TMA 4295 Statistical Inference 2014 Homework 3

Problem 1

Reade example 3.6.3 in the book. Thereafter, do exercise 3.47. (Hint: Instead of multiplying by x / t, which is done in the example, you should try to multiply by t^{r} / x^{r} for a suitable r).

Problem 2

Let X_{1}, \ldots, X_{n} be i.i.d. Bernoulli-distributed with parameter p (see the book p. 621), (i.e., X_{1}, \ldots, X_{n} are results of n binomial trials). Let $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$.
a) Explain why the central limit theorem (CLT) gives that

$$
\frac{\sqrt{n}\left(\bar{X}_{n}-p\right)}{\sqrt{p(1-p)}} \xrightarrow{d} N(0,1)
$$

b) Explain why

$$
\frac{\sqrt{n}\left(\bar{X}_{n}-p\right)}{\sqrt{\bar{X}_{n}\left(1-\bar{X}_{n}\right)}} \stackrel{d}{\rightarrow} N(0,1)
$$

c) Go through the example from the lectures where it is shown that

$$
\sqrt{n}\left(2 \arcsin \sqrt{\bar{X}_{n}}-2 \arcsin \sqrt{p}\right) \xrightarrow{d} N(0,1)
$$

d) How would you use the results in a)-c) to make (approximate) confidence intervals for p ?

Problem 3

Let $U \sim N(0,1), V \sim \chi_{p}^{2}$, where U and V are independent.
a) Write down the joint density of U, V.
b) Let

$$
T=\frac{U}{\sqrt{\frac{V}{p}}}
$$

What is the distribution of T (following the elementary course in statistics)?
Find the joint distribution of T, W, where $W=V$, (see p. 223 in the book).
c) Derive the density of the t-distribution with p degrees of freedom.

Problem 4

In this problem you will go through the prrof of Theorem 5.3 .1 on p. 218 in the book.

For part a the idea is as follows:

1. Explain why it is enough to prove the result when $\mu=0$ and $\sigma=1$ (which will simplify the writing furhter in the proof). You must here show by a precise argument that the result for general (μ, σ) can be derived from that of $\mu=0, \sigma=1$.
2. Show that S^{2} can be expressed alone as a function of the $n-1$ variables

$$
Y_{2}=X_{2}-\bar{X}, \ldots, Y_{n}=X_{n}-\bar{X}
$$

3. Write down the joint distribution of X_{1}, \ldots, X_{n} (remember the assumption $N(0,1)$). Define $Y_{1}=\bar{X}$ and let Y_{2}, \ldots, Y_{n} be as in the previous point. Find the joint distribution $f\left(y_{1}, \ldots, y_{n}\right)$ of Y_{1}, \ldots, Y_{n} by using the multivariate transformation formula (with Jacobi-determinant etc.) Conclude from f that Y_{1} is independent of Y_{2}, \ldots, Y_{n}. Why does it follow from this that \bar{X} and S^{2} are independent?

Finally, go through the induction proof of part \mathbf{c} in the theorem, i.e. the proof that $(n-1) S^{2} / \sigma^{2}$ is chi-square distributed.

