TMA4265 Stochastic Processes Week 36 - Exercises

Problem 1: Exercises from the book

3.8 and 3.24.

Problem 2: Changes in stock prices

Let Z be a random variable that denotes the price change for one stock in a specific company from the stock exchange closes one day till it closes the following day. Each day there may be multiple trades. One possible model is given by

$$
Z=X_{0}+X_{1}+\ldots+X_{N}
$$

where $X_{0}, X_{1}, \ldots, X_{N}$ are independent random variables with normal distributions with mean 0 and variance σ^{2}, that are independent of N which has a Poisson distribution with rate $\nu . X_{0}$ is the initial price change when the stock exchange opens, X_{i}, for $i>0$, is the price change after trade i and N is the total number of trades while the stock exchange is open.

1. Calculate the variance of Z.

Problem 3: Joint distribution

The joint probability mass function of two discrete random variables X and Y is given by

$$
p(x, y)=\exp (-2 \lambda) \frac{\lambda^{x+y}}{x!y!} \quad \text { for } x, y \in\{0,1, \ldots\}
$$

with $\lambda>0$.

1. Compute the marginal probability mass functions $p_{X}(x)$ and $p_{Y}(y)$. Compute the covariance of X and Y.
2. Compute the conditional probability mass function of $X \mid X+Y$.
3. Compute the covariance of $X+Y$ and $X-Y$.

Problem 4: Expectation

1. We roll a standard die over and over. What is the expected number of rolls until the first pair of consecutive sixes appears?
