1 Exercises from the book

4.16, 4.18 and 4.32.

2 Exercise 1

Given a homogeneous Markov chain, where the transition matrix ${\bf P}$ depends on a parameter p given by

		1	2	3	4
$\mathbf{P} =$	1	(0.2)	p	0	0.8 - p
	2	0.3	0.7	0	0
	3	0	0.1	0.1	0.8
	4	$\setminus 0.1$	p	0.1	0.8 - p

For which value of p is the Markov chain not irreducible?

3 Exercise 2

Consider a Markov chain with state space $\Omega = 1, 2, 3, 4, 5, 6$ and transition matrix

		1	2	3	4	\mathbf{b}	6
$\mathbf{P} =$	1	(0.5	0.5	0	0	0	0
	2	0.25	0.75	0	0	0	0
	3	0.25	0.25	0.25	0.25	0	0
	4	0.25	0	0.25	0.25	0	0.25
	5	0	0	0	0	0.5	0.5
	6	0	0	0	0	0.5	0.5 /

Determine:

- a) The period of each state
- b) Which states are transient
- c) Which states are ergodic
- d) The equivalence classes.

4 Exercise 3

Consider a Markov chain whose transition probability matrix is given by

$$\mathbf{P} = \begin{array}{cccc} 0 & 1 & 2 & 3\\ 1 & 0 & 0 & 0\\ 2 & 0.1 & 0.4 & 0.1 & 0.4\\ 0.2 & 0.1 & 0.6 & 0.1\\ 0 & 0 & 0 & 1 \end{array} \right)$$

- a) Starting in state 1, determine the probability that the Markov chain is absorbed in state 0.
- b) Determine the mean time of absorption given the process starts in state 1.