
TMA4300 Computer Intensive Statistical Methods
Exercise 2, Spring 2012

Note: The solution of problems A and B should be handed in no later than March 23rd 2012.

In this exercise you can use the built-in random number functions in R to generate realisations from

standard univariate distributions (like runif, rnorm, rbeta and rgamma) or you can use the corresponding

functions you coded in Exercise 1. However, remember that there are two common parameterisations for

the gamma distribution, so if you use the function rgamma you must first check what parameterisation

that is used by that function.

Problem A: MCMC for a change point problem

In this problem we consider the following model. We have observations x1, . . . , xn of (ordered) time

points for coal mine disaster events between 1851 and 1963. Download the file coalmine.txt and load

and plot the data:

coal = read.table("coalmine.txt")$V1

plot(coal, 1:length(coal))

This displays the accumulated number of events as a function of time. It appears that the relative

frequency of events changed at least once during the observed 112 years.

We assume that the number of events in an interval (a, b] is Poisson distributed with expectation∫ b

a
λ(t)dt, where λ(t) is a piecewise constant intensity function, with independence between disjoint

intervals. This is a simple inhomogeneous Poisson process. Denote the breakpoints between the constant

intensities Tk, with 1851 = T0 < T1 < · · · < TN = 1963, and let

λ(t) =


λ1, T0 ≤ t < T1

λk, Tk−1 ≤ t < Tk, k = 1, . . . , N − 1

λN , TN−1 ≤ t ≤ TN

Let yk(T·) denote the number of events in interval (Tk−1, Tk). By subdividing the observation period into

short intervals, one can derive the data likelihood as

f(x|T·, λ·) = exp

(
−
∫ TN

T0

λ(t)dt

)
N∏

k=1

λyk

k = exp

(
−

N∑
k=1

λk(Tk − Tk−1)

)
N∏

k=1

λ
yk(T·)
k

Assume a Gamma prior distribution for each λk, and a uniform prior for the change points, all indepen-

dent.

In this exercise, you only have to consider the case N = 2, but extending the algorithms to general

(but fixed) N is straighforward. With N = 2, the unknown quantities are θ = (T1, λ1, λ2).

1. Write an expression for the joint posterior density (unnormalised) for θ given x, π(θ) ∝ p(θ)f(x|θ).

2. Calculate the full conditional densities for λ1 and λ2, showing that they are independent and

Gamma distributed conditionally on T1.

3. Implement an MCMC algorithm for π(θ) using Gibbs sampling for λ1 and λ2, and a simple random

walk Metropolis step for T1 (i.e. propose a value for T
(n+1)
1 from Tnew

1 ∼ Unif(T
(n)
1 − w, T (n)

1 + w)

and accept with probability α(θ, θnew) = min(1, π(θnew)/π(θ)).

Practical implementation note: It is rarely necessary or desired to calculate the actual density

values; whenever possible, use the logarithms. This avoids practical problems with unnormalised

densities. For example, accept moves when logU ≤ log π(θnew) − log π(θ). A particularly useful

function is lgamma, that can be used to calculate log(k!) = log Γ(k+ 1). Convince yourself that the

min(1, ·)-part is handled correctly when using this method.
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4. Run the algorithm for different values of the hyper-parameters in the prior distribution. Estimate

the marginal posterior distributions π(T1|x), π(λ1|x), and π(λ2|x) by making histograms of the

simulated values. Remember to discard an appropriate burn-in period! Also use simulated values

to estimate E(T1|x), E(λ1|x), E(λ2|x), and Corr(λ1, λ2|x). Repeat the simulation experiment for

different values of the hyper-parameters and study how these values influence the results. Can you

intuitively understand what you observe?

5. Run the algorithm for different values of the tuning parameter w and observe how this influences

the length of the burn-in period and mixing properties of the Markov chain, but do not influence

the limiting distribution.

6. Implement a block random walk proposal Metropolis–Hastings algorithm for π(θ). Here, each

iteration consists of first proposing a new value Tnew
1 for T1 using the same method as before, and

then also proposing new values for λ1 and λ2 from their full conditional distributions given Tnew
1 ,

i.e. from π(λ1|Tnew
1 ) and π(λ2|Tnew

1 ). Then, do a joint accept/reject step, accepting the new values

with probability

α(θ, θnew) = min

(
1,
π(θnew)q(θnew, θ)

π(θ)q(θ, θnew)

)
where q(θ, ·) is the density of the joint proposal distribution.

7. Run the new algorithm for different values of the tuning parameter w and check that the generated

posteriors match your previous results. Compare the burn-in and mixing properties of the two

algorithms. For each w, also compare the overall acceptance probabilities for the two methods.

Problem B: Korsbetningen

”I Herrens år 1361, tredje dagen efter S:t Jacob, föll utanför Visbys

portar gutarna i danskarnas händer. Här är de begravda. Bed för dem.”

“In the year of our Lord 1361, on the third day after S:t Jacob,

the Goth fell outside the gates of Visby at the hands of the Danish. They

are buried here. Pray for them.”

In 1361 the Danish king Valdemar Atterdag conquered Gotland1 and captured the rich Hanseatic town

of Visby. The conquest was followed by a plunder of Visby (“brandskattning”). Most of the defenders

were killed in the attack and are buried in a field outside of the walls of Visby. In the 1920s the gravesite

was subject to several archeological excavations. A total of 493 femurs2 (256 left, and 237 right) were

found. We want to figure out how many persons were likely buried at the gravesite. It must reasonably

have been at least 256, but how many more?

To build a simple model for this problem, we assume that the number of left (x1) and right (x2)

femurs are two independent observations from a Bin(N,φ) distribution. Here N is the total number of

people buried and φ is the probability of finding a femur, left or right. The unkown parameter vector is

θ = (N,φ). Assume a Beta(a, b) prior for φ, and a Unif(256, 2500) prior for N .

1Strategically located in the middle of the Baltic sea, Gotland had shifting periods of being partly self-governed, and in

partial control by the Hanseatic trading alliance, Sweden, Denmark, and the Denmark-Norway-Sweden union, until settling

as part of Sweden in 1645. Gotland has an abundance of archeological treasures, with coins dating back to Viking era trade

routes via Russia to the Arab Caliphates.
2 l̊arben (sv), femoral (no)
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1. Write an expression for the joint posterior density (unnormalised) for θ given x1 and x2, π(θ) ∝
p(θ)f(x1, x2|θ).

2. Calculate the full conditional density for φ, showing that the Beta prior is a conditionally conjugate

distribution.

3. Implement an MCMC algorithm for π(θ) using Gibbs sampling for φ, and a simple random walk

Metropolis step for N (i.e. propose a value for N (n+1) from Nnew ∼ Unif(N (n) −w,N (n) +w) and

accept with probability α(θ, θnew) = min(1, π(θnew)/π(θ)).

4. Run the algorithm for different values of the hyper-parameters in the prior distribution. Plot

the simulated values of φ(n) against N (n), and estimate Corr(N,φ|x1, x2). Repeat the simulation

experiment for different values of the Beta hyper-parameters and study how these values influence

the results.

5. Implement a block random walk proposal Metropolis–Hastings algorithm for π(θ). Here, each

iteration consists of first proposing a new value Nnew for N using the same method as before, and

then also proposing a new value for φ from its full conditional distribution given Nnew, i.e. from

π(φ|Nnew). Then, do a joint accept/reject step, accepting the new values with probability

α(θ, θnew) = min

(
1,
π(θnew)q(θnew, θ)

π(θ)q(θ, θnew)

)
where q(θ, ·) is the density of the joint proposal distribution.

6. Run the new algorithm for different values of the tuning parameter w. Compare the burn-in

and mixing properties of the two algorithms. For each w, also compare the overall acceptance

probabilities for the two methods.
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