
TMA4300 Computer Intensive Statistical Methods
Exercise 3, Spring 2012

Note: The solution of problems A, B and C should be handed in no later than April 30th 2011.

The data files and pre-programmed R-code can be downloaded from the course webpage. Look in the

prob3help.R-file to read the documentation, and see how the code works. In addition, you will need to

use the function sample in your own Bootstrap implementations. Load the code and data into R with

source("prob3help.R")

source("prob3data.R")

Problem A: Comparing AR(p) parameter estimators using resampling of residuals

You should analyse the data in data3A$x, which contains a sequence of length T = 100 of a non-

Gaussian time-series, and compare two different parameter estimators.

Given some initial values x0 = {x1−p, x1−p+1, . . . , x−1, x0}

et ∼ independent, identically distributed, mean 0

xt = β1xt−1 + . . .+ βpxt−p + et, t = 1, . . . , T

The relationship between the observed quantities and the residuals can be written in matrix form:xp+1

...

xT

 = y = Cβ + e =

 xp · · · x1
...

...

xT−1 · · · xT−p


β1...
βp

+

ep+1

...

eT


The least sum of squared squared residuals (LS) and least sum of absolute residuals (LA) are obtained

by minimising the following loss functions with respect to β:

QLS(x) =

T∑
t=p+1

(
xt −

p∑
k=1

xt−kβk

)2

= ‖y −Cβ‖22

QLA(x) =

T∑
t=p+1

∣∣∣∣∣xt −
p∑

k=1

xt−kβk

∣∣∣∣∣ = ‖y −Cβ‖1

Denote the minimisers by β̂LS and β̂LA (calculated by ARp.beta.est), and define the observed residuals

as ê = y−Cβ̂ (different values for LS and LA, can be calculated with ARp.resid). You can assume that

p = 2 is known.

1. Use the residual resampling Bootstrap method to evaluate the relative performance of the two

parameter estimators. Specifically, estimate the variance and bias of the two estimators.

You may use ARp.filter as a helper function in your resampling code. Use at least B = 1500

Bootstrap samples, each as long as the original data sequence (T = 100). To do a resampling, you

first need to resample the x0 sequence (of length p) by picking a random subsequence from the

data.

The LS estimator is optimal for Gaussian AR(p) processes. Is it also optimal for this problem?

2. Compute prediction intervals for x101, based on Bootstrap, one for each parameter estimator.
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Problem B: Permutation test for two samples

Here, you will test if the data in data3B$y data3B$z have the same distribution.

The simple model for independent data from two sources that you should use is the following:

yi ∼ F1, i = 1, . . . ,m

zj ∼ F2, j = 1, . . . , n

x = (y, z) = (y1, . . . , ym, z1, . . . , zn)

The permutation method for hypothesis testing is based on resampling under the null hypothesis

H0 : F1 = F2, by permuting the order of the original data (use sample(x, ..., replace=FALSE)) to

generate B Bootstrap samples x∗ valid given that the null hypothesis is true. The p-value for a test based

on a test quantity T (x) can then be estimated as #{T (x∗) ≥ T (x)}/B. The null hypothesis is rejected

if the p-value is smaller than a given threshold (typically 0.05 or 0.01)

1. Test the hypothesis

H0 :F1 = F2

against

H1 :F1 6= F2

using the test quantity T = |y − z|, using the permutation method to compute an estimate of the

p-value for the test.

2. The test only tests for differences that can be detected by the test quantity. Calculate the p-value

based on the alternative test quantity T =

∣∣∣∣ ( 1
m

∑m
i=1 yi)

2

1
m

∑m
i=1 y2

i

− ( 1
n

∑n
j=1 zj)

2

1
n

∑n
j=1 z2

j

∣∣∣∣ and compare the result to

the previous p-value.

Problem C: Estimating prediction error using cross-validation

The available training data in data3C$x (the same data as in problem B, formatted differently)

contains pairs of group indices g and measured values y. The assumed model takes the following form:

g ∼ (π1, π2), π1 + π2 = 1, π1, π2 ≥ 0

(y|g = k) = Fk

x = ((g1, y1), . . . , (gn, yn))

1. Show that an optimal Bayesian classifier based on an assumption of Exponential models

p(y|g = 1) = λ1 exp(−λ1y), y > 0, and p(y|g = 2) = λ2 exp(−λ2y), y > 0,

is given by

ĝ =

{
1, if (λ1 − λ2)y < log π1λ1 − log π2λ2,

2, if (λ1 − λ2)y > log π1λ1 − log π2λ2.
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2. Calculate the estimate θ̂(x) = (π̂1, π̂2, λ̂1, λ̂2) of the parameters θ = (π1, π2, λ1, λ2) and write an

R-function that calculates the optimal classifier from the step above (the arguments should be the

parameters and the y-values that should be classified).

3. If the data are not Exponential, the classifier may not be optimal, and directly analysing its prop-

erties is difficult. Instead, use cross-validation to estimate the expected classification error, without

assuming Exponential data. Divide the data into K ≥ 10 random but disjoint subgroups xk (Hint:

use sample to calculate a random permutation index vector).

Let ĝ
−k(i)
i denote the classifier of yi based on the parameter estimate from the data in the subgroups

not containing i. The estimated classification error becomes

P̂ECV =
1

K

K∑
k=1

PE(xk; θ = θ̂(x−k)) =
1

n

n∑
i=1

I(ĝ−k(i)
i 6= gi)

Write an R-function that calculates P̂ECV .

4. Calculate the cross-validation predicion error and compare with the naive error estimate

P̂E0 =
1

n

n∑
i=1

I(ĝi 6= gi)

where ĝi is calculated based on θ̂(x). (The difference P̂ECV − P̂E0 is an estimate of the optimism

of the estimator P̂E0.)
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