are, respectively, E(T) = exp(p + .502)
and Var(T) = expu + o?)[exp(c?) — 1]. The quantile function of the lognormal
distribution is 7, = exp[p + O (p)ol.

The lognormal distribution is a common model for failure times. Following from
the central limit theorem (mentioned in Section 4.5), application of the lognormal
distribution could be justified for a random variable that arises from the product of
a number of identically distributed independent positive random guantities. It has
been suggested that the lognormal is an appropriate model for time to failure caused
by a degradation process with combinations of random rate constants that combine

h(t)
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Figure 4.3. Lognormal cdf, pdf, and hf for scale parameter 15 = exp(p) = | and for shape parameter

o =.3,.5 and .8.

multiplicatively (e.g., see the models in Chapter 13). The lognormal distribution is
widely used to describe time to fracture from fatigue crack growth in metals. As
shown in Figure 4.3 (also see Exercise 4.19), the lognormal A(t) starts at 0, increases
to a point in time, and then decreases eventually to zero. For large o, 4(r) reaches a
maximum early in life and then decreases. For this reason, the lognormal distribution
is often used as a model for a population of electronic components that exhibits a
decreasing hf. It has been suggested that early-life “hardening” of certain kinds of
materials or components might lead to such an hf. The lognormal distribution also
arises as the time to failure distribution of certain degradation processes, as described
in Chapter 13. The lognormal distribution described in this section is sometimes
referred to as the “two-parameter lognormal distribution” to distinguish it from the
three-parameter lognormal distribution described in Section 5.10.2.

4.7 SMALLEST EXTREME VALUE DISTRIBUTION

When the random variable Y has a smallest extreme value distribution, we indicate
this by ¥ ~ SEV(, ). The SEV cdf, pdf, and hf are

F(y;p,0) = (Dscv(y_M),
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)’_P-)
p »

1
i1, 0) = — o

) -1 y-ry
Wm0 = Lop(2o), —e<y<m
where @y, (z) = 1 — exp[— exp(2)] and ¢sv(z) = explz — exp(2)] are the cdf and
pdf, respectively, for standardized SEV (u = 0,0 = 1). Here —o0 < p < oo is the
location parameter and ¢ > 0 is the scale parameter. The SEV cdf, pdf, and hf are
graphed in Figure 4.4 forp = 50 and 0 = 5,6, and 7.

The mean, variance, and quantile functions of the smallest extreme value distri-
bution are E(¥) = u — o, Var(Y) = ¢2@2/6, and y, = p + Ogl(p) o, where
®Ll(p) = log[— log(1 — p)l and y = .5772 is Euler’s constant.

Figure 4.4 shows that the smallest extreme value distribution pdf is skewed to the
left. Although most failure-time distributions are skewed to the right, distributions
of strength will sometimes be skewed to the left (because of a few weak units in
the lower tail of the distribution, but a sharper upper bound for the majority of
units in the upper tail of the strength population). The SEV distribution may have
physical justification arising from an extreme value theorem. Namely, it is the limiting
standardized distribution of the minimum of a large number of random variables
from a certain class of distributions (this class includes the normal distribution as a
special case). If o is small relative to w the SEV distribution can be used as a life
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Figure 4.4. Smallest extreme value cdf, pdf, and hf with & = 50 and o = 5, 6, and 7.
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distribution. The exponentially increasing hf suggests that the SEV would be suitable
for modeling the life of a product that experiences very rapid wearout after a certain
age. The distributions of logarithms of failure times can often be modeled with the
SEV distribution; see Section 4.8. Also see the closely related Gompertz—Makeham
distribution in Section 5.8.

4.8 WEIBULL DISTRIBUTION

The Weibull distribution cdf is often written as
' B
Pi(T =,m,B)=1—exp|— (—) , t>0. (4.6)
m

For this parameterization, 8 > 0 is a shape parameter and n > 0 is a scale parameter
as well as the .632 quantile. The practical value of the Weibull distribution stems from
its ability to describe failure distributions with many different commonly occurring
shapes. As illustrated in Figure 4.5, for 0 < 8 < 1, the Weibull has a decreasing hf.
With 8 > 1, the Weibull has an increasing hf.

For integer m > 0, E(T™) = o"T(1 + m/B), where ['(x) = fom 7 lexp(—z)dz
is the gamma function. From this it follows that the mean and variance of the Weibull
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Figure 4.5. Weibull cdf, pdf, and hf forfg3, = 77 = exp(u) = lund B = 1 /o = .8, 1,and 1.5.
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distribution are, respectively, E(T) = nI'(1 + 1/B8) and Var(T) = w*[T(1 + 2/B) —
I'2(1 + 1/B)]. The Weibull p quantile is ¢, = n[— log(1 — p)}'/A. Note that when
B = 1, the cdf in (4.6) reduces to an exponential distribution with scale parameter
0=

It is convenient to use a simple alternative parameterization for the Weibull dis-
tribution. This alternative parameterization is based on the relationship between the
Weibull distribution and the smallest extreme value distribution described in Sec-
tion 4.7. In particular, if T has a Weibull distribution, then Y = log(T) ~ SEV(u, 7),
where o = 1/B is the scale parameter and p = log(n) is the location parameter.
Thus when T has a Weibull distribution, we indicate this by T ~ WEIB(u, o). In
this form, the Weibull cdf, pdf, and hf can be written as

F(t; 1 0) = By ['ig(';—_”] , @)
_ B-1 B
f(t;.uwo') = L(bscv[lo—ggt)—'u] = E ( ) CXP,:‘“ (‘t‘> :l .
ot o m mn

T I~

1 ' 1/o=1 ' B-1
)= o (o) T ln) O

Then the Weibull p quantile is r, = exp[p + @ (p) o). The Weibull/SEV relation-
ship parallels the lognormal/normal relationship. The SEV parameterization is useful
because location-scale distributions are easier to work with in general. As mentioned
in Section 4.3, transforming the Weibull distribution into an SEV distribution allows
the use of general results for location-scale distributions, which apply directly to all
such distributions, including the Weibull, lognormal, and some other distributions.

The theory of extreme values shows that the Weibull distribution can be used to
model the minimum of a large number of independent positive random variables
from a certain class of distributions. Thus extreme value theory also suggests that
the Weibull distribution may be suitable. The more common justification for its use
is empirical: the Weibull distribution can be used to model failure-time data with
decreasing or increasing hf. The Weibull distribution described in this section is
sometimes referred to as the “two-parameter Weibull distribution” to distinguish it
from the three-parameter Weibull distribution described in Section 5.10.2.

49 LARGEST EXTREME VALUE DISTRIBUTION

When Y has a largest extreme value distribution, we indicate this by Y ~ LEV(u, o).
The largest extreme value distribution cdf, pdf, and hf are

Fly;p,0) = d).(y%“)

)’_P-)
p= ,

1
fip, o) = “(;_'d’lcv(
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(252
e CEED )

where @y, (z) = exp[— exp(—2z)] and dyov(z) = exp[—z — exp(—z)] are cdf and pdf
for the standardized LEV(p = 0,0 = 1) distribution. Here —c0 < p<owisa
location parameter and ¢ > 0 is a scale parameter. The LEV cdf, pdf, and hf are
graphed in Figure 4.6 for . = 10and ¢ = 5, 6, and 7.

The mean, variance, and quantile functions of the largest extreme value distri-
bution are E(Y) = u + oy, Var(Y) = ¢27?/6, and y, = p + O }(p) o, where
O (p) = —log[— log(p)]. Note the close relationship between LEV and SEV: if

lev
Y ~ LEV(u, o) then =Y ~ SEV(—p, ) and &7 (p) = —DZL(1 — p).

The theory of extreme values shows that the LEV distribution can be used to
model the maximum of a large number of random variables from a certain class of
distributions (which includes the normal distribution). As shown in Figure 4.6, the
largest extreme value pdf is skewed to the right. The LEV hf always increases but
is bounded in the sense that lim,_,« A(f; w, @) = 1/o. Although most failure-time
distributions are skewed to the right, the LEV distribution is not commonly used as a

model for failure times. This is because the LEV distribution (like the SEV and normal

h(y; w, o) = —0 <y <o,
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distributic?ns) has positive probability of negative observations and there are a number
of othe.r rl'ght-skewed distributions that do not have this property. Nevertheless, the
LEV distribution could be used as a model for life if o is small relative tou > 0.

4.10 LOGISTIC DISTRIBUTION

Wt{erl. Y 'has a logistic distribution, we indicate this by ¥ ~ LOGIS(u, o). The
logistic distribution is a location-scale distribution with cdf, pdf, and hf

F(y;I.L,O') = (blogis(} ;#) ’

F0i1.0) = < g (22,

o
T K

1
hy,m,0) = ;(Dk,g,s( ) , o<y <oo
where ®g,;0(2) = exp(z)/[1 +exp(2)] and drogis(z) = exp(z)/[1 +exp(z)]? are the cdf
fmd pdf, r'especuvely, for a standardized LOGIS(u = 0,0 = 1). Here —o0 < <o
is a location parameter and ¢ > 0 is a scale parameter. The logistic cdf, pdf, and hf

are graphed in Figure 4.7 for location parameter # = 15 and scale parameter o = 1
2,and 3. ,
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For integer m > 0, E[(Y — u)"] = 0ifmis odd, and E[(Y — )"} = 20™ (m})[1 —
(1/2)" 1355, (1/iy™ if m is even. From this E(Y) = p and Var(Y) = o?m?/3.
The p quantile is y, = p + d)lgglis(p)a, where <D,;g'is(p) = log[p/(1 — p)] is the p
quantile of the standard logistic distribution.

The shape of the logistic distribution is very similar to that of the normal distri-
bution; the logistic distribution has slightly “longer tails.” In fact, it would require
an extremely large number of observations to assess whether data come from a nor-
mal or logistic distribution. The main difference between the distributions is in the
behavior of the hf in the upper tail of the distribution, where the logistic hf levels
off, approaching 1/¢ for large y. For some purposes, the logistic distribution has
been preferred to the normal distribution because its cdf can be written in a simple
closed form. With modern software, however, it is not any more difficult to compute

probabilities from a normal cdf.

4.1 LOGLOGISTIC DISTRIBUTION

When T has a loglogistic distribution, we indicate this by T ~ LOGLOGIS(u, o).
If T ~ LOGLOGIS(u, o) then Y = log(T) ~ LOGIS(u, o). The loglogistic cdf,
pdf, and hf are

Fit;p,0) = (I)Iogis [lﬂg(t;_—_p'] ’
)= L |OBO TR
fp,o)= o_t‘blogls[ p :|v

1 log(¢) —
h(t; p, o) = Eq)logis [%} , >0,

where ¢ogi and Py are the pdf and cdf, respectively, for a standardized LOGIS,
defined in Section 4.10. The median ¢ 5 = exp(u) is a scale parameter and o > O isa
shape parameter. The LOGLOGIS cdf, pdf and hf are graphed in Figure 4.8 for scale
parameter exp(i) = 1 and o = .2, 4, and .6.

For integer m > 0,E(T™) = exp(mu)I'(1 + mo)['(1 — mo), where [(x) is
the gamma function. From this E(T) = exp(u)['(1 + o )['(1 — ) and Va(T) =
exp2u)[T(1 + 20)[(1 —20) —=T'?(1 + o)['?(1 — o)]. Note that for values of o = 1,
the mean of T does not exist and for ¢ = 1/2, the variance of T does not exist.
The p quantile function is ¢, = exp[p + (I)l;g'is(p)o], where (D,;g'is(p) is defined in
Section 4.10.

Corresponding to the similarity between the logistic and normal distributions,

ot 1 1o L
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Figure 4.8. Loglogistic cdf, pdf, and hf for 75 = exp(p) = | and ¢ = .2, .4, and .6.

4.12 PARAMETERS AND PARAMETERIZATION

The choice of @, a set of parameters (the values of which are usually unknown)
to describe a particular model, is somewhat arbitrary and may depend on tradition,
on physical interpretation, or on having a model parameterization with desirable
computational properties for estimating parameters. For example, the exponential
distribution can be written in terms of its mean 6, as in (4.1), or its constant hazard
A = 1/6. The p, o notation for the Weibull distribution allows us to see connections
with other location-scale-based distributions. The traditional parameters of a normal
distribution are 8, = w and 8, = o > 0, the mean and standard deviation, respec-
tively. An alternative with no restrictions on the range of the parameters would be
61 = pand 6, = log(c). Another parameterization, which may have better numer-
ical properties for estimation with heavily censored data sets, is 8, = p + Zp0 and
6, = log(a), where z,, is the p quantile of the standard normal distribution. The best
value of p to use depends on the amount of censoring. In particular, if the sample
contains failure times with no censoring, choose p = .5 with zp = 0 because then
9, (the maximum likelihood estimate of the mean) and 02 (the maximum likelihood
estimate of the log standard deviation) would be statistically independent (this is a
well-known result from statistical theory). Exercise 8.20 explores this issue more
thoroughly.
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4.13 GENERATING PSEUDORANDOM OBSERVATIONS FROM A
SPECIFIED DISTRIBUTION

Simulation (or Monte Carlo simulation) methods are becoming increasingly impor-
tant for many applications of statistics and, indeed, quantitative analysis in general.
In particular, it is possible to determine, through simulation, numerical quantities that
are difficult or impossible to compute by purely analytical means. This book uses a
simulation approach in a number of methods, examples, and exercises. A pseudoran-
dom number generator is the basic building block of any simulation application. This
section will show some simple methods for generating pseudorandom numbers from
specified probability distributions. The bibliographic notes at the end of this chapter
give references for more technical details and more advanced methods of generating
pseudorandom numbers from specified distributions.

4.13.1 Uniform Pseudorandom Number Generator

Most computers, data analysis software, and spreadsheets provide a pseudorandom
number generator for the uniform distribution on (0, 1) [denoted by UNIF(0, 1)]. This
distribution has its probability distributed uniformly from (0, 1). The cdf and pdf of the
UNIF(0, 1) distribution are Fy(x) = uand fy(u) = 1, 0 < u < 1. Pseudorandom
numbers from the UNIF(O0, 1) distribution can be used easily to generate random
numbers from other distributions, both discrete and continuous.

4.13.2 Pseudorandom Observations from Continuous Distributions

Suppose Ui,..., U, is a pseudorandom sample from a UNIF(O, 1). Then if ¢, =
Fr'(p) is the quantlle function for the distribution of the random variable T from
which a sample of pseudorandom numbers is desired, T} = FT wy,....T, =
F7Y(U,) is a pseudorandom sample from Fr. For example, to generate a pseu-
dorandom sample from the Weibull distribution for specified parameters 7 and
B, first obtain the UNIF(0, 1) pseudorandom sample U,,...,U, and then com-
pute T, = nm[—log(l — U1/, ..., T, = m[—log(l — U,,)]'/‘i Similarly, for
the lognormal distribution the pseudorandom sample can be obtained from 7 =
explp + @ (UL, T, = explp + O N (U)ol

4.13.3 Efficient Generation of Censored Pseudorandom Samples

This section shows how to generate pseudorandom censored samples from a specified
cdf F(r; 8). Such samples are useful for implementing simulations like those used
throughout the book and for bootstrap methods like those described in Chapter 9.

General Approach
Let Uy;) denote the ith order statistic from a random sample of size n from a UNIF(0, 1)
distribution. Using the properties of order statistics, the conditional distribution of



