TMA 4295 Statistical Inference 2014 Homework 5

Problem 1

Let $X \sim \text{gamma}(\alpha, \beta)$ where $\alpha, \beta > 0$ (see the density on page 624 in book). Show that

$$E(\ln X) = \frac{\Gamma'(\alpha)}{\Gamma(\alpha)} + \ln \beta.$$

(This result was used in the lectures without proof).

Hint: It can be shown that differentiation with respect to α is allowed under the integral sign in $\Gamma(\alpha) = \int_0^\infty u^{\alpha-1} e^{-u} du$.

Problem 2

Let X_1, \ldots, X_n be i.i.d. uniformly distributed on the interval $[0, \theta]$. It was shown in Problem 1 of Homework 4 that the statistic

$$T(\boldsymbol{X}) = \max\{X_1, \dots, X_n\}$$

is sufficient for θ .

- a) Find the moment estimator of θ . Can this be written as a function of $T(\mathbf{X})$? Give a comment.
- b) Let n = 3 and assume that the observations are 0.1, 0.9, 8.0. Compute the moment estimate. Is this estimate of θ reasonable?
- c) Derive the MLE for θ . Find its expectation, variance and Mean Squared Error (MSE), i.e. $E(\hat{\theta} \theta)^2$).
- d) Find an unbiased estimator for θ on the form const $T(\mathbf{X})$. Find the estimator's variance and compare with the MSE of, respectively, the moment estimator and the MLE.

Problem 3

Let X_1, \ldots, X_n be i.i.d. $N(\mu, \mu^2)$, where μ is to be estimated. Discuss the use of the moment method, maximum likelihood method and the general result for MLE in exponential families (from the lectures and the note by Rue and Skaflestad).

Problem 4 (Bayes estimation)

Let $\mathbf{X} = (X_1, \dots, X_n)$ be *n* observations from $N(\theta, \sigma^2)$, where σ^2 is known. Assume that we have given a prior distribution for θ given by $N(m, \tau^2)$.

a) Show that the posterior distribution for θ given X = x is given by

$$N\left(\frac{\sigma^2}{\sigma^2 + n\tau^2}m + \frac{n\tau^2}{\sigma^2 + n\tau^2}\bar{x}, \frac{\sigma^2\tau^2}{\sigma^2 + n\tau^2}\right)$$

Try to minimize the computation (it may be cumbersome otherwise!) See also Example 7.2.16 in the book.

- **b**) Which family of distributions is hence conjugate to the normal distribution?
- c) What is the Bayes-estimator for θ ? Which is the weight it puts on the prior knowledge versus the information from the data X? Give a comment.