TMA4265 Stochastic Processes
 Week 36 - Solutions

Problem 2: Changes in stock prices

The model in the problem can be written as

$$
Z=X_{0}+\sum_{i=1}^{N} X_{i}
$$

where X_{0} is always included and one or more X_{i}, for $i \geq 1$, may be included. The desired variance can be calculated via the law of total variance,

$$
\begin{aligned}
\operatorname{Var}[Z] & =\mathrm{E}[\operatorname{Var}[Z \mid N]]+\operatorname{Var}[\mathrm{E}[Z \mid N]] \\
& =\mathrm{E}\left[\sigma^{2}+N \sigma^{2}\right]+\operatorname{Var}[0+N \cdot 0] \\
& =\sigma^{2}+\nu \sigma^{2}=(1+\nu) \sigma^{2}
\end{aligned}
$$

Problem 3: Joint distribution

1.

$$
\begin{aligned}
p_{X}(x) & =\sum_{y} p(x, y)=\sum_{y} \exp (-2 \lambda) \frac{\lambda^{x+y}}{x!y!} \\
& =\exp (-\lambda) \frac{\lambda^{x}}{x!} \underbrace{\sum_{y} \exp (-\lambda) \frac{\lambda^{y}}{y!}}_{1} \\
& =\exp (-\lambda) \frac{\lambda^{x}}{x!}
\end{aligned}
$$

Hence, X is Poisson distributed with parameter λ, e.g. $X \sim \mathcal{P}(\lambda)$. Analogously, $Y \sim \mathcal{P}(\lambda)$. We find that X and Y are independent, since $p(x, y)=p_{X}(x) p_{Y}(y)$ is fulfilled. Hence,

$$
\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)^{X \text { and }} \stackrel{Y}{=} \text { indep. } E(X) E(Y)-E(X) E(Y)=0
$$

\Rightarrow the covariance of X and Y is zero.
2. We know from the lecture that $X+Y \sim P(2 \lambda)$. Hence

$$
\begin{aligned}
P(X \mid Z=X+Y) & =\frac{P(X=x, Z=x+Y)}{P(Z=z)} \\
& =\frac{P(X=x, Z=x+Y)}{P(Z=z)} \\
& =\frac{P(X=x, Y=z-x)}{P(Z=z)} \\
& =\frac{P(X=x) P(Y=z-x)}{P(Z=z)} \\
& =\frac{\exp (-\lambda) \frac{\lambda^{x}}{x!} \exp (-\lambda) \frac{\lambda^{z-x}}{(z-x)!}}{\exp (-2 \lambda) \frac{(2 \lambda)^{z}}{z!}} \\
& =\frac{\frac{\lambda^{z}}{x!(x-z)!}}{\frac{(2 \lambda)^{z}}{z!}} \\
& =\frac{z!}{x!(x-z)!}\left(\frac{1}{2}\right)^{z} \\
& =\binom{z}{x}\left(\frac{1}{2}\right)^{z} \\
& =\binom{z}{x}\left(\frac{1}{2}\right)^{x}\left(\frac{1}{2}\right)^{z-x}
\end{aligned}
$$

Hence, $X \mid X+Y$ is binomially distributed with size z and probability 0.5 , e.g. $X \mid X+Y \sim \mathcal{B}(z, 0.5)$.
3.

$$
\begin{aligned}
\operatorname{Cov}(X+Y, X-Y) & =E((X+Y)(X-Y))-E(X+Y) E(X-Y) \\
& =E\left(X^{2}-Y^{2}\right)-(E(X)+E(Y)) \cdot \underbrace{(E(X)-E(Y))}_{0} \\
& =E\left(X^{2}\right)-E\left(Y^{2}\right) \\
& =0
\end{aligned}
$$

Problem 4: Expectation

1. This exercise is a special case of Example 3.15 in the book. Let N_{2} be the number of necessary rolls until two consecutive sixes appear, and let M_{2} denote its mean. We condition on N_{1} the number of trials needed for one six. Hence

$$
M_{2}=E\left(N_{2}\right)=E\left(E\left(N_{2} \mid N_{1}\right)\right)
$$

where

$$
\begin{aligned}
E\left(N_{2} \mid N_{1}\right) & =\underbrace{p\left(N_{1}+1\right)}_{\text {case } 1}+\underbrace{(1-p)\left(N_{1}+1+E\left(N_{2}\right)\right)}_{\text {case } 2} \\
& =p \cdot N_{1}+p+N_{1}+1-p \cdot N_{1}-p+(1-p) E\left(N_{2}\right) \\
& =N_{1}+1+(1-p) E\left(N_{2}\right)
\end{aligned}
$$

It takes N_{1} rolls to get one six, then either the next roll is a six (with probability $p=\frac{1}{6}$)) as well, and we are done (case 1), or it is not a six (with probability $1-p=\frac{5}{6}$) and we must begin anew
(case 2). For case 2 , it is important to have in mind that we have already needed $N_{1}+1$ rolls to get that far.

Taking expectations of both sides of the preceding yields

$$
M_{2}=M_{1}+1+(1-p) M_{2}
$$

or

$$
M_{2}=\frac{M_{1}+1}{p}
$$

Since N_{1}, the time of the first six, is geometric with parameter p we see that

$$
M_{1}=\frac{1}{p}=\frac{1}{\frac{1}{6}}=6
$$

and thus

$$
M_{2}=\frac{6+1}{\frac{1}{6}}=42 .
$$

The expected of rolls we need until the firs pair of consecutive sixes appears is 42 .

