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GLOSSARY OF TERMS 
This glossary describes statistical terms as they are used in this guide, as well as those that are 
commonly used in other guidance documents/standards on this subject. Kendall and 
Buckland give more general definitions of these terms. 
 
Alternative hypothesis 
In decision theory, any admissible hypothesis that is distinct from the null hypothesis. 
 
Censored data 
Response data, such as fatigue endurance, is described as censored when its exact value is 
unknown but, for instance, it is known to fall within a certain range of values. Censored 
fatigue data is generally 'right' censored, which means that the endurance is known to be 
greater than a particular value (typically because the test stops before failure actually occurs). 
 
Characteristic curve/value 
A fatigue design (or characteristic) curve is established by adopting characteristic values that 
lie a certain number of standard deviations below the mean S-N curve (see Section 6). 
 
Chi-square distribution 
The chi-square, or χ2, distribution is the statistical distribution followed by the sum of squares 
of ν independent normal variates in standard form (i.e. having zero mean and standard 
deviation of one). It is useful in determining confidence limits for the standard deviation of a 
sample drawn from a normal distribution (see Section 8.3). 
 
Confidence interval/level /limits 
Confidence limits are statistics derived from sample values, between which a population 
parameter under estimation will lie with some fixed probability P% (called the confidence 
level). The interval between the upper and lower confidence limits is called a confidence 
interval. 
 
Degrees of freedom 
In regression analysis, the number of degrees of freedom f is equal to the sample size n minus 
the number of coefficients estimated by the regression. It is also used as a parameter of a 
number of distributions, including χ2, F and Student's t. 
 
Design curve 
See Characteristic curve. 
 
Extreme value statistic 
The statistic given by the smallest (or largest) observation in a sample. An extreme value 
statistic is a particular type of order statistic (so the terms are often used interchangeably). 
 
Gaussian distribution 
An alternative name for the normal distribution. 
 
Hypothesis 
Conjecture to be tested by some statistical analysis. 
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Least squares method 
In regression analysis, a method of estimation in which the regression coefficients are 
estimated by minimising the sum of the squares of the deviations of the data points from the 
fitted regression line. In certain cases, the method is equivalent to the maximum likelihood 
method (see Section 5.3.1). 
 
Linear regression 
See regression. 
 
Log-normal distribution 
The distribution pertaining to the variate X when logX follows a normal distribution. 
 
Maximum likelihood method 
A method of estimating parameters of a population (e.g. regression coefficients) as those 
values for which the likelihood of obtaining the observed data is maximised (see Section 
5.3.1). 
 
Normal distribution 
A symmetrical distribution that commonly arises as the sum of a large number of variates 
(e.g. measurement errors) having similar distributions to one another. For this reason, data is 
often assumed to follow a normal distribution in the absence of information to the contrary. 
 
Null hypothesis  
In decision theory, the hypothesis under test. 
 
Order statistics 
When a sample is arranged in ascending order of magnitude, the ordered values are called 
order statistics. The term can also refer, more specifically, to the extreme values of the 
sample. 
 
Population 
The complete set from which a random sample is taken, e.g. the set of S-N data from all 
components of a given type, in the context of fatigue testing. 
 
Prediction interval/limits 
Prediction limits are the limits between which a given proportion (typically 95%) of the 
population lies. The interval between the upper and lower prediction limits is called a 
prediction interval. 
 
Random variable 
See variate. 
 
Regression 
Process of estimating the coefficients of an equation for predicting a response y (such as 
logN) in terms of certain independent variates (such as logS). In the case of linear regression, 
the fitted equation is of the form y = mx + c. 
 
Significance level 
In decision theory, the probability (typically set to 5%) that the null hypothesis will be 
incorrectly rejected when it is, in fact, true.  
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Standard deviation 
The most widely used measure of dispersion of a variate, equal to the square root of the 
variance. 
 
Student's t distribution 
The t distribution is the statistical distribution of the ratio of a sample mean to a sample 
variance for samples from a normal distribution in standard form (i.e. having zero mean and 
standard deviation of one). It is useful in determining confidence limits for the mean of a 
small sample drawn from a normal distribution. 
 
Tolerance limits 
Tolerance limits are values of a variate, following a given type of distribution, between which 
it is stated with confidence γ % that at least a proportion P% of the population will lie. This 
statement is made on the basis of a sample of n independent observations. A tolerance limit 
can thus regarded to be a confidence limit on a confidence limit. 
  
Variance 
The mean of the squared deviations of a variate from its arithmetic mean. 
 
Variate 
A quantity (also called random variable) that may take any of the values of a specified set 
with a specified relative frequency or probability.  
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1. INTRODUCTION 
Fatigue testing is the main basis of the relationship between the fatigue resistance of a given 
material, component or structural detail and cyclic loading. The results of such fatigue 
endurance tests are plotted on graphs relating applied loading (force, stress, strain, etc) and 
the number of cycles to failure. Since test specimens and testing conditions are never 
identical, the resulting data are invariably scattered. Consequently, some judgement is 
required when using them to establish the required relationship. Statistical methods are 
available to assist in this analysis of fatigue test data, and indeed some recommendations on 
their use for analysing fatigue data are available.1,2 However, they do not deal with all the 
statistical analyses that may be required to utilise fatigue test results and none of them offers 
specific guidelines for analysing fatigue data obtained from tests on welded specimens. With 
the increasing use of fatigue testing to supplement design rules, an approach that is now 
encouraged in some Standards3-5, there is a need for comprehensive guidance on the 
statistical analysis of fatigue test results.  
 
This is the subject of the present Best Practice Guide. At this stage, the focus is on fatigue 
endurance test results obtained under constant amplitude loading, as used to produce S-N 
curves. Thus, the loading is expressed as a stress range, S, and the fatigue resistance is 
expressed as the number of cycles, N, that can be endured by the test specimen. In general, 
however, the same methods can be applied to fatigue endurance test results expressed using 
any measure of the loading (e.g. force, strain) and results obtained under variable amplitude 
loading. They can also be used to analyse fatigue crack propagation data, where the loading is 
expressed as the stress intensity factor range, ∆K, and the fatigue resistance is expressed as 
the rate of crack propagation da/dN. Since the analyses are concerned purely with the 
experimental data, they are independent of the material tested. 
 
2. OBJECTIVE 

• To establish best practice for the statistical analysis of fatigue data obtained from welded 
specimens. 

 
3. ASSUMPTIONS 

3.1. FORM OF S-N CURVE 
a) There is an underlying linear relationship between logS and logN of the form: 
 

SmAN logloglog −=                   [1] 
 
where m is the slope and log A is the intercept. This can be re-written in a form that is 
commonly used to describe S-N curves in design rules: 
 

ANS m =            [2] 
 
Note that, in practice, this assumption will only hold true between certain limits on S, as 
illustrated in Fig. 1. The lower limit on S is determined by the fatigue endurance limit (or just 
'fatigue limit'), the stress range below which fatigue failure will not occur. In practice this is 
usually chosen on the basis of the endurance that can be achieved without any evidence of 
fatigue cracking, typically between N = 2 × 106 and 107 cycles. The upper limit on S is 
dependent on the static strength of the test specimen but is commonly taken to be the 
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maximum allowable static design stress6. However, the linear relationship between applied 
strain range and fatigue life for data obtained under strain control extends to much higher 
pseudo-elastic stress (i.e. strain × elastic modulus) levels. 
 
b) The fatigue life N for a given stress range S is log-normally distributed. 
 
c) The standard deviation of log N does not vary with S. 
 
d) Each test result is statistically independent of the others. 
 
These assumptions are rarely challenged in practice. But, if there is any reason to doubt their 
validity, there are statistical tests available that can help to identify departures from these 
assumptions. Some of these tests are listed below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1 Typical fatigue endurance test data illustrating deviations from linear S-N curve. 
 
3.2. TESTS FOR LINEARITY OF RELATIONSHIP BETWEEN LOGS AND LOGN 
One common method of testing for non-linearity in a relationship is to fit a polynomial 
(typically a quadratic or cubic) in logS to the data. Polynomial regression is available within 
most statistical software packages (e.g. MINITAB7). Analysis of Variance (ANOVA) can 
then be used to test whether the quadratic/cubic regression components are statistically 
significant (see Ferguson8 for a worked example). 
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Box and Tidwell9 describe a less well-known approach, which is to add a term of the form 
(logS)ln(logS) to the usual linear regression model. If the coefficient in this variable is 
significant, then this can be taken as evidence of non-linearity.  
 
3.3. TESTS THAT N IS LOG-NORMALLY DISTRIBUTED  
The simplest check is an 'eyeball' assessment of whether a normal probability plot of the 
departures (or 'residuals') of logN from the regression line of logS versus logN follows a 
linear trend. This can be done either by using standard statistical software, or by plotting the 
residuals on normal probability paper.  
 
There is also a wide variety of formal statistic-based tests of normality, many of which are 
implemented in statistical software packages.10-14 
 
3.4. TESTS OF HOMOGENEITY OF STANDARD DEVIATION OF LOGN WITH RESPECT 

TO S 
This assumption is most easily checked by simply examining a plot of the 'residuals' from the 
regression versus logS. The assessment can be backed up by partitioning the residuals into 
appropriate groups and applying either Bartlett's test,15 if logN is believed to be normally 
distributed, or otherwise Levene's test.7  
 
3.5. TESTS OF STATISTICAL INDEPENDENCE OF TEST RESULTS 
This assumption is difficult to check, in practice. A good starting point is to examine plots of 
the 'residuals' from the regression against both logS and against the order in which the results 
were collected (in case there is some time-dependence). There should not be any recognisable 
patterns in the residuals in either of these plots. If there are, the data can be grouped 
accordingly, and variations in the mean level can then be tested using Analysis of Variance. 
Any inhomogeneity in the standard deviations of the groups can be tested as in Section 3.4. 
 
4. FITTING AN S-N CURVE 
In their simplest form, S-N data comprise n data points (logSi, logNi), where Si is the stress 
range and Ni is the endurance in cycles. This endurance is either the number of cycles to 
failure (or some pre-determined criterion, such as the attainment of a particular size of fatigue 
crack) or the number of cycles endured without failure. Fig.2 shows an example of such data, 
together with some fitted S-N curves.16  
 
Special attention is drawn to the fact that fatigue test results are traditionally plotted with logS 
as the y-axis and logN as the x-axis. The standard approach in curve fitting is to assume that 
the parameter plotted on the x-axis is the independent variable and that plotted on the y-axis 
is the dependent variable. However, the opposite is the case with fatigue data presented in the 
traditional way. Consequently, care is needed to ensure that logN is treated as the dependent 
variable. 
 
Considering only the results from specimens that failed, the intercept logA and slope m of the 
'best fit' line through the data (called the 'mean' line in Fig.2) are estimated by ordinary linear 
regression, as described by Gurney and Maddox.6. The method usually used to estimate the 
slope and intercept coefficients is called 'least squares estimation'. This method is based on 
choosing those values of the coefficients that minimise the sum of the squared deviations (or 
'residuals') of the observed values of log Ni from those predicted by the fitted line. TWI 
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originally used such data and this method of analysis to derive the fatigue design rules for 
welded steel structures that have since formed the basis of most fatigue design rules in the 
world6,17. 
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Fig.2 Example of S-N data (Maddox)16 

 
 
5. TREATMENT OF RESULTS WHERE NO FAILURE HAS OCCURRED 

5.1. INTRODUCTION 
In Section 4, it was assumed that each specimen under test yielded an exact failure 
endurance. However, there are circumstances in which results are obtained from specimens, 
or parts of specimens, that have not failed. Such results, which are plotted in Fig.1 and 2 as 
'Specimen unfailed', are often termed 'run-outs'. Depending on the circumstances, it may or 
may not be possible to use the results from unfailed specimens in the statistical analysis of the 
data. Indeed, even nearby results from specimens that did fail may need to be excluded from 
that analysis.  
 
5.2. RESULTS ASSOCIATED WITH THE FATIGUE LIMIT 
Most components exhibit a fatigue endurance limit under constant amplitude loading, defined 
as the stress range below which failure will not occur. In order to establish the constant 
amplitude fatigue limit (CAFL) experimentally, it is generally assumed to be the highest 
applied stress range for a given applied mean stress or stress ratio (minimum/maximum 
applied stress) at and below which the test specimen endures a particular number of cycles 
without showing any evidence of fatigue cracking. In smooth specimens, with no obvious 
stress concentration features, that endurance is usually around 2 x 106 cycles. However, in 
severely notched components, including most weld details, 107 cycles is commonly chosen. 
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For design purposes, it is usually assumed that the S-N curve extends down to the CAFL and 
then turns sharply to become a horizontal line. The data in Fig.2 have been treated in this 
way, with the assumption that the CAFL coincides with N = 5 x 106 cycles in this case, as 
assumed in some fatigue design rules17. However, in practice fatigue test results usually 
follow an S-N curve that gradually changes slope in the region of the CAFL, as illustrated in 
Fig.1. Clearly, test results from either failed or unfailed specimens that lie in this transition 
region approaching the CAFL should not be combined with those obtained at higher stresses 
when estimating the best-fit linear S-N curve. Some judgement is needed when deciding 
which results fall into this category but, as a guide, any from notched or welded specimens 
that give N < 2 x 106 cycles could be included, or N<106 cycles in the case of results obtained 
from smooth specimens. A test for linearity (see Section 3.2) could be used to confirm the 
choice. 
 
Depending on the circumstances, it may be necessary to model the S-N curve more precisely 
and include the transition regions at high and low applied stresses shown in Fig.1. In such a 
case, the data are no longer assumed to fit a linear log S vs. log N relationship, but one that 
corresponds to an S-shaped curve, such as18: 
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C
ESB
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D

−

















 −

−

=

exp.

 [3] 

 
where B, C, D and E are constants. 
 
5.3. FATIGUE TESTS STOPPED BEFORE FAILURE 
Two other situations in which fatigue test results refer to unfailed specimens provide 
information that can be used in the estimation of the best-fit S-N curve. In both cases, they 
are situations in which fatigue failure would have occurred eventually if testing had 
continued. Thus, results that lie in the transition region approaching the CAFL discussed in 
Section 5.2 are excluded. The two situations are: 
 
a) the test is stopped deliberately, perhaps because of time constraints; 
 
b) the test specimen contains more than one site for potential fatigue failure and fails from 

just one of them. At this stage, the remaining sites are only partly through their fatigue 
lives.  

 
This second case was the situation in the welded specimens that gave the results in Fig.2. 
Failure occurred as a result of fatigue cracking from the weld toes on one side of the 
attachment leaving the other side intact. Thus, their test results could have been included in 
Fig. 2 as 'Specimen unfailed'. In other circumstances, a test will generally be stopped even if 
failure occurs at a completely unrelated location. In all these cases, it is clearly desirable to 
infer as much as possible from the locations where failure has not occurred (so-called 
'censored' data), as well as those where it has (called 'exact' data).  
 
5.3.1. Maximum Likelihood Method 
The maximum likelihood method provides an appropriate tool for solving the general 
problem of estimating the 'best fit' line through censored test data.19,20 In a quite fundamental 
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sense, the maximum likelihood method provides estimates for the slope and gradient 
coefficients that maximise the likelihood of obtaining the observed data. Thus, the resulting 
estimates are those that agree most closely with the observed data. In the special case of exact 
data, the maximum likelihood method leads to the least squares function on which linear 
regression is generally based.19 In the general case, numerical iteration is required to derive 
maximum likelihood estimates. Fortunately, linear regression of censored data has general 
application in the field of reliability analysis, and so many statistical software packages can 
perform the required calculations within a few seconds on a modern PC. 
 
5.3.2. Alternative Method based on Extreme Value Statistics 
A special case of censored data can arise when testing a number of specimens, each of which 
contains the same number M of nominally identical welds and any of which might fail first. 
Maddox21 (appended to this report for convenience) shows that, if each specimen is tested 
until it fails at exactly one of the M potential locations, then the S-N curve for a single weld 
can be established using least squares estimation, together with the tabulated extreme value 
statistics for the normal distribution. Although this approach is less flexible than maximum 
likelihood estimation, it can be performed and/or verified by hand calculation. It should also 
be noted that, in this case, least squares estimation is no longer equivalent to maximum 
likelihood estimation (because extreme value statistics for the normal distribution are not 
themselves distributed normally). 
 
6. ESTABLISHING A DESIGN (OR CHARACTERISTIC) CURVE 

6.1. PREDICTION LIMITS 
For design purposes, it is necessary to establish limits between which a given proportion 
(typically 95%) of the data lie. These bounds are often termed 'confidence limits'.6 In this 
Guide, the term 'prediction limits' is used instead, to avoid confusion with the confidence 
limits on the coefficients of the regression line.  
 
In the case of exact data, considered in Section 4, the prediction limits at stress range S can be 
expressed explicitly, in the form:15 
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where:  log A and m are the coefficients of the regression line through the n data points (log Si, 

log Ni), as in Section 4, 
Slog is the mean of the n values of log Si, 

t is the appropriate percentage point of Student's t distribution, with f degrees of 
freedom, 
σ̂ 2 is the best estimate of the variance of the data about the regression line, which is 
equal to the sum of squared residuals divided by the number of degrees of freedom f, 
and 
f is equal to n − 2 in the case where the two coefficients of the regression line have 
both been estimated from the data. 
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In general, these prediction limits are hyperbolae, rather than straight lines, which are closest 
to the regression line at the mean log-stress value Slog . However, it is often assumed that 
design curves will only be applied to values of log S that are not far removed from the mean 
value Slog  (see Gurney and Maddox6 for a justification of this assumption). In this case, the 
third (final) term under the square root of equation [4] can be ignored, and the resulting 
prediction limits are parallel to the regression line.  
 
Furthermore, as the sample size increases, the second term under the square root (i.e. 1/n) 
becomes negligible; Gurney and Maddox6 ignored this term for sample sizes larger than 20, 
which incurs an error of at most 2% in the width of the resulting prediction interval. A closely 
related situation is where the slope m is chosen to take a fixed value, e.g. m = 3 is usually 
chosen for welded steel joints for which the fatigue life is dominated by crack growth6,17. In 
this case, the expression under the square root is exactly equal to one, and the number of 
degrees of freedom f should be increased by one (from n − 2 to n − 1). Note that this latter 
approach is generally recommended whenever the sample size is less than ten.5  
 
As the sample size becomes even larger, the percentage points of the t distribution approach 
those of the normal distribution, so that approximate two-sided 95% prediction limits are, for 
example, given by substituting t = 2. IIW recommendations5 indicate that this approximation 
can be used for sample sizes larger than 40 (again incurring an error of at most 2% in the 
width of the resulting prediction interval). 
 
The two-sided 95% prediction limits are symmetrical, so there is a confidence of 97.5% of 
exceeding the lower limit −

%95log N . This lower one-sided 97.5% prediction limit forms the 
basis of the most widely used fatigue design curves17 (e.g. BS 5400, BS 7608, BS PD 5500, 
HSE Offshore Guidance, DNV rules). 
 
6.2. TOLERANCE LIMITS 
For sample sizes smaller than 40, the IIW document5 suggests an alternative methodology for 
establishing a characteristic curve, based on estimating confidence limits on the prediction 
limits. Such limits are called 'tolerance limits'22 and they are further discussed in Section 11. 
The use of tolerance limits rather than prediction limits would yield a more conservative 
design curve, and tolerance limits have the advantage that they explicitly allow for 
uncertainty in estimates of population statistics (e.g. standard deviation) from a small sample. 
However, their use for design purposes would have the following disadvantages: 
 
• They are inherently more complicated, and therefore there is an increased risk of 

misinterpretation. 
• They are harder to implement (within a spreadsheet, for instance). 
• The extra conservatism may not be warranted for all applications. 
• The validity of the approach depends critically on the assumption of normality. 
• Their use represents a fundamental change to previous practice, so there is a risk of 

incompatibility with current design rules. 
 
Therefore, it is not always appropriate to base a design curve on a tolerance limit. Tolerance 
limits are, nevertheless, a valuable tool for studying the sensitivity of a design curve to the 
size of the sample on which it is based (see Section 11). It is therefore recommended that 
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tolerance limits be used as a means of justifying design curves that are based on small 
samples, especially for critical applications. 
 
6.3. RESULTS WHERE NO FAILURE HAS OCCURRED 
For censored data, statistical software can be used to estimate prediction limits (or tolerance 
limits). Alternatively, where the approach of Section 5.3.2 applies, approximate prediction 
limits can be derived from the set of failed specimens, in which case they take the same form 
as equation [4]. 
 
7. PREDICTING FATIGUE LIFE 

7.1. INDIVIDUAL WELD 
The mean fatigue life of an individual weld/sample is given by the 'best fit' S-N curve 
(Sections 4 and 5). The lower one-sided P% prediction limit −

PLN  is the best estimate of the 
fatigue life that will be exceeded by a given proportion P% of such weld details (Section 6). 
 
7.2. STRUCTURE CONTAINING MANY WELDS 

Assuming there is no redundancy in the structure, the fatigue life of a structure containing M 
identical welds, any of which might fail, is given by the minimum of the M individual fatigue 
lives, thus: 
 

},,,min{ 21min MNNNN K=  [5] 
 
where the individual fatigue lives MNNN ,,, 21 K are identically distributed. 
 
This fatigue life will, on average, be lower than that of an individual weld. The mean fatigue 
life of the overall structure can be estimated (at least approximately) from the extreme value 
statistics of the normal distribution, as described by Maddox (see Appendix).21 However, 
prediction limits on the fatigue life of the structure are best obtained from the relationship: 
 

[ ]M
PLPL NNNN )Pr()Pr( 1min
−− >=>  [6] 

 
Thus, if −

PLN  is the lower one-sided P% prediction limit on the fatigue life of a single weld, 
then it is also equal to the lower one-sided Q% prediction limit on the fatigue life of the 
overall structure as long as Q% = [P%]M. Hence, the lower one-sided Q% prediction limit on 
the fatigue life of the structure is equal to the [Q%]1/M one-sided prediction limit for a single 
weld (which can be evaluated as in Section 6). 
 
8. JUSTIFYING THE USE OF A GIVEN DESIGN CURVE FROM A NEW 

DATA SET 

8.1. PROBLEM 
To validate the use of a particular design Class on the basis of a limited number n of new 
fatigue tests. It is assumed that the mean S-N curve for the particular design category (e.g. 
BS 7608 Class D) being validated, SmN = AD , and the corresponding standard deviation of 
log N, σ, are known. 
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8.2. APPROACH 
Initially the assumption is made that the new test results form part of the same population as 
that used to determine the design S-N curve (this is called the null hypothesis). Then, 
hypothesis testing is used to show that, under this assumption, it is very unlikely (at a 
specified significance level) that the new results would give such long fatigue lives. This is 
the basis for regarding the null hypothesis as implausible, and for accepting the alternative 
hypothesis that the new results actually belong to a population having longer fatigue lives 
than the main database. 
 
8.3. ASSUMPTIONS 
In addition to the assumptions of Section 3, the analysis of this Section depends on one or 
two extra assumptions concerning the compatibility of the new data set with the design curve. 
As for earlier assumptions, there are standard statistical tests available that can help to 
identify departures from the assumptions; these tests are also identified below. 
 
a) The slope of the mean S-N curve for the new test results is the same as the slope m of the 

design curve. This assumption is needed where an S-N curve is assumed for the new test 
results, i.e. only in Sections 8.5.3. In these cases, TWI recommends the following test be 
routinely applied. 

 
This assumption can be tested, at a given significance level α% (e.g. the 5% level), by 
checking that m falls within the two-sided (100 − α) % confidence interval on the slope 
mtest of a regression line fitted through the new results. In the case of exact data, 
considered in Section 4, this confidence interval is given by:15 
 

( )∑
=

±

−
±=

n

i
i

testPtest

SS
σtmm

1

2
%,

loglog

1ˆlog  [7] 

 
where: the new data points are given by (log Si, log Ni), for i = 1,…, n, 

Slog  is the mean of the n values of log Si, 
t is the two-sided P% percentage point (where P = 100 − α) of Student's t 
distribution, with n − 2 degrees of freedom, and 
σ̂ 2 is the best estimate of the variance of the data about the regression line (as in 
Section 6.1). 

 
b) The standard deviation σ̂  of log N about the mean S-N curve (having the assumed fixed 

slope m) is the same for the new tests as for the main database. 
Under this assumption, the ratio 2/ˆ σν sσ  follows a χ2 distribution, with f degrees of 
freedom, where f is equal to n minus the number of coefficients estimated from the new 
data23 (f = n − 1, usually). The assumption can thus be tested by reference to tabulated 
percentage points of the χ2 distribution22 (these are also commonly available within 
spreadsheet packages). This test is recommended in cases (which rarely arise in practice) 
where the standard deviation σ̂  for the new tests is larger than the standard deviation σ 
for the main database. 
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8.4. METHOD 
The null hypothesis is that the new results belong to the same population as the main 
database. The alternative hypothesis, that the new results belong to a population having 
longer fatigue lives than the main database, is accepted at the 5% level of significance if: 
 

n
NN Dtest

σ645.1loglog +≥  [8] 

 
where testNlog  is the mean logarithm of the fatigue life from the tests at a particular stress, 

 DNlog  is the logarithm of the life from the mean S-N curve for the design Class, and 
 the value 1.645 is obtained from standard normal probability tables for a probability 

of 0.95.  
 
 Note that the corresponding level of significance of 5% is commonly considered to 

give a sufficiently low probability of concluding that the populations are different in 
the case where they are actually the same. For other significance levels, different 
values are obtained from the tables, e.g. 

 
 10% level of significance: 1.285 
 5% level of significance: 1.645 
 2.5% level of significance: 1.960 
 1% level of significance:  2.330 

 
Another way to express Eq.[8] is in the form: 
 










≥ n
Dtest NgNg

σ645.1

10.)()(   [9] 
 
where g(N) is the geometric mean of the appropriate fatigue lives. 
 
Depending on the form of the information obtained from the fatigue tests, Eq.[5] and Eq.[6] 
can be applied in a number of ways, some of which are detailed below.  
 
8.5. PRACTICAL APPLICATIONS 

8.5.1. Tests Performed at the Same Stress Level 

If all the fatigue tests are performed at the same stress level, testNlog  is the mean fatigue life 
obtained and n is the total number of tests. Unless the new results lie on an S-N curve with 
the same slope as the design curve, this approach only validates the Class at the stress level 
used for the new tests. 
 
8.5.2. Repeat Tests at Selected Stress Levels 
If a number of tests are repeated at a few selected stress levels, Eq.[8] is applied in turn for 
each stress level, testNlog  being the mean life for each stress and n being the number of tests 
performed at the particular stress level considered. These tests validate the design curve over 
the selected range of stress levels, even if the S-N curve for the new test results does not have 
the same slope m as the main database. 
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8.5.3. Tests Performed to Produce an S-N Curve 
If tests are performed at various stress levels and an S-N curve is fitted, Eq.[8] can be 
modified to compare this curve and the mean S-N curve for the design Class being validated. 
A condition is that the curve fitted to the new results is assumed to have the same slope m as 
the design curve (see Section 8.3(a)), giving an equation of the form logN + mlogS = 

testAlog . Then, Eq.[8] can be rewritten: 
 

n
AA Dtest

σ645.1loglog +≥   [10] 

 
or 
 










≥ n
Dtest AgAg

σ645.1

10.)()(   [11] 
 
where n is the total number of tests. As a result, this approach is less demanding than that in 
Section 8.5.2 above because it relies on the S-N curves having the same slope. 
 
As an example, consider the situation in which 9 specimens are fatigue tested to failure to 
validate the use of Class D at the 5% level of significance: 
 
Mean S-N curve for Class D:  S3N = 3.99 × 1012 
Standard deviation of log N:  σ = 0.2097 
   n = 9 
 
Thus, the S-N curve fitted to the test results, assuming m = 3, must lie on or above the target 
S-N curve  
 
S3N = Atarget 
 
where, from Eq.[11], 
 

 Atarget = 3.99 × 1012.






 ×

3
2097.0645.1

10   

 

 = 5.2 × 1012 

 
In terms of the required endurances, this corresponds to achieving a mean S-N curve that is at 
least 1.3 times higher than the mean Class D S-N curve, or 3.42 times higher than the Class D 
design curve, which lies 2σ below the mean. 
 
Note that the specimens fatigue tested do not necessarily need to fail for inequality [10] to be 
satisfied; they simply need to last longer (on average) than the lives obtained from the target 
S-N curve. This may be a more convenient approach than one in which the fatigue test 
conditions need to be chosen in order to establish an exact S-N curve. If, for instance, all the 
tests are designed to stop when a fixed value of ettA arglog  = log N + m log S is reached, and 
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none of the specimens fail, then the use of the design Class can be justified using the target 
curve given by: 
 

n
AA Dett

σ645.1loglog arg +=  [12] 

 
Note that, in this case, it would not be possible to test statistically the assumption of Section 
8.3(a) that the new results have the same slope m as the design curve. 
 
 
Using the above example, but assuming that none of the nine specimens fails, the requirement 
would be that the endurance of each specimen must be at least 1.3 times higher than the 
corresponding mean Class D life. 
 
9. TESTING WHETHER TWO DATA SETS ARE CONSISTENT 

9.1. PROBLEM 
It is often required to decide, on statistical grounds, whether two sets of S-N data can be 
regarded as forming part of the same population. For example, it may be necessary to test if a 
manufacturing change or the application of a post-weld fatigue life improvement technique 
really produces a significant change in fatigue performance. Similarly, the problem is likely 
to be of interest where the two data sets have been collected under conditions that are 
different (e.g. different research workers), but are expected to give comparable fatigue 
performance. The methods below can then be used to justify the amalgamation of the two 
data sets into one larger data set, or to justify the conclusion that there is a significant 
difference between them. 
 
9.2. APPROACH 
Initially, it is assumed that the two sets of test results follow the same S-N curve and have the 
same residual standard deviations about this curve (this so-called 'composite' null hypothesis 
is, in effect, a combination of hypotheses). The observed differences are calculated between: 
 
(a) the coefficients of the two regression lines through the two data sets, and  
(b) the standard deviations 2

1σ̂ and 2
2σ̂ of the residuals about these two regression lines. 

 
Hypothesis testing is then used to check that, under these assumptions, it is not particularly 
unlikely (at a specified significance level) that the above statistics could have arisen by 
chance. This is the basis for regarding the null hypotheses as plausible, and for rejecting the 
alternative hypothesis that the two sets of test results belong to different populations. 
 
Thus, the overall approach is similar to that in Section 8, the main difference being that here 
the 'desired' outcome will probably be to confirm, rather than reject, the null hypotheses. For 
simplicity, it is assumed here that both sets of S-N data are exact data, although it is believed 
that the methods can, in principle, be extended to the case of censored data. 
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9.3. TESTS PERFORMED AT THE SAME STRESS LEVEL 

9.3.1. General 
 In this case, the coefficients of the 'regression lines' referred to above simply reduce to the 
point estimates 1log N  and 2log N  of the mean logarithms of the fatigue lives. Also, the 
'residual standard deviations' reduce to simple standard deviations.  
 
9.3.2. Test that Standard Deviations are Consistent 
The null hypothesis is that the two sets of results belong to populations having the same 
standard deviation. This hypothesis is accepted at a given significance level α% (e.g. the 5% 
level) if: 23 
 

2

12
2

2
1

ˆ
ˆ ν

νF
σ
σ

≤  [13] 

 
where 2

1

ν
νF  is the P% percentage point (where P = 100 − α) of the F distribution (as obtained 

either from standard probability tables or software), which is a function of the 
numbers of degrees of freedom f1 and f2 used to estimate 2

1σ̂ and 2
2σ̂ . As in Section 8, 

the numbers of degrees of freedom are one less than the corresponding sample sizes 
when the tests are all performed at the same stress level. 
 

By convention, 2
1σ̂ is taken to be the larger of the two standard deviations 2

1σ̂ and 2
2σ̂ , while 

2
2σ̂  is taken to be the smaller of the two. 

 
9.3.3. Test that the Mean Fatigue Lives are Consistent 
The null hypothesis is that the two sets of results belong to populations having the same mean 
fatigue life. This hypothesis is accepted at a given significance level α% (e.g. the 5% level) 
if: 23 
 

2

21
21

11loglog eσnn
tNN 








+≤−  [14] 

 
where 1log N , 2log N  are the mean logarithms of the fatigue lives from the two sets of tests, 

n1 and n2 are the sample sizes for the two sets of tests,  
t is the two-sided P% percentage point (where P = 100 − α) of Student's t distribution, 
with (f1 + f2) degrees of freedom,  
f1 and f2 are the numbers of degrees of freedom used to estimate 2

1σ̂ and 2
2σ̂ , which are 

equal to (n1 − 1) and (n2 − 1) respectively when the tests are all performed at the same 
stress level (as in Section 9.3.2), and 
 σe is an estimate of the common variance of the two samples, given by: 
 

21

2
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9.4. TESTS PERFORMED TO PRODUCE AN S-N CURVE 

9.4.1. Test that Residual Standard Deviations are Consistent 
Equation [13] still applies in this case. But, as in Section 8, the numbers of degrees of 
freedom f1 and f2 (also used to estimate 2

1σ̂ and 2
2σ̂ ) are now equal to (n1 − 2) and (n2 − 2) 

respectively, because two coefficients have been estimated to obtain the S-N curves. 
 
9.4.2. Test that the Intercepts of the Two S-N Curves are Consistent 
In this case, the equivalent formula to equation [14] is: 
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where 1log A , 2log A  are the estimated intercepts of the regression lines through the two data 

sets, 
n1 and n2 are the sample sizes for the two sets of tests,  
t is the appropriate two-sided percentage point of Student's t distribution, with (n1 + n2 
− 4) degrees of freedom,  
σe is an estimate of the common variance of the two samples (given by equation [15]) 

1log S is the mean of the n1 values of logSi (i.e. the first data set), and 

2log S is the mean of the n2 values of logSj (i.e. the second data set). 
 

9.4.3. Testing that the Slopes of the Two S-N curves are Consistent (t-test) 
In this case, the equivalent formula to equation [14] is: 
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where m1 and m2 are the estimated slopes of the regression lines through the two data sets, 
and all other notation is as in Section 9.4.2. 
 
9.5. COMPOSITE HYPOTHESES 
Note that if each of the three null hypotheses in Sections 9.4.1, 9.4.2 and 9.4.3 is tested at the 
5% significance level, then there will be a probability of almost 15% that one of the three will 
be rejected even if all three are actually correct. For this reason, a lower (less demanding) 
significance level is often used for each individual test when a 'composite' hypothesis such as 
this is tested, e.g. a significance level of 1.7% for each individual test would roughly 
correspond to a 5% significance level for the 'composite' hypothesis. By a similar logic, it 
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might be considered appropriate to choose a significance level of 2.5% for each of the two 
individual tests described in Section 9.3. 
 
10. TESTING WHETHER MORE THAN TWO DATA SETS ARE 

CONSISTENT 

10.1. PROBLEM 
This section considers the extent to which the methods of Section 9 can be generalised to 
more than two sets of S-N data, i.e. the problem of deciding, on statistical grounds, whether 
the data sets can be regarded as forming part of the same population.  
 
10.2. APPROACH 
Initially the assumption is made that the M sets of test results follow the same S-N curve and 
have the same residual standard deviations about this curve (this combination of null 
hypotheses is another example of a 'composite' hypothesis). The observed differences 
between the following are then assessed: 
 
(a) the coefficients of the M regression lines through the two data sets, and  
(b) the standard deviations 2ˆ kσ (k = 1,…, M) of the residuals about the M regression lines. 
 
Finally, hypothesis testing is used to check that, under these assumptions, it is not particularly 
unlikely (at a specified significance level) that the observed differences could have arisen by 
chance. This is the basis for regarding the null hypotheses as plausible, and for rejecting the 
alternative hypothesis that the M sets of test results belong to different populations. 
 
Thus, the overall approach is analogous to that of Section 9. In particular, the observations of 
Section 9.5 concerning composite hypotheses also apply here. However, unless specifically 
stated otherwise, the methods of this section apply to exact data only. 
 
10.3. TESTS PERFORMED AT THE SAME STRESS LEVEL 

10.3.1. General 
In this case, the coefficients of the 'regression lines' referred to above simply reduce to the 
point estimates kNlog  (k = 1,…, M) of the mean logarithms of the fatigue lives, and the 
'residual standard deviations' reduce to simple standard deviations.  
 
10.3.2. Test that Standard Deviations are Consistent 
The null hypothesis is that the M sets of results belong to populations having the same 
standard deviation. This hypothesis can be tested by direct application of Bartlett's test.15 
Note, however, that Bartlett's test is not robust to departures from normality. An alternative 
test, which is valid for any continuous distribution, is Levene's test, which is reported to be 
more robust for small samples.7  
 
10.3.3. Test that Mean Fatigue Lives are Consistent 
The null hypothesis is that the M sets of results belong to populations having the same mean 
logarithms for fatigue life. This hypothesis can be tested using a method known as single-
factor Analysis of Variance (ANOVA)23. The ANOVA method is available within a wide 
range of software and (for exact data) from spreadsheet packages. It can also be performed 
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(somewhat laboriously) by hand calculation, with reference to statistical tables of the 
percentage points of the F distribution. For censored data, the ANOVA method can be 
applied as part of a 'general linear model' (GLM) numerical procedure.7  
 
The ANOVA method identifies whether there are overall differences between the mean 
logarithms of the fatigue lives of the M data sets, but it does not, in itself, identify which data 
sets can be regarded as consistent and which ones are inconsistent with one another. 
Differences between pairs of data sets can be investigated using the t-test of Section 9.3.3. 
Also, there is a graphical analogue to the ANOVA method known as 'Analysis of Means' 
(ANOM), which is particularly valuable for identifying if the mean logarithm of the fatigue 
life of one data set is significantly different from the other mean logarithms.7 
 
10.4. TESTS PERFORMED TO PRODUCE AN S-N CURVE 

10.4.1. Test that Residual Standard Deviations are Consistent 

The same tests as in Section 10.3.2 apply here. However (as in Section 9.4.1), the number of 
degrees of freedom for each data set must be reduced by one accordingly. Note that this 
option was not available under the implementations of these tests in Release 12 of the 
MINITAB software package.7  
 
10.4.2. Test that the Intercepts and Slopes of the S-N Curves are Consistent 
The ANOVA method applies here, as in Section 10.3.3. Again, the main difference is that the 
numbers of degrees of freedom for each data set must be reduced accordingly. In this case, 
the use of hand calculations would be so laborious as to be rendered virtually impractical. 
However, GLM procedures are widely available that offer implementations of the ANOVA 
method, and are also able to handle censored data. Differences between pairs of data sets can 
be investigated using the t-tests of Section 9.4.2 or 9.4.3, as appropriate. However, the 
authors are not aware of any implementations of the ANOM method in this particular case. 
 
11. SENSITIVITY OF DESIGN CURVE TO SAMPLE SIZE 
For a given stress range S, the lower one-sided P% prediction limit (as given by Eq.[4]) takes 
the general form: 
 

tsN P −=− µ̂log %  [18] 
 
where: µ̂  is an estimate of the mean endurance at stress S, based on n observations,  

s is an estimate of the standard deviation of the endurance at stress S, based on f 
degrees of freedom, and 
t is the appropriate percentage point of Student's t distribution with f degrees of 
freedom,  
f is equal to n minus the number of estimated coefficients (as previously). 

 
Both µ̂  and s are subject to sampling uncertainties (especially when the sample size is 
small), which, in turn, can affect the accuracy of Eq.[18]. These sampling errors can be 
assessed by estimating a lower confidence limit of the form µ̂  − ks on the prediction limit 

−
%log PN . This means a statement can be made of the form: 'At least a proportion P% of the 

population is greater than µ̂  − ks with confidence γ %'. The statistic k is called a one-sided 
tolerance limit factor.22 
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In the general case where the slope of the regression line is estimated from the data (i.e. 
f = n − 2), tolerance limit factors for the normal distribution are not readily available, either 
from standard statistical tables or from spreadsheet software. However, p117 of Owen22 gives 
a formula for determining k, which requires the evaluation of both the P% percentage points 
of the normal distribution (which is readily available) and the γ % percentage points of the 
non-central t distribution. The 90%, 95% and 99% percentage points of the non-central t 
distribution can, in turn, be evaluated using the formulae and associated tables on p109-112 
of Owen.22 The required calculations are somewhat laborious, and are outside the scope of 
this Best Practice Guide. Refs. 24 and 25 contain further tables of the non-central t 
distribution. Owen22 also tabulates k directly for sample sizes n ≤ 4. Some statistical software 
packages also provide estimates of tolerance limits for the case f = n − 2 (for any given values 
of n, γ % and P%).7 
 
When a fixed value is assumed for the slope of the regression line estimated from the data, 
then the number of degrees of freedom f = n − 1. In this case, Owen22 tabulates k directly, 
over a wide range of sample sizes, for γ % = 90% and 95%, and P% = 90%, 95%, 97.5%, 
99% and 99.9%. The cases likely to be of most interest in connection with fatigue analysis 
are γ % = 90%, with P% = 97.5% or possibly P% = 95%; for convenience, the corresponding 
values of k are reproduced in Table 1. 
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Table 1 One-sided tolerance limit factors k for a normal distribution for γ % = 90%  
 

Sample size n Value of k for P% = 95% Value of k for P% = 97.5% 
2 13.090 15.586 
3 5.311 6.244 
4 3.957 4.637 
5 3.401 3.983 
6 3.093 3.621 
7 2.893 3.389 
8 2.754 3.227 
9 2.650 3.106 
10 2.568 3.011 
11 2.503 2.936 
12 2.448 2.872 
13 2.403 2.820 
14 2.363 2.774 
15 2.329 2.735 
16 2.299 2.700 
17 2.272 2.670 
18 2.249 2.643 
19 2.228 2.618 
20 2.208 2.597 
21 2.190 2.575 
22 2.174 2.557 
23 2.159 2.540 
24 2.145 2.525 
25 2.132 2.510 
30 2.080 2.450 
35 2.041 2.406 
40 2.010 2.371 
45 1.986 2.344 
50 1.965 2.320 
60 1.933 2.284 
70 1.909 2.257 
80 1.890 2.235 
90 1.874 2.217 
100 1.861 2.203 
120 1.841 2.179 
145 1.821 2.158 
300 1.765 2.094 
500 1.736 2.062 
∞ 1.645 1.960 
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Appendix 
 
STATISTICAL ANALYSIS OF FATIGUE DATA OBTAINED FROM 
SPECIMENS CONTAINING MANY WELDS 
 
by S J Maddox 
 
Welded specimens used to obtain fatigue data invariably contain more than one potential site 
for fatigue crack initiation. For example, in a simple butt weld there are four weld toes from 
which fatigue cracks could propagate. Specimens used to investigate the fatigue performance 
of attachments normally include more than one. In view of this situation, the fatigue life 
obtained from a test on a specimen containing n nominally identical welds, all of which might 
fail, is the lowest of n possible fatigue lives. Thus, this life is less than the average life which 
would have been obtained if each individual weld had been tested to failure. Similarly, the 
mean S-N curve obtained from regression analysis of the fatigue test results obtained from 
several welded specimen: 
 
Sm N = A [A1] 
 
lies below that corresponding to failure in all the welds. Assuming that the fatigue lives are 
log normally distributed (as is usually found to be the case for welded joints) an estimate of 
the average life from this higher S-N curve can be obtained using extreme value statistics. 
 
Order statistics enable an estimate to be made of the expected smallest value of a random 
sample of n observations drawn from a normally distributed parent population. Tabulated 
values are available to represent the mathematical expression used A1,A3. This actually relates 
to a parent normal distribution with zero mean and unit variance and gives the expected 
expressed in numbers of standard deviations (standard deviation = √ variance). An extract 
from the table is shown in Table A1; for a sample of, say, 5, the expected smallest value is 
-1.163, that is 1.163 standard deviations below the mean. The standard deviation of the 
smallest of 'n' randomly selected observations from a distribution is less than that of a single 
observation. However, again, statistical tables are availableA2 to estimate it1; an extract is 
given in Table 2. Thus, for n = 5, the variance is 0.4475, whereas Table A1 relates to a 
variance of 1. Thus, the variance for the minimum of five samples is 0.4475 x 1 = 0.4475. 
 
As an example, consider the fatigue test results obtained from tests on specimens 
incorporating three test welds. The minimum fatigue life from three observations is therefore 
known (log N3) together with the standard deviation of log N for those observations, σ3. Thus, 
the statistical method is used in reverse to infer the value corresponding to n = 1 (i.e. the 
mean life obtained from three times as many specimens each with a single weld, log N1) and 
the corresponding standard deviation of log N, σ1. Referring Tables A1 and A2 for n = 3, the 
expected deviation is 0.846 and (σ1)2 = 0.5595. Thus,  
 

log N1 = log N3+ 0.846 
5595.0

2
3σ

 [A2] 

 
and the corresponding standard deviation of log N is 
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5595.0

2
3σ

. 

 
To illustrate the use of the technique, consider the fatigue test results obtained from 21 
specimens each with three test welds given in Fig.A1. Regression analysis of all the data gave 
the equation: 
 
S2.90 N = A [A3] 
 
where A = 2.02 x 1012 as shown in Fig.A1, and the standard deviation of log N was 0.158. 
Since N is proportional to A, Eq.[A2] can be used directly to deduce the corresponding 
constant for the adjusted S-N curve for single welds: 
 

log A1 = log A3 + 0.846 
5595.0

)158.0( 2

 [A4] 

 

= 12.306 + 0.846 
5595.0
0251.0   

 
= 12.485 
 
or A1 = 3.06 x 1012 
 
Thus, the equation of the adjusted mean S-N curve is S2.90 N = 3.06 x 1012 as shown in 
Fig.A1, representing a 52% increase in fatigue endurance at a stress range of 100 N/mm2. The 
standard deviation of log N has, however, now increased to 
 

5595.0
0251.0  = 0.212. 

 
Therefore, if an S-N curve some number of standard deviations below the mean was of 
interest the increase in fatigue endurance for single welds would be less. For example, for 
two standard deviations the increase is only 18%. 
 
A further application of extreme value statistics is to deduce the average fatigue life of a 
structural member containing many welds any of which may fail. For example, for a member 
which incorporates 10 elements welded together in line, from Table A1 the mean fatigue life 
of such a member can be expected to be 1.539 standard deviations below the life obtained 
from any S-N curve deduced for single welds. 
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Table A1 Extract from table of expected values of normal order statistics A1 
 

n 2 3 4 5 10 20 30 
Expected deviation -0.564 -0.846 -1.029 -1.163 -1.539 -1.867 -2.04 

 
 
Table A2 Extract from table of variances or order statistics A2 
 

n 2 3 4 5 10 20 
Variance 0.6817 0.5595 0.4917 0.4475 0.3433 0.2757 

 

Figure A1 Fatigue data obtained from specimens containing three welds, only one of which 
failed, analysed using extreme value statistics 


