1 Exercises from the book

2 Exercise 1

Given a homogeneous Markov chain, where the transition matrix \mathbf{P} depends on a parameter p given by

$$
\mathbf{P}=\begin{gathered}
\\
1 \\
2 \\
3 \\
4
\end{gathered}\left(\begin{array}{cccc}
0.2 & p & 3 & 4 \\
0.3 & 0.7 & 0 & 0.8-p \\
0 & 0.1 & 0.1 & 0 \\
0.1 & p & 0.1 & 0.8-p
\end{array}\right)
$$

For which value of p is the Markov chain not irreducible?

Solution

A Markov chain is called irreducible if all states are mutually accessible (communicate), i.e. the probability to get from state i to state j at some point is positive for all i, j. In the example given here this property is not fulfilled for $p=0.8$, as state 3 and 4 cannot be reached from states 1 and 2 .

3 Exercise 2

Consider a Markov chain with state space $\Omega=1,2,3,4,5,6$ and transition matrix

$$
\mathbf{P}=\begin{gathered}
\\
1 \\
2 \\
3 \\
4 \\
5 \\
6
\end{gathered}\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
0.5 & 0.5 & 0 & 0 & 0 & 0 \\
0.25 & 0.75 & 0 & 0 & 0 & 0 \\
0.25 & 0.25 & 0.25 & 0.25 & 0 & 0 \\
0.25 & 0 & 0.25 & 0.25 & 0 & 0.25 \\
0 & 0 & 0 & 0 & 0.5 & 0.5 \\
0 & 0 & 0 & 0 & 0.5 & 0.5
\end{array}\right)
$$

Determine:
a) The period of each state
b) Which states are transient
c) Which states are ergodic
d) The equivalence classes.

Solution

a) All state have period $1 \Rightarrow$ the Markov chain is aperiodic.
b) States 3 and 4 are transient, all other states are recurrent.
c) States $1,2,5$ and 6 are ergodic.
d) There are three equivalence classes are: $\{1,2\},\{3,4\},\{5,6\}$.

4 Exercise 3

Consider a Markov chain whose transition probability matrix is given by

$$
\mathbf{P}=\begin{gathered}
\\
0 \\
1 \\
2 \\
3
\end{gathered}\left(\begin{array}{cccc}
0 & 1 & 2 & 3 \\
1 & 0 & 0 & 0 \\
0.1 & 0.4 & 0.1 & 0.4 \\
0.2 & 0.1 & 0.6 & 0.1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

a) Starting in state 1 , determine the probability that the Markov chain ends in state 0 .
b) Determine the mean time of absorption given the process starts in state 1.

Solution

a) Let $\left\{X_{n}, n \geq 0\right\}$ be a Markov chain with the given transition probability matrix, and let
$P_{i}=$ "Probability that a chain that starts in state i is absorbed in state 0 ".
Note immediately that $P_{0}=1$ and $P_{3}=0$.
First step analysis for state 1 gives

$$
\begin{aligned}
P_{1} & =P_{0} P\left(X_{1}=0 \mid X_{0}=1\right)+P_{1} P\left(X_{1}=1 \mid X_{0}=1\right)+P_{2} P\left(X_{1}=2 \mid X_{0}=1\right)+P_{3} P\left(X_{1}=3 X_{0}=1\right) \\
& =1 \cdot 0.1+0.4 P_{1}+0.1 P_{2}+0
\end{aligned}
$$

Similarily for state 2 ,

$$
\begin{aligned}
P_{2} & =P_{0} P\left(X_{1}=0 \mid X_{0}=2\right)+P_{1} P\left(X_{1}=1 \mid X_{0}=2\right)+P_{2} P\left(X_{1}=2 \mid X_{0}=2\right)+P_{3} P\left(X_{1}=3 \mid X_{0}=2\right) \\
& =1 \cdot 0.2+0.1 P_{1}+0.6 P_{2}+0
\end{aligned}
$$

Solving this linear system of two equations in two variables gives

$$
P_{1}=0.2609
$$

b) Define

$$
Y_{i}=\text { "Steps until absorption in state } 0 \text { or state } 2 " .
$$

Then proceed as in the previous problem conditioning on the first step. For state 1 we find

$$
\begin{aligned}
\mathrm{E}\left[Y_{1}\right] & =1+\mathrm{E}\left[Y_{1}\right] P\left(X_{1}=1 \mid X_{0}=1\right)+\mathrm{E}\left[Y_{2}\right] P\left(X_{1}=2 \mid X_{0}=1\right) \\
& =1+0.4 \mathrm{E}\left[Y_{1}\right]+0.1 \mathrm{E}\left[Y_{2}\right],
\end{aligned}
$$

and for state 2 we find

$$
\begin{aligned}
\mathrm{E}\left[Y_{2}\right] & =1+\mathrm{E}\left[Y_{1}\right] P\left(X_{1}=1 \mid X_{0}=2\right)+\mathrm{E}\left[Y_{2}\right] P\left(X_{1}=2 \mid X_{0}=2\right) \\
& =1+0.1 \mathrm{E}\left[Y_{1}\right]+0.6 \mathrm{E}\left[Y_{2}\right] .
\end{aligned}
$$

Solving this system gives the mean time of absorption starting in state 1,

$$
\mathrm{E}\left[Y_{1}\right]=2.17
$$

