TMA 4295 Statistical Inference 2014 Homework 7

Problem 1

Let X_1, \ldots, X_n be i.i.d. Poisson(λ). We shall estimate

$$\tau(\lambda) = e^{-\lambda}$$

(which is the probability of a single X being 0).

- a) Show that the MLE of λ is \overline{X} (which should be well known).
- **b)** Find expected value and variance of the following estimators of $\tau(\lambda)$.
 - 1. $e^{-\bar{X}}$ (which is the MLE of $\tau(\lambda)$. Why?) 2. $(1 - \frac{1}{n})^{n\bar{X}}$

(*Hint:* Let $T = \sum_{i=1}^{n} X_i = n\bar{X}$, so that $T \sim \text{Poisson}(n\lambda)$. Why? It will be helpful to express both estimators in terms of T, so that, e.g., estimator 2 is $(1 - \frac{1}{n})^T$. Then you may either proceed directly, or use the moment generating function $M_T(t)$ (which is well known), in order to to compute the expected values and variances).

Problem 2

Do exercise 7.38 in the book.

Problem 3

Do the exercises 6.15 and 7.52ab in the book.

(*Hint*: In Exercise 7.52b you may use the Rao-Blackwell theorem.)