1 Exercises from the book

- Chapter 3: 37, 41, 49, 54
- Chapter 4: 1, 2, 3, 10

2 Problem 4.10

This problem can be solved by making "glum mood" an absorbing state and then calculating the three-step transition probabilities. The modified transition probability matrix is

$$
\mathbf{P}=\left[\begin{array}{lll}
0.5 & 0.4 & 0.1 \\
0.3 & 0.4 & 0.3 \\
0.0 & 0.0 & 1.0
\end{array}\right]
$$

and the three-step transition probability matrix is

$$
\mathbf{P}^{3}=\left[\begin{array}{ccc}
0.293 & 0.292 & 0.415 \\
0.219 & 0.220 & 0.561 \\
0 & 0 & 1.000
\end{array}\right]
$$

The desired probability is then the probability of making a three-step transition from cheerful mood to either cheerful or so-so mood without being absorbed in the glum state, $0.293+0.292=0.585$.

3 Exercise 1

Simulate (using R or Matlab) a Markov chain with state space $\Omega=\{1,2, \ldots, n\}$ with given transition matrix P. Use as initial distribution a uniform distribution on Ω.

Solution

R-code:

```
sim_mc <- function(P, len){
    # get the number of states
    n <- dim(P)[1]
    # define the initial probability vector
    mu <- rep(1/n, n)
        x <- c()
        # initialize the first state
        x[1] <- sample(1:n, 1, prob=mu)
```

```
    # use the Markov property to continue
    for(i in 2:len)
        x[i] <- sample(1:n, 1, prob=P[x[i-1],])
    return(x)
}
```


4 Exercise 2

Consider Example 4.4 on page 193 of the book. Given it did not rain on Monday and Tuesday what is the probability that it rains on Thursday?

Solution

The two-step transition matrix is given by:
$\left.\begin{array}{c} \\ 0 \\ 0 \\ 1 \\ 2 \\ 3\end{array} \begin{array}{cccc}0 & 1 & 2 & 3 \\ 0.49 & 0.12 & 0.21 & 0.18 \\ 0.35 & 0.20 & 0.15 & 0.30 \\ 0.20 & 0.12 & 0.20 & 0.48 \\ 0.10 & 0.16 & 0.10 & 0.64\end{array}\right)$

Since rain on Thursday is equivalent to the process being in either state 0 or 1 on Thursday, the desired probability is given by $P_{30}^{2}+P_{31}^{2}=0.10+0.16=0.26$.

5 Exercise 3

Consider a Markov chain $\left\{X_{n}, n=0,1,2, \ldots\right\}$ with state space $\Omega=\{A, B\}$ and stationary transition matrix

$$
\begin{gathered}
\\
A \\
B
\end{gathered}\left(\begin{array}{cc}
A & B \\
0.2 & 0.8 \\
0.6 & 0.4
\end{array}\right)
$$

The initial distribution is given by $P\left(X_{0}=A\right)=0.3$ and $P\left(X_{0}=B\right)=0.7$. Compute
a) $P\left(X_{3}=A\right)$
b) $P\left(X_{3}=A \mid X_{0}=A\right)$
c) $P\left(X_{3}=A \mid X_{1}=B, X_{0}=A\right) P\left(X_{3}=A \mid X_{1}=B, X_{0}=A\right)$
d) $P\left(X_{3}=A \mid X_{2}=B, X_{1}=B, X_{0}=A\right)$
e) $P\left(X_{6}=A \mid X_{3}=A\right)$
f) $P\left(X_{3}=A \mid X_{6}=A\right)$

Solution

homogeneous \rightarrow stationary, i.e. independent of t.
Hence, we can derive the following transition structures:

A
$\mathbf{P}=$$A$ A $B$$\left(\begin{array}{cc}0.2 & 0.8 \\ 0.6 & 0.4\end{array}\right)$
:---:
A
B

0.36 \& 0.64\end{array}\right) \quad \mathbf{P}^{3}=\)| A | B |
| :---: | :---: |
| B | |\(\left(\begin{array}{cc}0.392 \& 0.608

0.456 \& 0.544\end{array}\right)\)
a) $P\left(X_{3}=A\right)=P\left(X_{0}=A\right) \cdot P\left(X_{3}=A \mid X_{0}=A\right)+P\left(X_{0}=B\right) \cdot P\left(X_{3}=\right.$ $\left.A \mid X_{0}=B\right)=0.3 \cdot 0.392+0.7 \cdot 0.456=0.4368$
b) $P\left(X_{3}=A \mid X_{0}=A\right)=0.392$.
c) $P\left(X_{3}=A \mid X_{1}=B, X_{0}=A\right) \stackrel{\text { Markov }}{=} P\left(X_{3}=A \mid X_{1}=B\right) \stackrel{\text { homogeneous }}{=}$ $P\left(X_{2}=A \mid X_{0}=B\right)=0.36$
d) $P\left(X_{3}=A \mid X_{2}=B, X_{1}=B, X_{0}=A\right)=P\left(X_{3}=A \mid X_{2}=B\right)=P\left(X_{1}=\right.$ $\left.A \mid X_{0}=B\right)=0.6$
e) $P\left(X_{6}=A \mid X_{3}=A\right)=P\left(X_{3}=A \mid X_{0}=A\right)=0.392$.
f)

$$
\begin{aligned}
P\left(X_{3}=A \mid X_{6}=A\right) & =\frac{P\left(X_{3}=A, X_{6}=A\right)}{P\left(X_{6}=A\right)} \\
& =\frac{P\left(X_{6}=A \mid X_{3}=A\right) P\left(X_{3}=A\right)}{P\left(X_{6}=A \mid X_{3}=A\right) P\left(X_{3}=A\right)+P\left(X_{6}=A \mid X_{3}=B\right) P\left(X_{3}=B\right)} \\
& =\frac{0.392 \cdot 0.4368}{0.392 \cdot 0.4368+0.456 \cdot 0.5632}=0.4
\end{aligned}
$$

