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Errata

Throughout the book the hyphen is missing from the terms “JB-algebra”,
“JC-algebra”, “JBW-algebra’, “C-algebra”, “*-algebra”. This mistake appeared
at a point in the typesetting process after which correcting it would have
been too expensive, so we had to let it stand.

Other errors and misprint include (page+line; a minus sign indicates lines
counted from the bottom of the page):
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Preface

Jordan algebras were first studied by Jordan, von Neumann and Wigner
in the mid-1930s with the aim of being a suitable setting for axiomatic
quantum mechanics. Later on, however, the subject became mainly a
branch of algebra, and it was not until the mid-1960s that Jordan algebras
were systematically studied from the point of view of functional analysis.
From then on there has been developed a theory which closely resembles
that of C* and von Neumann algebras, and which is concerned with the
infinite-dimensional analogues of the original algebras of Jordan, von
Neumann and Wigner. It is the purpose of this monograph to present this
theory of what is now called JB and JBW algebras. We shall assume only
the essentials of functional analysis and then develop the theory to a stage
from which we hope it should not be too hard to extend to Jordan
algebras most results in C* and von Neumann algebras which may be
needed and have natural formulations in a Jordan algebraic setting.

At the present time it is not clear how central JB algebras will be in
future mathematics. They have obvious potential interest in applications
to C* algebras, the mathematical foundations of quantum physics and
complex functions in several and an infinite number of variables. To be
more specific let us indicate some of these applications.

In C* algebras order theoretic questions are closely related to Jordan
algebras, the classical result being that of Kadison [72] stating that an
order automorphism of a C* algebra is a Jordan automorphism. Direct
applications of the theory developed in this monograph have so far been
made to the study of the state space, antihomomorphisms and of positive
idempotent maps of C* algebras.

In the mathematical foundations of quantum physics one of the natural
axioms is that the observables form a Jordan algebra. If we furthermore
want the observables to satisfy the functional calculus of spectral theory,
we would assume them to form a JB algebra. This connection is
thoroughly discussed in the book of Emch [8], and we refer the reader to
that book for further details. We should admit, though, that at the present
time C* algebras are more commonly used than JB algebras as a setting
for the observables. The reason for this is mainly pragmatic; C* algebras
are more widely known and, as we shall see, JB algebras are so close to
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C* algebras that the phenomena we want to describe algebralcally are
often well enough described in terms of C* algebras.

The relationship of Jordan algebras to holomorphic functions in several
variables was first noted by Koecher [77], a result which was later
extended to an infinite number of variables by Kaup [73]. The key result
in this connection states that certain symmetric domains (in C" or a
complex Banach space) can be completely characterized in terms of JB
algebras. This will be made more explicit in Section 3.9 when we have the
necessary terminology at hand. We shall not study this connection be-
cause it would carry us too far from our main goal, namely to present the
theory of JB algebras in a compact and comprehensible form. The
interested reader should consult the notes of Loos [10] for a treatment of
the finite-dimensional case, and the papers of Kaup and collaborators
[32,76] for the infinite-dimensional case.

We have divided the book into seven chapters. The first recollects facts
from functional analysis which will be needed in the sequel. The reader is
supposed to know the basic facts on Banach and Hilbert spaces. We then
state the main theorems on topological vector spaces and use the book of
Dunford and Schwartz [7] as our reference. Complete proofs will be given
of easy consequences of the stated theorems and of results not found in
Dunford and Schwartz [7]. The only exception is the spectral theorem
characterizing Abelian C* algebras as continuous functions on locally
compact Hausdorff spaces. For this the reader must consult other books.

In the second chapter we develop the algebraic theory of Jordan
algebras up to the point where we can prove the classical result of Jordan,
von Neumann and Wigner, assuming only the basics of algebra. Parts of
the theory are, however,. quite technical, so we advise the reader on his
first reading not to get too involved with some of the proofs.

In the remaining chapters we study the main topic of the book, namely
JB algebras and their weakly closed analogues JBW algebras. In Chapters
3 and 4 we develop the basic techniques for JB and JBW algebras
respectively. Chapter 5 contains the key technical lemmas which make
the subsequent structure theorems possible. These theorems are proved
in Chapters 6 and 7. In Chapter 6 we consider the case of spin factors,
which are quite different from the other Jordan algebras, studied in
Chapter 7. If we combine the results of the two latter chapters we obtain
in particular a complete infinite-dimensional extension of the classical
result of Jordan, von Neumann and Wigner.

We are greatly indebted to K. McCrimmon for communicating to us
the proof of Macdonald’s theorem which we present in Chapter 2.

Oslo H. H.-O.
January 1984 ES.
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1

Preliminaries in functional
analysis

1.1. Topological vector spaces

1.1.1. Throughout this section E will be a real vector space. E' will
denote the real vector space of real linear functionals on E. If E has a
topology in which the vector space operations are continuous we call F a
topological vector space and denote by E* its dual space—the real vector
space of continuous functionals in E'. We say E is Hausdorfl and locally
convex if the topology is Hausdorff and each point has a neighbourhood
basis consisting of convex open sets. The main result is the geometric
form of the Hahn-Banach theorem.

1.1.2. The Hahn—Banach theorem. Let E be a Hausdorff locally convex
topological vector space. Suppose A and B are two non-empty closed
convex subsets of E with B compact. Then there exist pc E* and \ €R such
that p(x)>A for x € A and p(y)<A for yeB.

For a proof see e.g. Dunford and Schwartz {7, V.2.11].

1.1.3. Let E be a Hausdorff locally convex topological vector space. A
subset V of E is called a cone if xe€ V and A €R, A >0, implies Ax€ V,
and (— V)NV ={0}, where —V ={—x:xec V}. If V is a convex subset we
talk about a convex cone.

1.1.4. Corollary. Let E be a Hausdorff locally convex topological vector
space. Suppose V is a closed convex cone in E. If E=V—~Vand xcE, x ¢
V, then there is p € E* such that p(x) <0 and p(V)=R"—the nonnegative
real numbers.

Proof. By the Hahn-Banach theorem (1.1.2) there are pe E* and A eR
such that p(x)<A and p(y)>A for all ye V, letting A =V and B ={x} in
the theorem. Since 0 e V, A <0, hence p(x) <0. Thus p(V) is a cone in R

1



2 JORDAN OPERATOR ALGEBRAS

not containing all negative numbers, hence p(V)=R" or p(V)={0}. But
E=V-V and p#0, so p(V)=R".

1.1.6. Another consequence of the Hahn—-Banach theorem is the Krein—
Milman theorem, stated below. If E is a Hausdorff locally convex
topological vector space and K a convex subset of E, we say a point x € K
is an extreme point of K if x=ty+(1-1)z, y, ze K, tec(0,1), implies
y=z=x. If X< E we write conv X for the set of convex combinations of
elements in X, i.e. the smallest convex subset of E containing X. The
closure of conv X is denoted by conv X.

1.1.6. The Krein—Milman theorem. Let E be a Hausdorff locally convex
topological vector space and K a compact convex subset of E. Let oK
denote the set of extreme points of K. Then K =¢onv gK.

For a proof see e.g. Dunford and Schwartz [7, V.8.4].

1.1.7. Let E be a real vector space. If xe E and pe E' we sometimes
write p(x) in the dual form p(x)=<{(x, p). Then it is apparent that E
becomes a subspace of (E') by p—(x, p). If F is a subspace of E' we
then have E < F'. We say two vector spaces E and F are in strict duality if
there is given a bilinear form E X F — R such that for x € E, (x, p) =0 for
all p e F implies x =0, and symmetrically for pe F, (x,p)=0 for all xc E
implies p=0. Then we can think of E as a subspace of F’, identifying
x € E with p —(x, p). We can also think of F as a subspace of E’. We
define the o(E, F) topology on E as the weakest in which all the
functionals in F are continuous. With this topology E becomes a Haus-
dorfl locally convex topological vector space. Similarly we define the
o(F, E) topology on F.

1.1.8. Proposition. Let E and F be real vector spaces in strict duality. If E
is given the o(E, F) topology then E*=F,

For a proof see e.g. Dunford and Schwartz [7, V.3.9].
1.1.9. Let E and F be vector spaces in strict duality. We define the polar
X° of a subspace X< E as the set X°={peF:p(x)=0 for all xeX}.
Then X° is a subspace of F.

1.1.10. The bipolar theorem. Let E and F be real vector spaces in strict
duality. Let X be a o(E, F)-closed subspace of E. Then X = X.

Proof. Clearly X < X®. Suppose x € E, x¢ X. By 1.1.8 the dual of E in
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the o(E, F) topology is F. By the Hahn—Banach theorem (1.1.2) applied
to A =X and B={x} there exist pe F and A €R such that p(x)>A and
p(y)<A for all yeX. Since X is a subspace p(y)=0 for all yeX, ie.
pe X’ and A >0. Thus x¢ X*, proving the theorem.

1.1.11. Let E be a normed real vector space, also called a normed linear
space in the sequel. With the norm topology E becomes a Hausdorff
locally convex topological vector space with dual space E*. E* is a
Banach space with norm defined by

lloll= sup [p(x)],

xeE,

where we always denote by E; the unit ball {xeE:|x{<1} in E. A
variation of the geometric Hahn—Banach theorem is the analytic Hahn-
Banach theorem.

1.1.12. The Hahn-Banach theorem, analytic form. Let E be a normed
linear space and X a subspace. If p € X* then there exists p € E* such that
its restriction p| X =p and ||p|| =|lpll.

For a proof see e.g. Dunford and Schwartz [7, 11.3.9].

1.1.13. Corollary. Let E be a normed linear space and x € E. Then there
exists p e E* with ||p||=1 such that p(x) =||x|.

Proof. 1Let X=Rx and define p'e X* by p’(Ax)=A |x|. Then ||p’|=1,
and the desired p is found by 1.1.12.

1.1.14. Let E be a normed linear space and X a subspace. Then the
quotient space E/X becomes a real vector space. If X is closed in E then
E/X is a normed linear space under the quotient norm

o+ X = i+ y1.

1.1.15. Lemma. Let E be a normed linear space and X a subspace. If
peE* then |lp| X =llo+X"ll.

Proof. By the Hahn—Banach theorem (1.1.12) there is w € E* such that
loll=llp | X|| and @ | X=p | X. Then @ —peX°, and so

lle | X = llwll = llp + (@ — p)l| =[lp + X
On the other hand, if n € X° then |jp + nl|=|(p+ 1) | Xl =llp | X||, whence
lo+X% = inf_lip+nll=[lp | XI.
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1.1.16. If E is a normed linear space it follows from 1.1.13 that E and
E* are in strict duality. We call the o(E*, E) topology on E* the
w* topology or the weak-+ topology. We shall often apply this topology
to the second dual E** of E defined as the dual of the Banach space E*.
In our applications the reference space E will be clearly given in the
context, so in order to make the distinction between E* and E** clear we
shall use the name w* topology for the o/(E*, E) topology on E* and the
name weak-+* topology for the o(E**, E*) topology on E**.

An important consequence of the Tychonoff theorem is the Alaoglu
theorem.

1.1.17. The Alaoglu theorem. Let E be a normed linear space. Then the
unit ball EY of E* is w* compact.

For a proof see e.g. Dunford and Schwartz [7, V.4.2].

1.1.18. Each element x in a normed linear space E defines an element
£ € E** by the formula £(p) = p(x), p€ E*. In the norm on E** as the
dual of E* we have

12l =sup {I2(p)|: p € EF} =sup{lp(x)]: p € E¥}<|lx|.

However, from 1.1.13 |lx||=sup{|p(x)|: p € E%}, so that ||£]| = |lx||. Thus the
map x — % is an isometric imbedding of E into E**, We shall often
consider E as a subspace of E** in this embedding.

1.1.19. Proposition. Let E be a normed linear space. Then we have
(i) E is weak-+ dense in E**,
(i) E, is weak-* dense in E¥*.

Proof. Clearly (i) implies (i). Suppose x € E¥*. If x does not belong to
the weak- = closure of E, there are by the Hahn-Banach theorem (1.1.2)
a weak-* continuous linear functional p on E** and A €R such that
p(x)>A and p(y)<A for yeE,. By 1.1.8 peE* Since 0cE,; and
—y € E, whenever yc E,, we have A >0 and —\ <p(y)<A for all yeE.
Let @=A""p. Then weE}. But w(x)>1, which is impossible since
x € Ef*. This proves the proposition.

1.1.20. Let E and F be normed linear spaces and ®: E — F a bounded
linear map. Then its adjoint map ®*: F* — E* is defined by {x, ®*(p)) =
(®(x), p) when x € E, pe F*. It is clear that ®* is linear. It is bounded
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since

12*(p)l| = sup [(x, D*(p))| = sup KP(x), p) |

xeE,

<|lpll sup @I = o] {|P].

xeE;

In particular ||®*|<||®|. Conversely, if € >0 there is x € E; such that
Pl <||®(x)|+&. By 1.1.13 there is pe F; such that (®(x), p)=||P(x)|.
Thus we have

[Pl <[ @Ol + & =(D(x), p)+ & <[[D*(p)]| + & <[|O*| + &,

and so ||l = ||®*|.
It is clear from its definition that ®* is continuous when both F* and
E* are given the w* topology.

1.1.21. Lemma. Let E and F be normed linear spaces and ®: E—F a
bounded linear map. Then there is a unique extension ®**: E** — F** of
® which is weak-* to weak-+* continuous and satisfies ||®**| = |/®.

Proof. We define ®** as the adjoint map of ®*: F*— E*. By 1.1.20
||®**|| =||®*| = ||®||. Since the w* topology on E** is the weak-* topol-
ogy, ®** is by 1.1.20 weak-* to weak-#* continuous. Since by 1.1.19 E is
weak-# dense in E**, ®** is uniquely defined as soon as it is shown that
d** extends . But this is immediate, since if x € E then (®**(x), p)=
(x, D*(p)) = (D(x), p).

1.1.22. Corollary. Let E be a normed linear space and p ¢ E*. Then there
is a unique weak-+* continuous extension g of p in E***, and ||p||= |l

Proof. p: E—R and R** =R, so the result is immediate from 1.1.21.

1.1.23. Proposition. Let E and F be normed linear spaces and ®: E — F
a linear isometry. Then ®*:E* — F* s an isometry such that
D**(E**) is weak-* closed in F**.

Proof. By the Hahn-Banach theorem (1.1.12) applied to ®(E)< F it is
immediate that ®*: F* — E* is surjective. Let N be the null space of ®*.
By 1.1.15 and the fact that ® is an isometry we have for p e F* that

[©*(p)]| = sup K@), p)| =llp | PE)| =[lp+ DE),

xeEy

where ®(E)° is the polar of ®(E) in F*. But if n € F¥ then ne ®(E)° if
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and only if 0=(d(x), n) {x, ®*(n)) for all xeE, or ®(E)°=N. Thus
D% ()| =llo+NI|.

Let ye E** and s>0 Then there is w € EY such that |ly||<|y(o)|+e.
Since ®* is surjective there is by the previous paragraph p € F* such that
w =®*(p) and ||pl|<1+e. Since by 1.1.21 |[®**| =1 we therefore have

IVI=1@* (Il > (1 + &)™ K&**(y), p)|
=(1+e)7 Ky, @) = (1+&)" Ky, o)
>(1+e)7(yl~e).

Since ¢ is arbitrary [|y||=[|®**(y)|, and ®** is an isometry.
Finally let x belong to the weak-* closure of ®**(E**). Let (y,) be a
net in E** such that ®**(y,) — x weak-+#. Then for all p e F¥,

Ve P¥(0)) = (D™ (y4), p) —> (X, p).

By the first part of the proof ®* is surjective, hence the net (y,)
converges weak-#* to an element y e E* defined by

(y, ®*(p)) = lim (y,, *(p)) = (x, p).

By the first paragraph of the proof, |®*(p)|| =||p + N||. Thus, given o € E*
and & >0 there is p € F* with o = ®*(p) and ol <llof|+ &. Then Ky, o) =
[Kx, p)l<|lx|| (lo]+ ). Thus y is bounded, i.e. yeE**, ®**(y)=x, and
x € D**(E**), proving that ®**(E**) is weak-* closed.

1.1.24. We shall in the sequel be much concerned with Banach spaces
which have preduals, where we say Es is a predual for the Banach space
E if E4 is a Banach space such that (E4)* = E. For example E** has E*
as its predual. The next result will be useful when we want to show that
certain Banach spaces have preduals.

1.1.25. Proposition. Let E be a Banach space and suppose Ex < E* is a
norm-closed subspace such that E=(E.)* in the natural duality. Let
M < E be a o(E, Ey)-closed subspace, and let M, ={¢ | M: ¢ € Ey}. Then
we have:

(1) My is a norm-closed subspace of M*.

(ii) For all ye M, and £>Q there is ¢ € E, such that y=¢ | M and

el =<llapll + e.
(iiil) M =(M,)* in the natural duality.

Proof. E and E. are in strict duality, so we may as in 1.1.9 let M°=
{¢ € Ex: ¢ | M =0} be the polar of M in E,. Since M is o(E, Ex)-closed
the bipolar theorem (1.1.10) shows M=M»={xecE: ¢(x)=0 for all
¢ € M®. The restriction map E, — M, by ¢ — ¢ | M is linear of norm
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<1 and its null space is M°. Therefore it induces a linear map E,/M°—
My by ¢+M°— ¢ | M. By 1.1.15 this map is isometric. Thus My is
complete, since E./M° is. This proves (i) and also (i), since (i) just
reflects the definition of the quotient norm.

To show (iii) note that by the natural duality between E and E. the
evaluation ¢ — ¢(x) at x defines an element @, € (My)* for each xe M.
We show this map is an isometry between M and (My)*. Since E = (E4)*
it follows from (ii) that

ll.l| = sup{l(x)]: ¥ & My, [l <1}
=sup{|l(x)|: ¢ € Ex, [l4] <1}
=x[l,

so the map x — ¢, is isometric. It remains to show it is surjective. For
this let p e (Myx)*, and define ® e (E4)* by ®(¢) =p(d | M), ¢ € Ex. Then
® | M°=0. Since E =(E,)* there is x € E such that ®(¢) = ¢(x), ¢ € Ey.
Since ® | M° =0, x e M° =M. Finally, if ¢ € Ey« then

p(d | M) =D(¢) = d(x) = (¢ | M)(x) = I (¢ | M),
proving that p = ¢,. This proves (iii).

1.2. Order unit spaces

1.2.1. A partially ordered vector space is a real vector space A with a
proper convex cone A*, sometimes written A,. We write a=b, or b=a,
if a-—beA™. An element ec A" is called an order unit for A if for all
ac A there is A >0 such that —Ae<<a=<Ae. We say A is Archimedean if
na <e for all n eN—the natural numbers—implies a <0. In this case A
has a norm given by '

llall=inf{A >0: —Ae <a <Ae}.

We shall often call this norm the order norm. A is said to be an order unit

space if A has an order unit and A is Archimedean. If A is furthermore a

Banach space with respect to the order norm then A is called a complete

order unit space. Note that since each a€ A can be written in the form
=|alle—(lalle—a), A=AT—-A".

If A is an order unit space then an element p € A* is said to be positive,
written p =0, if p(a)=0 for all ae A™. The set of positive functionals in
A* is clearly a w*-closed convex cone, denoted by A%. The set of pe A%
such that p(e)=1 form a w*-closed convex set denoted by S(A) and
called the state space of A. Flements of S(A) are called states. The
extreme points of S(A) are called pure states. "
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Note that p e S(A) is pure if and only if whenever we A¥ and p—we
A%, ie. w<p, then w=w(e)p. Indeed, the necessity is trivial, for if
p=Ac+(1-Mw, with o, weS(A), then both Ao<p and (1—Mw=<p.
Conversely, if p is pure and w<p with A=w(e)#0,1, then p=
AMA ')+ (=M1 -N)"Yp—w)] is a convex sum of states, hence
Ao =p.

1.2.2. Lemma. Let A be an order unit space with order unit e. If pc A*
then pe S(A) if and only if |jp||=p(e) = 1.

Proof. If peS(A) and |lal|<1 then exa=0, hence O<p(exa)=
1:p(a), so that |p(a)|=<1, proving that ||p|| = 1. Conversely, if ||p|| = p(e) =
1 let a=0 with |la||<1. Then |e—al|<1, so that 1—p(a)=ple—a)=<1,
and so p(a)=0.

1.2.3. Corollary. If A is an order unit space then we have:
(i) S(A) is a w* compact subset of A%.
(i) S(A)=conv P(A), where P(A) is the set of pure states.

Proof. By 1.2.2 S(A) is a w*-closed subset of A¥, which is w* compact
by the Alaoglu theorem (1.1.17). This proves (i). (ii) is then immediate
from the Krein—Milman theorem (1.1.6).

1.2.4. Lemma. Let A be an order unit space with order unit e. Let B be a
subspace of A containing e, and let B*=BNA™. Then B is an order unit
space, and if p e S(B) then there is g € S(A) such that p| B = p. Further-
more, if p is pure then p can be chosen as a pure state of A.

Proof. It is clear that B is an order unit space with order unit e. If
p € S(B) there is by the Hahn-Banach theorem (1.1.12) p € A* such that
p | B=p and ||g||=|lp|| = 1. Since p(e)=p(e)=1, peS(A) by 1.2.2.

Suppose p is a pure state of B. Let K ={¢p € S(A): ¢ | B=p}. Then K is
a non-empty w*-closed convex subset of S(A). In particular K is compact
so has by the Krein-Milman theorem (1.1.6) an extreme point 5. Then p
is a pure state of A. Indeed, if ¢, weS(A) and f=Adp+(1-Nw, A e
(0,1), then p=A¢p|B+(1—M)w|B, s0o p=d|B=w|B since p is pure
on B. Thus ¢, w € K. Since p is an extreme point of K, p = ¢ = w, proving
that 4 is a pure state.

1.2.5. Lemma. Let A be an order unit space and a € A. Then we have:
(i) a=0 if and only if p(a)=0 for all pc S(A).

(ii) ”a|l:SUPpe5(A) lo(a)l.

(iii) There exists a pure state p such that |p(a)| =|a].
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Proof. We first note that A™ is norm-closed in A. For this let ae
A, a¢ A*. Then there is t>0 in R such that a+te¢ A™, since otherwise
—a=<gse for all s>0, and so —a<0 by Archimedicity. If be A and
la—b||<t then a—b>—te, so that b<a+te, and b¢ A", proving the
assertion.

Let acA, a¢ A*. By 1.1.4 there is a positive p in A* such that
p(a)<0. Then p(e) 'peS(A) and takes a negative value on a. This
proves the nontrivial half of (i).

To show (ii) suppose |p(a)|=1 for all p & S(A). Then p(e £a) =0 for all
peS(A), hence exa=0 by (i). Thus |all=<1. The converse is immediate
from 1.2.2.

To show (iii) note that by compactness of S(A) there is by (ii) a state @
such that |w(a)| =||all. Considering —a if necessary there is no restriction
to assume w(a)=|lal. Let K={pe S(A): p(a) =|al}. By the same argu-
ment as in the proof of 1.2.4 we find that an extreme point of K is a pure
state satisfying (iii).

1.2.6. Lemma. Let A be an order unit space. Let

~S(A)={pe A* —pe S(A)}. Then we have:

(i) A% =conv[S(A)U-S(A)].

(i) If pec A* then there are o, wc A* such that p=0—w, and |p|=
liorll+fleofl.

Proof. Since by 1.2.3 S(A) is a w*-compact convex subset of A% the
convex hull conv[S(A)U—S(A)] is a w*-compact convex subset of A¥. If
it is a proper subset there exist by the Hahn—Banach theorem (1.1.2) a
w*-continuous linear functional a on A* and pe A% such that

a(p)>supla(w): w econv[S(A)U—-S(A)].

By 1.1.8 and the identification of A as a subspace of A** q e A. Thus by
1.2.5 we have
p(a)=a(p)> sup |w(a)|=|al,
weS(A)

contrary to the choice of pe A%. Thus (i) follows.

By the above, if pe A* and ||p|| =1 then there exist o', w' € S(A) and
A €[0,1] such that p=Ac’'—(1-Now'. If 0 =Ac" and w =(1—-)N)w’, then
o,weA, o=\ le|=1-) p=0c-w and |pl=1=lo|+|e|. This
proves (ii) when ||pl| = 1. For a general nonzero p in A* an application of
the preceding to |p||"*p completes the proof.

1.2.7. Lemma. Let A be an order unit space with order unit e. Then A™*
is a complete order unit space with order unit e and positive cone given by

At* :{aGA**: a(p)?O for all pGS(A)}
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Furthermore, the order norm on A** coincides with the norm obtained as
the dual space of A*,

Proof. Clearly A%* is a convex cone. If pe S(A) and a€ A** then by
1.2.2 la(p)|<|allllpll =llall p(e) =lall e(p), so that e is an order unit for
A™ and || || majorizes the order norm || |j. If na<e for neN then
na(p)=<1 for all peS(A), so that a=<0, hence A™ is Archimedean. If
ac A** then

llallo = inf{A >0: Ae(p)=|a(p)] for all pe S(A)}.
Since by 1.2.6

llall= sup la(p)],
peS(A)
lall=<llallo, so the two norms coincide. Since A** is the dual of A* it is
complete with respect to || ||, hence it is a complete order unit space.

1.2.8. Corollary. Let A be an order unit space. Then we have:
(i) A" is weak-* dense in AY*,
() ATNA, is weak-* dense in A%* N A¥*.

Proof. The map a — 3(a+e) is an affine isomorphism of A mapping the
unit ball A, ={acA:—e=a=e} onto the positive unit ball A"NA;=
{acA:0<a<e}. By 1.2.7 A™ is an order unit space, so the same
statement holds for A**. Thus (ii) follows from the weak-=* density of A,
in A¥* (1.1.19).

(i) is an obvious consequence of (ii), for if ac A%* then |la|| ae
A¥E O A%E

1.29. If A and B are order unit spaces with order units e and f
respectively we say an injective linear map a: A -—>B is an order
isomorphism if a(e)=f and ac A™ if and only if a(a)e B". An example
of such a map is the inclusion map A — A™*. This is a consequence of
1.2.5 and 1.2.7.

1.2.10. If K is a convex set we denote by A®(K) the vector space of
bounded real affine functions on K. With pointwise ordering and order
unit the constant function 1, AP(K) becomes a complete order unit space.

1.2.11. Proposition. Let A be an order unit space. Then the restriction
map a—>a|S(A) is an isometric order isomorphism of A** onto
AP(S(A)).
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Proof. Let o denote the restriction map a(a)=a|S(A). Then clearly a
maps A** into A(S(A)). By definition of A** (1.2.7), « is clearly an
order isomorphism, and since by 1.2.7

lall= sup la(o)
peS(A)

for a€ A**, a is an isometry. In order to show « is surjective let

be APS(A)). If p,wecS(A) and Ael[0,1] let alrp—(1-MNw]=

Ab(p)—(1—X)b(w). Since b as a function on S(A) is affine, a is by 1.2.6 a

well defined bounded affine functional on A%, and a(0)=0. Put a(Ap)=

Aa(p) for A>0. Then ae A** and a | S(A)=b.

1.3. C* algebras

1.3.1. Much of the theory developed later will be direct generalizations
of the theory of C* and von Neumann algebras. Technically we shall not
need much of that theory as we shall develop the machinery needed as we
go along. In this section and the next we shall state the main definitions
and, except for the spectral theorem, prove the theorems that will be
needed later.

1.3.2. Let o be an associative algebra over a field @ which is either R or
C, and assume & is a Banach space with respect to a norm || | & is
called a Banach algebra if |xy||<|x||||y]l for all x,ye . o is called a
Banach * algebra if furthermore s has an isometric involution x — x*,
ie. (Ax)*=Ax* (xy)*=y*x* and |[x*|=|x| for Ae®,x,yes If in
addition ® =C and the norm satisfies ||x*x|| = ||x|* for all x € & then & is
said to be a C* algebra. If & is a Banach * algebra then an element x € o
is called self-adjoint if x = x*, and we denote by o, the real subspace of
A consisting of self-adjoint elements. x is called positive, written x =0, if
x is of the form x =y*y with ye«f. If & is unital with identity 1 the
spectrum, Sp x, of x is the set of A € ® such that x —A1 is not invertible in
A.

There are two main examples of C* algebras. If H is a complex Hilbert
space then B(H), the bounded linear operators on H, is a C* algebra in
the usual operator norm

xll = sup |lxl,
=

and involution x* defined by (x£, n) = (£ x*n) for all £ n e H. Note that
the C* axioms hold in B(H), for if x ¢ B(H) then

e el = I *x] = sup (x*xg, &) =[xIP,
£ll=<1
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so that |[x*|=|lx||, whence by symmetry ||lx*||=|x||, and so |lx*x||=||x|. In
particular, if x and y are self-adjoint we have the inequality

[x*+y2|= sup (x>+y?)& €)= sup (x%¢, &) =|x?.
llgll=1 leli=1

It follows from the above that each norm-closed subalgebra of B(H),
closed in the * operation, is a C* algebra.

The other examples are represented as continuous functions. If X is a
locally compact Hausdorff space we shall denote by CS(x) (resp. Co(X))
the set of continuous complex (resp. real) functions on X vanishing at oo
If X is compact we understand this to mean all continuous complex (resp.
real) functions on X, and we shall often write C(X) instead of Cy(X) in
this case. It is clear that with pointwise multiplication, * operation
f¥(w)=f(w), and norm ||f]|=sup,cx|f(®)|, CS(X) is an Abelian C*
algebra with self-adjoint part Cy(X). Furthermore, if X is compact and
feCo(X) then Sp f = f(X).

Conversely, if & is an Abelian Banach * algebra let X denote the set
of continuous homomorphisms w of &f on ® such that w(x*) = w(x), and
let X have the relative w* topology from s£*. We call X the spectrum of
. Then each x € & defines a continuous function £ on X with values in
® by the formula £(w)=w(x). The main result we shall need is the
abstract spectral theorem.

1.3.3. Theorem. Let A be an Abelian C* algebra. Then the spectrum X
of o is a locally compact Hausdorff space, which is compact if and only if
oA is unital. The map x — % is an isometric isomorphism of sf onto C5(X).

For the proof see any book on C* algebras, e.g. Dixmier [6, 1.4.1]. The
transformation x — X is usually called the Gelfand transform. In spec1ﬁc
cases the spectrum can be described more prec1sely

1.3.4. Proposition. Let & be a unital C* algebra and x a self-adjoint
element in 4. Let C*(x) denote the C* subalgebra of S generated by x and
1. Then there is a canonical isometric isomorphism of C*(x) onto C*(Sp x).

Proof. Since C*(x) is an Abelian unital C* algebra we may identify it
with C§(X) with X a compact Hausdorff space as in 1.3.3. If w € X the
value w(x) belongs to Sp x because w(x—w(x)1)=0, so that x —w(x)1
belongs to a maximal ideal in C*(x) and therefore is not invertible. Let
¢: X —>Spx denote the map ¢¥(w)=w(x). We show that ¢ is a
homomorphism. Since X has the relative w* topology from C*(x)*, it is
clear that  is continuous. Similarly ¢ is injective, for if w, w' € X and
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o(x)=w'(x), then w and ' coincide on polynomials in x, hence they are
equal. Note that since X is compact a function fe C5(X) is invertible if
and only if f(w)#0 for all w € X. Thus if A € Sp x then there exists w e X
such that w(x—A1)=0, or w(x)= A\, whence ¢ is surjective. Since X is
compact ¢ is thus a homomorphism, as asserted. But then the map
f—foy ' is an isometric isomorphism of C§(X) onto C5(Sp x), proving
the proposition.

1.3.5. Note that if ¢ is the isomorphism of C*(x),, onto Cy(Sp x)
obtained in 1.3.4 then each fe Cy(Sp x) defines an element f(x) e C*(x)
by ¢(f(x))=1. In particular if + denotes the identity function A — A in
Co(Sp x) then ¢(x) =« This construction will be very useful in order to
construct operators with special properties.

We next pursue the study of Cy(X) a little further.

1.3.6. Lemma. Let X be a compact Hausdorff space and I a norm-closed
ideal in C(X). Let Y={te X: f(t)=0 for all fcI}. Then we have:

() I={feC(X):f| Y =0},

(if)y C(X)/I with the quotient norm is isometrically isomorphic to C(Y).

Proof. 1et J={fe C(X): f| Y=0}. Then clearly J is a norm-closed ideal
in C(X) containing I. From its definition it is clear that Y is a closed
subset of X. Thus its complement Y* in X is open and in particular a
locally compact Hausdorff space. Since each f e J annihilates Y it is easily
seen that the restriction map f->f| Y° is an isometry of J onto Co(Y®).
Let s#t in Y°. Then by definition of Y there exists felI such that
f(s)#0. X f(s)=1(t) let geC(X) satisfy g(t)#1 and g(s)=1. Then
h =fg eI and satisfies h(s)# h(t) #0. By the locally compact version of
the Stone-Weierstrass theorem, which follows from the compact version
[7, 1IV.6.16] by taking the one-point compactification, I = Cy(Y®), or I =1,
proving (i).

To show (ii) let ¢: C(X)— C(Y) be the restriction map, ¢(f)=f|Y.
By (i) ker ¢ = I, so there exists an injective homomorphism a: C(X)/T—>
C(Y) such that a(f+1I)=¢(f). If fe C(Y) the Tietze’s extension theorem
[7, 1.5.3] implies the existence of ge C(X) such that ¢(g)=Ff and |\g||=
Ilfl. Thus ¢, and hence «, is surjective.

To show « is isometric let h € C(X). Then ||h||=|¢ ()|, so if jeI then
Ih+7l=ldh+ Dl =lé(h)l, whence [|h + I|| =|l$(h)|l. However, by the pre-
ceding paragraph there is ge C(X) such that ¢(g)=¢(h) and |g||=
¢(W|l. Then h—gel, and ||h+I|<|lh+(g—h)|=|gll=l$H)l, proving
that ||h + I||=|i¢(h)||, hence that « is an isometry.
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1.3.7. Lemma. Let - X and Y be compact Hausdorff spaces and
&: C(X)— C(Y) a homomorphism. Then ¢ satisfies the following:
@ llol<|ifll for all fe C(X).
(i) If ¢ is injective then & is an isometry.
In particular each homomorphism of C(X) into R is continuous.

Proof. We observe that the spectrum of Co(X) is X, i.e. every nonzero
homomorphism Cy(X)—R is of the form f— f(x) for some xeX
Indeed, given such a homomorphism then its null space is a maximal
ideal, which by 1.3.6(i) must be of the form {f € C(X): f(x) =0} for some
xeX

From this it follows that given yeY, f— &(f)(y) is of the form
f— fla(y)), i.e. we get a map a: Y — X such that ¢(f)(y) = fla(y)) for
all fe C(X). Then (i) is immediate.

Clearly « is continuous. Thus «a(Y) is a compact, hence closed, subset
of X If a(Y)+# X there is fe C(X), f#0 but f| a(Y)=0. Then ¢(f)=0.
Thus, if ¢ is injective then « is onto, and then clearly ¢ is an isometry.

1.38. Let H be a complex (resp. real) Hilbert space and B(H) the
bounded complex (resp. real) linear operators on H. Note that if H is real
the complexification H® = H+iH is a complex Hilbert space in the inner
product

(§+in, & +in") = (£ &) +(n, n) +i(n, &) —i(§ n).

Then the imbedding H — HF is an isometry which induces an isometric
isomorphism of B(H) into B(H®). Thus we may in most cases restrict
attention to complex Hilbert spaces.

1.3.9. Let o be a Banach * algebra over a field ® (which as before is R
or C). A * representation of & is a ®-linear homomorphism : s —
B(H) for a complex Hilbert space H, such that m(x*)=w(x)* for all
xcd. If = is injective we say it is faithful. A left ideal in A is a linear
subspace N such that ae N, be o implies ba € N.

1.3.10. Proposition. Let o be a unital Banach * algebra over ® such
that s, is a complete order unit space with cone ., ={x*x: xc s} and
order unit 1. Let p be a ®-linear functional on o such that p(x*) = p(x) for
all xe o and p | A, is a state. Then we have:

(1) p satisfies the Cauchy-Schwarz inequality

lp(x*y)|=<p(x*x)p(y*y), x,yed.

(ii) There are a complex Hilbert space H,, a unit vector &, in H, and a *
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representation m, of s on H, such that p(x)=(m,(x)&, &) for all
xed.

(iii) There are a complex Hilbert space H and a * representation w of & on
H which is isometric on A,.

Proof. (i) If Ae®,x,ye oA then
0=<p((Ax+y)*x+y)=|A]? p(x*x)+2 Re Ap(y*x)+ p(y*y).

From this it is clear that if p(x*x) =0 then p(y*x) =0, and so (i) holds. If
p(x*x) #0 let A =—p(y*x)p(x*x)™?, and again (i) follows.

(i) The set N ={x e sf: p(x*x) =0} is by (i) a norm-closed left ideal in
A. The quotient space /N is a pre-Hilbert space over @ with inner
product (x+N, y+N) = p(y*x). Let K, be the Hilbert space completion
of /N and let £, be the unit vector 1 +N. We define a homomorphism
7' of o into the linear operators on /N by w(x)(y +N) = xy + N. Note
that if x, yesf and z = x*x then 0<<(xy)*(xy) = y*x*xy =y*zy, so z<sw
implies y*zy <y*wy. Since s{, is an order unit space, x*x <||x*x|| 1 for
all x, whence y*x*xy <|x*x|| y*y <|x*| x|l y*y = |x|*y*y. Therefore

[l )y + NP = p((xey)*Gey)) < x| ly + NIP,

so that ||7'(x)||<s||x||. Therefore 7’ extends to a homomorphism of & into
B(K,). If H, is the complexification of K, in the case when ®=R, and
H, =K, when ® =C, we have by 1.3.8 a * representation 7, of & on H,
such that

p(x)=p(1x) = (x+N, 1+ N) = (m,(x)&, &)

for all x € 4. This proves (ii).

Gii) If ®=C, o = A, +idA,,, so each state on A, has by linearity an
extension to a state on &f. If ® =R each x € 9 can be written in the form
x=y+z with yesf, and z=53(x—x*) skew. Thus a state on 4, has a
canonical extension to & which annihilates the skew elements. We may
therefore by (ii) let

peS(st)  °

be the Hilbert space direct sum of the Hilbert spaces H,, and

= @ =

peS(st,)

be the * representation of & on H defined by w(x)(} n,) =2 m,(x)n,.
Then |7 (x)||<||x|| for all x since ||, (x)|| <||x|| for all p. We assert that = is
isometric on . Indeed, let x € o ,. By 1.2.5 there is a state p on H,
such that |p(x)| =lx|l. Thus |jx[|=|(m, ()&, &) <|m ) <[l GOl <lx|, so
that |jar(x)|| =||x|l. This completes the proof.
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1.3.11. Remark. It will follow from 3.3.10 below that s, is an order
unit space with cone 7 ={x*: xesd,}. Actually, x*xesf, for any
x € . This fact, which remained an open problem for several years in the
infancy of C* algebra theory, can be found in any book on C* algebras.
It can also be shown by noting that, as in the proof of 3.7.1 below, we
need only prove that x*x <0 implies x=0. If x*x=<0 and A €R" then
x*x—A is invertible. Hence so is xx*—A, with (xx*—A)'=
A x(x*x—A)*x*—1]. Thus xx* =0, but writing x =y +iz, y, z € o, we
get x*x +xx* =2(y*+ z%) =0, which implies x*x = xx* = 0. Then the rep-
resentation 7 of 1.3.10 is isometric on . Indeed, if x € o then ||x|*=
lIx*x]| = |l (x*x)|| = |lw (x)*mw(x)|| =||w(x)|*. This is the famous Gelfand-
Naimark theorem for C* algebras. We should also remark that the
construction of H,, 7, and &, in 1.3.10(i) is called the GNS construction
after Gelfand, Naimark and Segal.

1.4. Von Neumann algebras

1.4.1. Let H be a complex Hilbert space. If §,meH we define w,, €
B(H)* by wg,(x)=(x¢ m). Let B(H). denote the vector subspace of
B(H)* generated by the functionals w,_,, and let B(H), denote the norm
closure of B(H).. in B(H)*. For us the most important topology on B(H)
will be the ultraweak topology, which is by definition the o(B(H), B(H)y)
topology. It should be noted that it is somewhat more common to work
with the weak operator topology, defined as the o(B{(H), B(H)_.) topol-
ogy. We shall, however, have no contact with this topology.

Note that since w,,(x*)=w,(x) for all £neH, xeB(H), the *
operation is ultraweakly continuous on B(H).

Even though the Banach spaces considered in Section 1.1 were real, we
shall still consider some complex Banach spaces, e.g. B(H) and H. The
same definitions as in 1.1 still make sense and will be used subsequently.

1.4.2. Let p be a linear functional on B(H). Then there exist two linear
functionals p; and p, on B(H) with real restrictions p; | B(H),, to the
self-adjoint part of B(H) such that p =p, +ip,. Indeed, we may just let
p1(x) =3[p(x) +p(x)*)] and p,(x) = (1/2)[p(x) — p(x*)]. Note that since *
operation is ultraweakly continuous, if p € B(H), so are p, and p,. If we
identify p and p | B(H),, for a functional p such that p | B(H),, is real, we
have thus shown B(H), = (B(H).,)s +i(B(H).)+, where (B(H),)x is the
real Banach space of ultraweakly continuous real functionals on B(H),.
In particular it follows that the ultraweak topology restricted to B(H),, is
the O-(B (H)sa: (B(H)sa)*) top()lOgY'
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1.4.3. Lemma. Let H be a complex Hilbert space. Then we have:

(i) The Banach space B(H) is isometrically isomorphic to (B(H)x)* in the
natural duality.

(ii) B(H),, is isometrically isomorphic to (B(H))s)* in the natural
duality.

Proof. Let xe B(H). Then x defines a bounded linear functional on
B(H). by ¢, (w)=w(x), w € B(H)x. Furthermore if x is self-adjoint then
&, | (B(H)g)s is real. Clearly |l¢.]|=<|ix], and the converse inequality
follows from the computation, letting H; ={¢ ¢ H: ||¢|=1}:

llxl| = sup{l|xé|;: €€ Hy}
= sup{|(x€, n)| = |wgn(x)]: & n € Hy}
= sup{| by (wg)|: llog | <1}
<{|ep[l

Thus x — ¢, is an isometry. Note that if x is self-adjoint then |x|=
Sup{‘(xé) g)l: é € Hl}a SO HxH = Hd’xl (B(H)sa)*”'

Conversely let € (B(H)4)*. We define a bounded sesquilinear form
on H by

& m)=t¢(we,), &meH.

By the Riesz representation theorem [7, IV.4.5], H= H¥, so it is easy to
show the existence of x € B(H) such that (x£ 1) ={(& n). It follows that
Ylw,,) = (x¢, 1) = ¢y (w;,,) for all ¢ neH Consequently ¢ and ¢, co-
incide on B(H). and therefore on B(H),. Note that if ¢ is real on
(B(H)g,)s then (x& &) is real for all £e H, so x is self-adjoint. Thus (ii)
follows.

1.4.4. Theorem. Let M be an ultraweakly closed linear subspace of
B(H),,. Let M, ={w | M: we (B(H),)«}. Then M= (My)* in the natural
duality. '

Proof. By 1.4.3 (B(H).))* = B(H),,. Since the ultraweak topology on
B(H),, is the o(B(H),,, (B(H))s) topology, it follows from 1.1.25 that
M= (M *)*.

1.4.5. A von Neumann algebra is a C* algebra which has a predual, viz.
&d = (&d*)*.

1.4.6. Corollary. Let M be an ultraweakly closed C* algebra of operators
on a Hilbert space. Then M is a von Neumann algebra.
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Proof. Since the * operation is ultraweakly continuous 4, is ultraweakly
closed, hence by the theorem equal to ((M)«)*. If My denotes the
ultraweakly continuous functionals on B(H) restricted to / it follows by
1.4.2 that My = (M) +i(M,)«. Tt is thus immediate that 4= (M.)*,
hence that # is a von Neumann algebra.

1.4.7. Let M be a von Neumann algebra acting on a Hilbert space H. Let
&, be a unit vector in H. We say &, is cyclic for M if the set {x&;: x e M} is
dense in H. &, is called separating for M if x&; =0 implies x =0 for x € M.
Let M’ denote the commutant of M, i.e. M ={x'c B(H): x'x = xx' for all
xeM}. Then clearly M’ is a C* algebra (it is in fact a von Neumann
algebra by 1.4.6). If &, is cyclic for # then & is separating for 4{'. Indeed,
if x’eM’ and x'&,=0, then 0=xx'é;=x"x&, for all x e M. Since &, is
cyclic for A, x' =0 as asserted.

1.4.8. Lemma. Let M be a von Neumann algebra acting on a Hilbert
space H. Suppose &, is a unit vector in H cyclic for M such that the state
w(x) = (x&,, &) is pure on M. Then M =C1.

Proof. Since M’ is a C* algebra it is generated by its positive operators.
Let a’eM’,0<a’<1. Define pcM* by p(x)=(a'x&, &). Then 0<sp<=w
since 0<<a’x=<x whenever 0=<x=1 and xe/l. By 1.2.1 p=p(l)w. In
particular, if x,yel we have (a'x&, y&)=p(¥*x)=pDw(y*x)=
p(1)(x&,, v&). Since &, is cyclic for M, a' =p(1)1eC1.

1.5. Comments

The material in this chapter is all very standard, and can be found in
several books. In Section 1.1 we have chosen the book by Dunford and
Schwartz [7] as our standard reference, and have given proofs of results
which have either been easy consequences of basic theorems or have not
been found in Dunford and Schwartz [7].

Section 1.2 is perhaps the least familiar in the chapter. Order unit
spaces were first studied by Kadison [71], and several of the results are
due to him. For more recent treatments see the books of Alfsen [1] and
Asimow and Ellis [2].

In our treatment of C* algebras in Section 1.3 we have put emphasis
on the Abelian ones. This is due to the fact that we did not want to refer
to anything but the spectral theorem (1.3.3).

Our discussion of von Neumann algebras together with Theorem 1.1.25
is to a great extent taken from the book of Stritild and Zsid6 [12]. Our
aim has, as for C* algebras, been to do as little as possible in order to
keep our treatment optimally self-contained.
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Jordan algebras

2.1. Introduction and preliminaries

2.1.1. In this chapter we shall study the purely algebraic aspects of
Jordan algebras. This theory, it turns out, is essentially the same over any
field of characteristic not two. Therefore we will fix a field ® of charac-
teristic not two, and by an algebra we shall mean an algebra over ®. Of
course the reader may think of ® as being R or C, as this will be the case
in the rest of the book.

More precisely by an algebra we shall mean a vector space A over @,
with a bilinear composition law A X A — A. The product of two elements
x and y under this composition will usually be denoted xy, x - y or xey.
Note that we do not assume algebras to be associative or commutative
unless explicitly stated, i.e. we do not assume the identities (xy)z = x(yz)
or xy = yx to hold. ‘

The field ® may be equipped with a natural conjugation, i.e. a map
A — X of @ into itself such that A =\, A+ w=X+ @ and A\p=Ag. If &=R
we take A = A, while if ® =C we take A to be the complex conjugate of A.
An involution on an algebra A will then be a map a — a™ of A into itself
satisfying a**=a, (a+b)*=a*+b*, (Aa)*=2Aa* and (ab)*=b*a™*
(a, be A, A e®). An element a € A such that a =a* is called self-adjoint
or Hermitian. We also call A a * algebra.

2.1.2. For any algebra we can define many of the same notions we have
for associative algebras. For example an ideal in an algebra A is a
subspace J such that ac A, beJ implies abeJ and bacJ. Then the
quotient A/J has a natural structure of an algebra. A homomorphism
between algebras is a linear map ¢ such that ¢(ab) = d(a)d(b). If instead
#{(ab) = ¢(b)p(a) we talk of an antihomomorphism.

An algebra A is called unital if it contains an element 1 such that -
la=al=a for all ae A. Note that the unit 1 is unique. We shall often
call a homomorphism unital if it maps the unit to the unit.

19
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2.2. Alternative algebras

2.2.1. An algebra A is called alternative if it satisfies the identities

x%y = x(xy), yx* = (yx)x. 2.1
If we introduce the associator

[x, y, z]=(xy)z = x(y2), (2.2)
the identity (2.1) can be rewritten as

[x, x, y]=[y, x, x]=0. (2.3)

By substituting z for y and x+y for x we immediately conclude that
[x,y,z]+[y, x,z]=0 and similarly that [x,y, z]+[x, z, y]=0. From this
we get [x, y, x]=—[y, x, x]=0 or

(xy)x = x(yx). | (2.4)

For this reason we can, and shall, drop the parentheses in an expression
like xyx. The above identities mean that the associator [x, y, z] alternates,
i.e. it is invariant under an even permutation of the variables and gets
multiplied by —1 by an odd permutation. This (alternative!) description of
the identities (2.1) justifies the term ‘alternative algebras’.

2.2.2. The Moufang identities. The following identities are true in any
alternative algebra

(xyx)z = x(y(x2)), (2.5)
z(xyx) = ((zx)y)x, (2.6)
(xy)(zx) = x(yz)x. .7)

Proof. The identity [x, y, z]+[y, x, z]=0 can be rewritten as (xy + yx)z =
x(yz)+ y(xz). Denoting a°b =%(ab+ba) and L,(b)=ab in any algebra,
this can again be rewritten as L,.,=L,°L, Note now that in any
alternative algebra one has

xyx =2xo(x°y)—x2oy.

Therefore L,,, =L LI, and (2.5) is proved.

Equation (2.6) is proved similarly or by using (2.5) in the opposite
algebra. .
- To prove (2.7) we write (xy)(zx) = —[xy, z, x]+ ((xy)z)x and x(yz)x =
—[x, y, z]x +((xy)z)x, to see that (2.7) is equivalent to

[z, xy, x]=—[z, x, y]x. (2.8)

(Remember that associators alternate.) However, the left-hand side of
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(2.8) equals (z(xy))x —z(xyx) and the right-hand side equals (z(xy))x —
((zx)y)x. It is clear then that (2.6) implies (2.8) and hence (2.7).

2.2.3. Theorem. An alternative algebra generated by two elements is
associative.

Proof. We shall need a linearized version of (2.8). Substituting x + w for x
in (2.8) we obtain

[z, xy, w]+[z, wy, x]=—[z, x, y]lw —~{z, w, y]x. (2.9)

Assume now that the alternative algebra A is generated by x and y.
We shall consider (non-empty) words z =u, ... u, (with some arrange-
ment of brackets) where u; =x or y. The length of the word we call
I(z) = n. We shall prove by induction that [a, b, c]=0 if a, b, ¢ are words
and l(a)+1(b)+1l(c)=n.

For n =3 this is evident from (2 1) and (2.4).

Assume the hypothesis holds for n=3. We can, and shall, ignore
brackets in words of length less than or equal to n. Assume I(a)+1(b)+
l{c)<<n-+1. Two of the words must begin with the same letter, say x.
Since associators alternate, we may assume that these two words are b
and ¢. We must consider the following three cases: (i) b=c=x, (ii)
b=xb', c=x, (iil) b=xb', c = xc’ where b’ (resp. ¢') denotes a non-empty
word. (The case b = x, ¢ = xc’ can be reduced to case (ii), since associators
alternate.) Case (i) is easy, using (2.1). Case (ii) is also easy, since (2.8)
implies [a, xb’, x]=—[a, x, b']x, which vanishes by the induction
hypothesis. Finally, in case (iii), using (2.9) and the induction hypothesis,

[a, xb', c]+[a, cb’, x]=0,

but the second term vanishes by case (ii), and so the proof is complete.

2.2.4. Lemma. There are, up to isomorphism, three two-dimensional real
algebras with 1. The isomorphism classes are characterized by the existence
of a basis {1, x} satisfying x*>=1, 0, —1 respectively.

Proof. Let y be any element not in R1. Then y?>=al+ By for some a,
BeR. We find (y—B/2)*=(a+B%/4)1, so we can choose x to be a
multiple of y—B/2. The rest is clear.

2.2.5. In the rest of this paragraph, we shall be concerned with real
algebras only. A unital algebra is quadratic if, for every element a, a’isa
linear combination of a and 1. Hence, the subalgebra generated by a and
1 is at most two-dimensional, and is therefore R1 or classified by the
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above lemma. An algebra is a division algebra if it has a unit and every
nonzero element has a two-sided inverse.

We shall use the symbol H for the algebra of quaternions. Its definition
will be clear from the proof below. The algebra O of octonions, or Cayley
numbers, will be described later. Its definition will be more understand-
able after the proof of the following result.

2.2.6. Theorem. Any quadratic, alternative real division algebra is
isomorphic to either R, C, H or O.

Proof. Let D be a quadratic, alternative real division algebra. We may
assume D#R1. If ae D, a¢R1, a generates an algebra isomorphic to one
of those described in 2.2.4. The first two contain some b such that b>=b
or b>=0, respectively, and b#0, 1. This is impossible, however, sincé
then b=b1=b(bb™") =b?*b"" =1 or 0, respectively. We conclude that the
subalgebra generated by a is isomorphic to C.

An imaginary unit is an element i € D such that i*=—1. Suppose i, j
are imaginary units. Then we have

if  ijj=ji then i==%j. (2.10)

Indeed if ij=ji then by (2.7) (if)*=(ij)(ji)=ij’i=—i>=1. Since ij is
contained in a copy of C, ij = +1 follows. Multiplying by —j we get i = +j.
- We next show that if i and j are imaginary units then

ij +ji eR1. (2.11)

By the first paragraph of the proof there are an imaginary unit k and o,
B €R such that ij +ji = a1+ k. Notice that i commutes with ij + ji, since
i(ij +ji) = —j +iji = (ij + ji)i. Therefore, if B+#0, ik = ki, so (2.10) implies
k = =xi. Similarly k = =j, so i = =+j, and therefore ij + ji = +2, contradicting
the assumption B# 0. This proves (2.11).

We assert next that the set D, of multiples of imaginary units is a
subspace of D and that D=D,®R1. Indeed, suppose i and j are
imaginary units with i# xj, and let «, 8 be nonzero real numbers. By
(2.11) (ai+Bj)*=—a*—B%+ aB(ij+ji)eR1, say (ai+Bj)>=v1. If y=<0
then clearly ai+ Bj € D,. If v >0 then, since ai+ Bj is contained in a copy
of C and has a positive square, ai+ Bj cR1, which implies ij = ji, or by
(2.10) i = %j, contrary to assumption. Therefore Dy is a subspace of D. It
is clear from the first paragraph of the proof that D =R1®D,.

Clearly, then, we can define a positive definite inner product on Dy by

ab+ba=-2(a|b)l.

The imaginary units are the unit vectors of D, and an orthonormal set is a
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set of anticommuting imaginary units (where by anticommuting we mean
ab =—ba).

Pick now any imaginary unit i. If D =R1BRi, the proof is complete. If
not, pick an imaginary unit j orthogonal to i. That is, ij =—ji. Write
k=1ij. Then it is easy to verify that i, j and k satisfy the following
identities:

ij = —ji = k,
jle=—kj = i,
ki=—ik =],
P=2=k*=—1.

Clearly then {1,4,j, k} is a basis for a subalgebra H of D. The above
identities form the definition of the quaternions.

Assume that D#H. Then we can pick a new unit vector ! in Dy
orthogonal to i, j and k. In other words [>=—1, and | anticommutes with
i, j and k. Note that HNHI={0}, for if a, beH and a = bl then since
b~'eR1-+Rb, the alternative law (2.1) yields b~*a =b" (bl) = (b7 b)l =1,
so leH, which is impossible.

Write now O =H®HI. We shall show that O is a subalgebra of D by
giving a formula for the product in O.

First, however, we note that we can define a real linear map a — a of
D into itself such that d=a if acR1 and d=—a if aeD,. It is easily
checked that ab= bd if a, b cH. The fact that | anticommutes with i, j and
k can now be rewritten as

al=1a, acH. (2.12)

Applying the third Moufang identity (2.7) we get (bl)(dl) = (Ib)(dl) =
I(bd)! = (bd)l* = —db, or

(bl)(dl)=—db. (2.13)

From (2.12), with a =i, we find ili = l. For x ¢H we can then use the first
Moufang identity (2.5) to conclude Ix = (ili)x = i(I(ix)). Multiplication by i
yields i(lx) = —l(ix) = —(ix)l = (Zi)! or, using Ix=X! and substituting %
for x, i(xl) = (xi)l. We get similar formulae with j or k substituted for i,
so we find

y(xl) = (xy)l (x, y eH). ' (2.14)

Applying this in the opposite algebra D° we get (Ix)y = I(yx) or, using
(2.12), (xD)y = (yx)l = (xy)l or

(xl)y = (xy)L. (2.15)
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Combining (2.12), (2.13) and (2.14) we have
(a+bl)(c+dl) = ac—db+(da + b&)l (2.16)

whenever a, b, ¢, delH. This is the defining identity of the octonion
algebra O. .

We finally show that D cannot properly contain . Indeed, if D#0O,
we can repeat the foregoing discussion with O replacing H, thereby
finding an imaginary unit m in D, such that if a, b, ¢, d €O then

(a+bm)(c+dm)=ac—db+(b¢+da)m.

To obtain a contradiction, we compute the associator [i, jm, 1] in two
ways: first,

[i, jm, 1= GGm)I—i((Gm)])
=(Gim)l+i((Ghm)
= —(km)I +((ji)m
= (k)m —(G)D)m
=2(kl)m,

secondly,

[, jm, l]=—[jm, i, 1]
= —((m))1+ (jm)(il)
=+HGm)+ (j(iD)m
=—(km)l+(j(li))m
=+(klym — (@) )m
=+(klym —(kl)m
=0,

This contradiction completes the proof.

2.3. Special Jordan algebras

2.3.1. Consider any algebra . If a, be A, let ,
aob=3%(ab+ba). ' 2.17)

Then o defines a bilinear, commutative product on &. Thus &£’, which by
definition is the vector space & with the product o, is a commutative
algebra. If sf is associative, we call o the special Jordan product in <. It
should be noted that even when & is associative, &£’ is not, as the
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following simple example shows. Let of = M,(®), and let

=l ob 2l i} (o)

Then (aob)ec =0, while ao(bec)=1/4c.
It is interesting to note, however, that the product o, if & is associative,
satisfies the following weak form of associativity:

ac(boa® =(aob)ea’ : (2.18)

Let & be an associative algebra. By a Jordan subalgebra of & we mean
a subalgebra of &’ i.e. a linear subspace of s which is closed under the
Jordan product ¢ defined in (2.17). Any algebra isomorphic to a Jordan
subalgebra of an associative algebra will be called a special Jordan
algebra.

2.3.2. The Jordan triple product is an interesting and useful algebraic
combination of elements in an associative algebra which, perhaps surpris-
ingly, can be expressed by the Jordan product. It is defined by

{abc} =1(abc + cha). (2.19)
Indeed, it is easy to check that the formula
{abc}=(aob)oc+(boc)oa—(aoc)ob (2.20)

holds. This formula and the following special case of it appear so often
that they are worth remembering;:

{aba}=2a°(acb)—a®ob. (2.21)

It is natural to ask whether this can be done for more than three
variables, i.e. generalize (2.19) to

{a,...a,}=%a,...a,+a,...a,. 2.22)

Can this be expressed in terms of the Jordan product, if n=4? No, there
even exist Jordan subalgebras of associative algebras which are not closed
under the multilinear product (2.22) if n=4. We shall call a Jordan
subalgebra reversible if it is closed under (2.22) for all n eN, and irrevers-
ible otherwise.

2.3.3. The study of free algebras is very important. Here we shall need
two of them: the free (unital) associative algebra FA{x,, x,, ..., x,} and
the free (unital) special Jordan algebra FS{xi, x,, ..., x,}, which is the
Jordan subalgebra of FA{x,,...,x,} generated by x,...,x, and 1. In
this notation, we have sacrificed any reference to the underlying field ® in
favour of the mnemonics ‘FA’ and ‘FS’. This should cause no confusion.
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Some remarks should be made at this point. In the above definition
X1, . . ., X, should be distinct letters and FA{x,, ..., x,} should be thought
of as consisting of formal linear combinations of words composed of the
letters x,, ..., X,, including the empty word, denoted by 1. Then words
are multiplied by juxtaposition, and the product in FA{x;,...,x.} is
defined by extending this product bilinearly. To gain some familiarity with
this algebra the reader should convince himself that the polynomial ring
®[x,, ..., x,] is the quotient of FA{x,, ..., x,} by the ideal generated by
all elements xx; —xx;, 1si<j=n.

2.3.4. The universal property of FS{x4, ..., X,}. Let A be aspecial]ordan
algebra with a unit 1. If y4,...,y, € A there is a unique homomorphism
¢: FS{x,,...,x,}—> A such that $(1)=1 and ¢(x)=y;, i=1,...,n

Proof. We may assume that A is a Jordan subalgebra of an associative
algebra s{. We may even assume that 1 is a unit of &; otherwise replace
oA by 141

It is obvious that there exists a homomorphism : FA{x,,...,x,}—>
mapping 1 to 1 and x; to y;. Indeed, ¢ must map the word x;, ...x; to
Yi, - - ¥, and the empty word to 1. Since these words form a basis for
FA{x,,...,x.}, ¢ exists. Clearly, ¢ is also a homomorphism
FA{x4,...,x,Y — o’ Let ¢ be the restriction of ¢ to FS{x;,..., x.}.
Since x4, ..., X%, and 1 generate FS{xq,..., x,}, the rest is now clear.

2.3.5. A linear combination in FA{x,,...,x,} of 1 and elements
{x, ...x_} (see (2.22)) will be called reversible. Consider the subspace H
of all reversible elements. We can give an alternative description of H as
follows. First, note that FA{x,,...,x,} has a natural involution *,
defined by (x;, ...x )*=x,_...x, and linearity. If we call an element a
self-adjoint if a =a*, then the space H of reversible elements coincides
with the space of self-adjoint elements of FA{x,,...,x,}, since if a =
a*e FA{x,,...,x,} then a, being a linear combination of terms x; ... X,
and satisfying a=3(a+a¥), is also a linear combination of terms
306, . cox (%, .. x ) ={x, ... x }. It follows that H is a reversible
Jordan subalgebra and, indeed, is the smallest reversible Jordan sub-
algebra containing x, ..., X,.

By a tetrad we shall mean an element {x; x, X, x; }, where 1=<5i; <i,<
i,<i,<n. '

2.3.6. Theorem. The space of reversible elements of FA{x,, ..., x,} co-
incides. with the Jordan algebra generated by 1, x4, . .., x, and the tetrads.

Before proving this, let us point out a few of its corollaries to see what is
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going on. First, if n <4 there are no tetrads, so we get:

2.3.7. Corollary. If n<3 the free special Jordan algebra FS{x,, ..., x,}
coincides with the space of reversible elements in FA{x,, ..., x,}.

2.3.8. Corollary. Assume & is an associative algebra and A is a Jordan
" subalgebra generated by at most three elements (and 1, if A has a unit).
Then A is reversible.

Proof. We may assume that A has a unit. (If not, append one.) Then we
may assume that 1 is also a unit of &. Let ¢: FA{x,y,z}—> A be a
homomorphism mapping 1 to 1 and x, y, z onto a set of generators of A.
Then ¢ maps FS{x,y, z} onto A. By 2.3.5 and 2.3.7, FS{x,y, z} is
reversible in FA{x, y, z}. Hence A is reversible in .

2.3.9. Corollary. Assume o is an associative algebra, A a Jordan sub-
algebra such that {a,a,a;a,} € A whenever a,e A. Then A is reversible.

Proof. Let a4, ..., a, < A. As before, we may assume A has a unit which
is also the unit of . Let ¢: FA{x,,..., x,} — & be the homomorphism
such that ¥(1)=1 and ¢(x;) = a;. By assumption, ¢ maps all tetrads into
A. Hence ¢ maps the reversible element {x,...,x,} into A, ie.
{ai...a.}=¢({x,...x,DeA.

Let us now proceed with the proof.

2.3.10. Proof of 2.3.6. From the remarks preceding the statement of the
theorem it is clear that the space H of reversible elements must contain
- the Jordan algebra A generated by 1, x4, ..., x,, and the tetrads.

To complete the proof, we must show that H= A, and for this it
suffices to show {x; ...x, e A for all m. Clearly, it is true for m <3.
Assume it holds for all m <r, where r=4. We shall prove that it holds for
m=r.

Let us write = for congruence modulo A, i.e. a=b means a—be A.
First, note that :

2x,04%, . x y={x o X o )
By induction the left-hand side of this equation belongs to A. Hence
{x, .. .xxt=—{xa ...} (2.23)

Each time the indices are permuted cyclically, the sign of {x;, ...x } will
change. Hence, if r is odd, in the end we have {x; ... x }=—{x, ... %}, or
{x,...%,}€ A, and the proof is complete.
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If r is even, we note that

40x,0 %) 04%, - Xy =10x,%, o6 e LX)
4, XX Xt X, L XXX )
Again, by induction, the left-hand side belongs to A. Hence we get

{xilxizxi3 < xir}+{xi2xi1;xi3 .. x;,}+{xl3 [ x,:'xilxi/z}
+{x, ..o x % =0, (2.24)

Note that the third term in (2.24) comes from the first by applying the
cyclic permutation in (2.23) twice; hence the two terms are congruent
mod A. Similarly, the second and fourth terms are congruent. There-
fore, (2.24) implies

{6, . ox =X, .. .x ) (2.25)
Notice that both (2.23) and (2.25) can be expressed as
{3 =CED o xb (2.26)

where o is a permutation of {1, ..., r} and (—1) its sign. (Remember that
when r is even, an r-cycle is odd.) Since the r-cycle in (2.23) and the
transposition in (2.25) generate the whole symmetric group, (2.26) holds
for all permutations . Since, by assumption, {x; ...x,}c A whenever
i <iy<iz<iy, it follows from (2.26) that {x; ...x}cA whenever
i1, 1,13, 14 are distinct indices. On the other hand, if any two of the
indices iy, . . ., i, are equal, it follows from (2.26) (by applying a transposi-
tion) that {x ...x;}€ A. This completes the proof when r=4.

We may now assume that r=35. We proceed in a fashion similar to
what we did to prove (2.23) and (2.24), and note that

A ool ox =l o e XX )
{0, X ox e, XX L

Once more, the left-hand side belongs to A by induction. The permuta-
tion reversing 1, ...,4 is even, so from this and (2.26) we get

{x, . ..oxt=—{x ... %% ...}
But the sign of the permutation that reverses 5,...,r is (=1)"* (re-
member r is even), so we obtain from (2.26) and the above that
{x;,...x} e A, if r is a multiple of 4.

Finally, if 7 is not a multiple of 4, the reversal of (1,...,r) is an odd
permutation, so (2.26) predicts {x; ...x}=—{x, ...x}. However,
{x, ... x}={x,...x}, so once more we have {x; ...x }=0. The proof is
complete.
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2.3.11. We shall need another consequence of 2.3.6 that lies somewhat
deeper than the preceding corollaries. It is known that the homomorphic
image of a special Jordan algebra need not be special [9, p. 11].

2.3.12. Lemma. Let I, be the ideal generated by z in FS{x, y, z}, and let
J. be the ideal generated by z in FA{x, y, z}. Then I, =J, N FS{x, y, z}.

Proof. Clearly J, NFS{x, y, z} is an ideal in FS{x,y, z} containing z, so
LcJ,NFS{x, v, z}.

To prove the opposite inclusion consider the definition of FA{x, y, z}
given in 2.3.3. If w is a word in x, y, z, let 9,w be the number of
occurrences of z in that word. Let Z; be the linear span of all words w
with d,w = i. Then, trivially,

FAl{x,y,z}= D Z, J,=bZz. 2.27)
i=0 i=1

(Incidentally, FA{x, y} is canonically isomorphic to Z,.)

A Jordan monomial in x, y, z is any element of FS{x, y, z} constructed
according to the following rules: 1, x, y and z are Jordan monomials, and
so is aob whenever a and b are Jordan monomials. We note the
following simple facts. Every Jordan monomial ¢ belongs to some Z,. If
i=1 then cel,. Moreover FS{x,y, z} is the linear span of all Jordan
monomials.

From this we see that if u< FS{x, y, z} we can write u=v+w where
veZ,and we L. If moreover ueJ, thenby 2.27) v=0,so u=wel,. In
other words, J, NFS{x, y, z} < I,, and the proof is complete.

2.3.13. Theorem. Any homomorphic image of FS{x,y} is a special
Jordan algebra.

Proof. 1et I be an ideal in FS{x,y}. Let J be the ideal in FA{x, y}
generated by I. We must prove JNFS{x, y} =L Then, clearly, FS{x, y}/I
will be isomorphic to a Jordan subalgebra of FA{x, y}/J, and hence
is special.

First, note that J is the linear span

J=lin{bac: ac I, b, c e FA{x, y}}. (2.28)

Denote by * the natural involution in FA{x, y}, as in 2.3.5. Then, clearly,
if ue FS{x, y}, u*=u, or u =3(u+u*). By 2.3.7, the converse is also true,
and therefore it follows from (2.28) that

JNFS{x, y} =lin{bac +c*ab™: ac I, b, c e FA{x, y}}.
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What must be proved, therefore, is that bac+c*ab*el if acI and b,
ceFA{x, y}.

We shall identify FA{x, y} with its canonical image in FA{x, y, z}. Let
¢ be the homomorphism FA{x,y, z} — FA{x, y} mapping 1, x,y,z to
1,x,y and a respectively. Then ¢(bzc+c*zb*) = bac+c*ab*. By 2.3.7,
the reversible element bzc + c*zb* belongs to FS{x, v, z}. In the notation
of 2.3.12, it also belongs to J,, and therefore it is in I,. However, ¢
restricts to a homomorphism of FS{x, y, z} onto FS{x, y}, so I, is clearly
mapped into I (because acl). Hence bac+c*ab*e (L)< I, and the
proof is complete.

2.4. Jordan algebras

2.4.1. Let A be an algebra with the product written (a, b) — ab. A is
called a Jordan algebra if the following two identities are satisfied for all
a,beA:

acb=boa, (229
a>(bea? =(aob)ea’ (2.30)

It should be remarked that from (2.18) it immediately follows that any
special Jordan algebra is a Jordan algebra. The converse is not true;
Jordan algebras which are not special will be called exceptional. However,
there is more power in the above two axioms than meets the eye. Indeed,
consider a Jordan polynomial p(x,y,z) in the three variables x,y, z.
Assume that p is of degree at most 1 in z; for example,

p(x, v, z) = x*o(ye(yez)) — (x*oy?)oz.

Then Macdonald’s theorem states that, if p(x,y,z)=0forall x,y, zin a
special Jordan algebra, then p(x,y,z)=0 for all x, y, z in any Jordan
algebra. This is a very effective tool for proving identities. Most of this
section is devoted to a proof of Macdonald’s theorem.

2.4.2. Let us for the moment turn to a discussion of the axioms (2.29)
and (2.30). While axiom (2.29) simply states that A is commutative,
axiom (2.30), called the Jordan axiom, can profitably be rewritten. We
start by defining the multiplication operator T,: A — A for ae A by

T,b=acb. (2.31)

We prefer the notation T, to the more customary L, or R, to avoid
confusion when we work inside an associative algebra. Indeed, in an
associative algebra T, =3(L,+R,), where L, (resp. R,) is left (resp.
right) multiplication. Axiom (2.30), with the help of commutativity, now
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takes the form
T,Ty=T,T,, (2.32)

i.e. T, and T,. commute.

Note that from (2.32) it is trivial that we can adjoin an identity to a
Jordan algebra and still have a Jordan algebra. Indeed, this follows from
the identity

[T(a+)\1)2> T(a+k1)] = [Ta2+ 2/\Ta + )\2(‘: Ta + Al‘] = 0:

where A € D and ¢ is the identity map.

2.4.3. We shall derive a ‘linearized’ version of (2.32). For this, substitute
a+Ab+uc for a in [T, T,2]=0, where A, ue® and a, b, ccA.
Expanding, we have a polynomial of degree 3 in A, & with coefficients in
A. This polynomial vanishes for all values of A, . We would like to
conclude that all coefficients of the polynomial vanish. Then we could
compute the Au term of the polynomial, to arrive at the linearized Jordan
axiom:

[Taa Tboc] + [Tb, cha] + [Tc7 Tacb] = 0 (233)

This is the only point at which the characteristic of ® gives us a little
trouble. Indeed there are polynomials with nonzero coefficients which
vanish for nonzero characteristics: for example, A>+2A =0 for all A e
Z/3Z. However, the above derivation of (2.33) is still valid, for the
third-degree terms in our polynomial are A*[T,, T,-1+ u3[T,, T.2]=0, so
the polynomial really has degree at most 2. Since ® does not have
characteristic 2, it does follow that the coefficients of the polynomial
vanish. (Just substitute A =0, 1,2 and similarly for w.)

In the converse direction we may note that, except possibly in charac-
teristic 3, the linearized Jordan axiom implies the ordinary Jordan axiom.

2.4.4. Applying the linearized Jordan axiom (2.33) to an element de A
and collecting terms with the same signs on separate sides of the equality
sign, we obtain the equivalent form

ao((bec)ed)+bo((cca)ed)+co({acb)od)
=(boc)o(aod)+(cea)o(bod)+(ach)o(cod). (2.34)
Note that the right-hand side is symmetric in all four variables. In
particular, the left-hand side is invariant when a and d are interchanged.

This fact, when written in terms of the operator T in order to eliminate
the variable d, becomes the formula

TaTbec + Tchea+ TcTacb = Tao(boc) + TbTaTc + TcTaTb' (2.35)
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We are now in the position to show that Jordan algebras are power
associative, that is a subalgebra generated by a single element is associa-
tive. To state this differently, define powers inductively by a®=1, a"** =
aca"” (n=1). Then we have:

2.45. Lemma. Let A be a Jordan algebra and a € A. Then, for natural
numbers m and n,

(i) am+n — amoan’

(i) TomTgn=TonTym.

Proof. Let n=3 and apply (2.35) with b =a"?, ¢ = a. We get a formula
expressing To»= T, In terms of the operators Tyx, 1<k<n-—1. By
induction it follows that T,. is a polynomial in T, and T,., which
commute, so (ii) follows.

To show (i) we use induction on m. By definition (i) holds for m = 1.
Assuming it holds for some m =1, we get by (ii)

a"ca™'=a"e(a™ea)=T, T, a" =T, Tpa™
— ao(anoam) — aoan+m — an+m+1‘

2.4.6. In order to state Macdonald’s theorem in its precise form, we must
consider free Jordan algebras. First consider the free nonassociative
algebra FN{x,, ..., x,}. It is defined analogously to the free associative
algebra, but the insertion of parentheses is now important. To be precise,
a nonassociative monomial is a word built from the letters x4, ..., x,, and
the special symbols ‘(" and ‘)’, which can be constructed according to the
following recursive rules. The empty word (denoted by 1) and x4, ..., x,
are nonassociative monomials. If a and b are non-empty nonassociative
monomials, then so is (ab). It should be noted that if a, b, ¢, d are
non-empty nonassociative monomials and (ab) = (cd), then a=c¢ and
b=d. We can now define a nonassociative polynomial to be a formal
linear combination of nonassociative monomials, and FN{x,, ..., x,.} to
be the linear space of nonassociative polynomials in Xxi,...,X,.
FNi{x,, ..., x,} is an algebra, with the product defined by

(= m)(; ) = ¥ A,

where A\u; €® and a;, b; are monomials (and we write a;b; instead of
(a;b,)). The universal property of FN{x,,...,x,} is summed up in the
following:

2.4.7. Lemma. Let A be a (possibly nonassociative) unital algebra and let
ay,...,0,€A. Then there is a unique algebra homomorphism of
FN{x,,...,%,} into A mapping 1 to 1 and x, to a;, i=1,...,n.
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Proof. The uniqueness is clear, since 1 and Xx...,x, generate
FN{x,, ..., x,}. To define the homomorphism it is enough to define it on
the basis of monomials. By definition 1 must be mapped to 1 and x; to a;.
If w is a monomial other than 1 or x;, then w can be uniquely written
w = (uv), with u, v monomials of shorter length than w. If u is mapped to
b and v to ¢, then by induction we can map w to bc. Extending linearly
we clearly get a homomorphism.

2.4.8. We can now define the free Jordan algebra FI{x,, ..., x,} gener-
ated by n distinct letters x4,...,x, (and 1) to be the quotient
EN{xy,...,x,}/I by the ideal I generated by all expressions of the form
ab—ba and (ab)a®*—a(ba®, where a, beFNix,,...,x,}. Clearly
FJ{x;,...,x,}is a Jordan algebra. It satisfies a universal property, given
by the following:

2.49. Lemma. Let A be a unital Jordan algebra and a4, ..., a,€A.
There exists a unique homomorphism FJ{x,, . . ., x,} — Amapping 1to 1 and
xtoag (i=1,...,n).

Proof. Asin 2.4.7, uniqueness is clear. The existence follows from 2.4.7,
since the canonical homomorphism FN{x,,...,x,}— A constructed
there must annihilate the generators of I (by the Jordan axioms for A),
and therefore factors through FJ{x,,...,x,}.

2.4.10. Of particular interest to us will be the canonical, surjective
homomorphism

Fj{xla"'sxn}'—)Fs{xl"-'axn}

mapping 1 to 1 and x; to x; (i=1,..., n). We shall call the kernel of this
map the exceptional ideal of FJ{x,,..., x,}. From 2.4.5 we see that the
exceptional ideal vanishes if n = 1. Later we shall see that it also vanishes
if n=2. Macdonald’s theorem below can be paraphrased as a statement
saying something about the exceptional ideal if n =3. :

2.4.11. An element p of FJ{x;,...,x,} may also be called a Jordan
polynomial in x4, ..., x,. We shall write p(ay, ..., a,) for ¢(p) if A is a
Jordan algebra with 1, g;€ A, and ¢ is the canonical homomorphism
¢: FJi{x,,...,x,}— A mapping 1—1 and x; — a,.

2.4.12. By a multiplication operator on a Jordan algebra A we shall mean
a linear operator on A belonging to the algebra generated by all the
operators T,: b — a<b, where a € A. By a multiplication operator in two
variables x, y we shall mean an element of the algebra generated by all
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operators T, on FJ{x, y, z}, where p € FJ{x, y} = FJ{x, y, z}. (Note that the
homomorphism FJ{x, y}— FJ{x, y, z} mapping 1 > 1, x —>x, y—>y has a
right inverse given by 1—>1, x —>x, y—y, z — 0. We identify FI{x, y}
with its image in FJ{x, y, z}.) Let M be a multiplication operator in the
two variables x, y. We shall see that, by substituting elements of any
Jordan algebra A for x and y, we get a multiplication operator on A. For
this we define

M(a, b)c = ¢p(Mz), .

where a, b, ce A and ¢: FJ{x, y, z} — A is the homomorphism mapping
1—1, x->a,y—b, z— c. To see that M(aq, b) is indeed a multiplication
operator, note first that if p € FJ{x, y} then the above definition becomes
(for M=T,) '

Tp(a’ b)C = ¢(p°z): ¢(P)°C :p(a7 b)oc = Tp(a,b)c’

so T,(a, b) is indeed the multiplication operator T p)-
Next, if p is a polynomial and M is a multiplication operator then

(T,M)(a, b)c = $(T,Mz) = &(p°Mz) = ¢(p)° d(Mz)
=p(a, b)°M(a, b)c = T,(a, b)M(a, b)c,

and by induction we get that, for any multiplication operator M in two
variables, M(a, b) is indeed a multiplication operator. Moreover if M
~and M' are different multiplication operators then (MM')(a,b)=
M(a, b)M'(a, b). Finally, note that M(x, y)=M if A =FJ{x,y, z}.

2.4.13. Macdonald’s theorem. Let M be a multiplication operator in two
variables x, y. If M(a, b) =0 for all a, b in all special Jordan algebras, then
M=0.

The proof of Macdonald’s theorem, being quite technical, is left to the
end of this section. We turn now to its applications.

2.4.14. The Shirshov—Cohn theorem. Any Jordan algebra generated by
two elements (and 1, if unital) is special.

Proof. First, we shall show that FJ{x, y} is special. Indeed, we shall prove
that the canonical surjection FJ{x, y}— FS{x, y} is an isomorphism. So
assume p € FJ{x, y} belongs to the kernel of this map (i.e. the excep-
tional ideal). Then T, is a multiplication operator in two variables on
FI{x,y, z} (which contains FJ{x, y}, see 2.4.12), which vanishes on
FS{x, v, z}, and therefore on all special Jordan algebras by the universal
property of FS{x, y, z} (2.3.4). By Macdonald’s theorem T, vanishes on
FI{x,y,z},s0 p=T,1=0.
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Now, let A be a Jordan algebra generated by two elements (and 1;if A
is not unital, append a unit). Then by 2.4.9 A is a quotient of FJ{x, y} and
so, by the above, of FS{x, y}. By 2.3.13 A is special.

2.4.15. Macdonald’s theorem is usually used in the following rephrased
form:

Any polynomial identity in three variables, with degree at most 1 in the
third variable, and which holds in all special Jordan algebras, holds in all
Jordan algebras.

To see that this follows from 2.4.13, note first that 2.4.14 takes care of
that part of the identity which does not contain the third variable. Next,
note that a Jordan polynomial p in three variables x, y, z, and linear in z,
can be written p = Mz, where M is a multiplication operator in x, y. Then,
if p(a, b, ¢)=0 for all a, b, ¢ in a special Jordan algebra, it follows that
. M(a,b)=0 for all a, b in a special Jordan algebra, so by 2.4.13 M =0,
and then p =0 follows

2.4.16, We now give two examples illustrating the use of the Shirshov—
Cohn and Macdonald theorems. For this we shall need the Jordan triple
product. It will also be needed in the proof of Macdonald’s theorem and,
indeed, it will follow us throughout the book. One reason is that it
‘behaves better’ than the Jordan product, and triple product identities are
also easier to visualize than most Jordan product identities. Recall the
definition from 2.3 of the triple product,

{abc} =3(abc + cha)

in any associative algebra. In (2.20) it was noted that this can be
expressed in terms of the Jordan product as follows:

{abc}=(aob)oc+(cob)oa—(ac)ob. (2.36)

This, then, will be our definition of {abc} in a general Jordan algebra. We
shall also write U, . for the operator

U, (b) ={abc}, (2.37)
and U, = U,,. Then we get the following operator identities:

Upe =TT+ T T, — Towo, (2.38)

U,=2T,— T, (2.39)

2.4.17. As an example of the Shirshov-Cohn theorem we have the
following identity: :

{aba}? ={a{ba?b}a)l. (2.40)
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To prove (2.40), note that it clearly holds in any special algebra, but the
Shirshov—Cohn theorem states that the algebra generated by a and b is
indeed special.

2.4.18. Analogously, we have the identity
{a{b{aca}b}a}={{aba}c{abal} (241

from Macdonald’s theorem. Indeed, (2.41) is quite clearly true in any
special Jordan algebra and so by 2.4.15 it is true in all Jordan algebras.
The multiplication operator M in 2.4.15 will, of course, be M=
U U U, ~ Ugyy-

2.4.19. We now start our work on the proof of Macdonald’s theorem.
For the proof we shall need some identities that are valid in all Jordan
algebras. These are derived in 2.4.20-2.4.22. It may be interesting to
note that they all follow from Macdonald’s theorem—this is true even for
the four-variable identities in 2.4.20, which can be derived from suitable
three-variable identities by linearization.

The main difficulty in proving Macdonald’s theorem is that multiplica-
tion operators can be written in many ways. We shall resolve this problem
by putting the algebra of multiplication operators in two variables into a
one-to-one correspondence with a more easily understood space. In
2.4.23 we prove a simple lemma on generators of multiplication operator
algebras, which will be needed to show that this correspondence is onto.
Lemma 2.4.24 contains all the technical difficulties in establishing this
correspondence. We recommend that the proof of 2.4.24, except the first
paragraph, is skipped on a first reading. In 2.4.25 we complete the proof
of Macdonald’s theorem.

2.4.20. Lemma. For a, b, ¢, d in any Jordan algebra the following
identities hold:

{abc}od ={(a~d)bc}+{ab(cod)}—{a(bod)c}, ’ 2.42)
{abc}od ={a(bec)d}—{(a-c)bd}+{c{a-b)d}, (2.43)
{abc}od+{dbc}oa={a(bec)d}+{(a-d)bc}. (2.44)

Proof. Using the abbreviations
(abcd) =(acb)o(cod)+(aoc)o(bod)+(acd)o(boc),
(a; bed)={(a°(boc))od+(ae(ced))ob+(ac(dob))ec,

we see from (2.34) that (abed) = (a; bed). Since (abed) is invariant under
all permutations of a, b, ¢ and d, so is (a; bed). Now expand the terms in
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(2.42):

—{abcloed = —(ao(boc))ed +(bo(a>c))ed —(co(acb))ed
{(aed)bc} =(a°d)o(boc) +(be(acd))ec —(co(acd))ob

—{a(bed)c}=(ac)e(bod) —(a°(bod))ec —(co(bed))ea

{ab(cod)} =(acb)o(cod) —(ac(cod))ob +(bo(cod))-a.

Adding these formulae, we get on the right-hand side (abcd)— (a; bed)+
(b; acd) —(c; abd), which equals 0 by the above remarks. This proves
(2.42). Equations (2.43) and (2.44) are proved similarly.

2.4.21. Lemma. The following formulae hold in any Jordan algebra,
where |, m, n are natural numbers:

2T Uy an = 2U g gn Tt = U gt g+ Uy, g, (2.45)
U,.= U (2.46)
Proof. By 2.4.5 all the operators U~ ,» and T, commute. In particular
the first half of (2.45) follows. Using this and (2.42) we get
a'o{a™ba"}={a™* ba"}+{a™ba""}—{a™(bea')a"}
— {am+lban}+{amban+l}_ al o{amban}’
from which (2.45) follows.
Using (2.45) twice we find
U,U,=2T?Uan— TooUsn
= 2TaUa“”,a"_ Ua"+2,a"
= Uan+2’aw+ Uan+1’an+1 — Uan+2’av|
= Ua"”'l)
from which (2.46) follows by induction.

2.4.22. Lemma. In any Jordan algebra the following identities hold,
where m<n are natural numbers:

Ta" Ua'“,b+ Ta"‘ Ua",b = Ua'“,a“Tb + Ua"‘*‘",ln (247)
2Ua“,bTa"‘ = Ua“‘"‘,bUa’"+ Ua"”‘",b’ (248)
2Tam Uan’b = Uum Ua"_m,b + Uam+n’b. (249)

Proof. Equation (2.47) is an immediate consequence of (2.44) with
a™, b, a™ substituted for a, ¢ and d respectively.
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Substituting a =x, ¢ =z, d =y (2.43) can be rearranged and rewritten
as

Usry= nyT + U, , T, ~ T,U, ., (2.50)
while a=x, c=y, d =2z in (2.44) similarly yields

Usory=T, U, , + T, U,, — U, T,. (2.51)
Notice the symmetry between (2.50) and (2.51). We shall use (2.50) to
prove (2.48). It will then be left to the reader to see that the same method

proves (2.49) from (2.51).
We first substitute x? for x in (2.50):

Ugrzy=Usay T, + U, Tio— T,Uyo,.

In the first and third terms, use (2.50) with z=x and y (resp. z)
substituted for y. In the second term, use T,:=2T2— U,. We get
Usery = QU T, - TLU)T, + U, ,2T5— U,)
- T,QU.. T, - T.U,).
We shall let x and z be powers of a. Therefore, by 2.4.5, TxTZ =T,T, and

U, T, =T,U,. If we use this in the above equation and rearrange terms,
we get

Ux2°z,y = 2(ljx,yTz + Uz,yTx - Ty Ux,Z)Tx - UZ,Y Ux’
using (2.50) again,
U,2,y=2U. T, — U, U,.

With x =a™, z=a* y=>b and n=m +k, this is formula (2.48). Formula
(2.49) is proved similarly, using (2.47). :

2.4.23. Lemma. Let A be a unital Jordan algebra. Let B be a subalgebra
of A containing 1, and let E be the algebra of multiplication operators on A
generated by {T,: b < B}. Suppose X is a set of generators for B containing
1. Then E is generated by {U, ,: x, y € X}.

Proof. Since U, ,=T, and U, , =TT, + T,T, — T,.,, it is enough to show
that E is generated by {T..,: x, y € X}. In other words if p is a monomial
in the elements of X then we must show that T, is a polynomial in
{T..,: x, ye X}. This is clear if p is of degree <2, while if p is of degree
=3 we have p=ac(boc), where a, b, ¢ are monomials of lower degree
than p. But then (2.35) implies

Tp = TaTboc + Tchea + TcTaOb - TbTaTc - TcTaTln

so induction on the degree of p completes the proof.
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2.4.24. Lemma. To each pair p, q of monomials in the free unital associa-
tive algebra FA{x, y} we can associate a multiplication operator M, , = M, ,
in the two variables x, y such that

() M,z =3(pzq™+qzp™) in FS{x, y, z},
(ii) M, = 1,
(i) UMy q=Myopq, UpM, o = Mye, g,
(iv) Uy M, g = %(M oyiat My ceg).

Proof. First note that, by 2.3.7, the map M, , as defined by (i) really does
map FS{x, y, z} into itself. Clearly, on FS{x, y, z} (i))~(iv) hold. However,
it is not so obvious that M, , is a multiplication operator. Our task will be
to lift M, , to a multiplication operator on FJ{x, y, z}, and then to show
(i1)~(@iv) here.

Our definition will be by induction on the weight of a monomial,
defined as follows. Any monomial p in x, y can be written p=ryr;... 1,
where n=0 and each r, is a positive power of x or y, the powers of x
alternating with those of y. The weight of p is then w(p)=n. If p starts
with an x, i.e. n=1 and r, is a power of x, we say p € X,,. Similarly, if p
starts with a y, we say pe Y, We write X =X, U{l}, Y=Y, ,U{1}.

Our definition by induction will require many forms of the induction
step, according to the form of p, g We will always present these in
symmetric form, so that the equality M, , = M, , will be evident. Also, the
definition will be symmetric in the letters x, y. We shall introduce the
definition of M, , gradually, proving (i) as we go along.

The basis of induction: define

Mxi,yi = My",xi = Uxtyi (l 20’ ]20) . (252) -

It is obvious that (i) holds for the M, , defined so far. Also, i=j=0 in
(2.52) yields (ii).

The following set of definitions is for the case when p, g start with the
same letter:

My x1q= UxiMimipq (i=j=1,p,qeY), (2.53a)
M 0= UMy yimiq (=i=1,p,qeY), (2.53b)
My yiq= UyMyimipg (i=zj=1,p,qeX), (2.54a)
My yiq=UyM, ying (iz=i=1,p,qeX). (2.54b)

Consider (2.53a). If M-, , satisfies (i), then in FS{x, y, z} we have
anp,x,-qz = UxiMxi—ip’éZ
= [3(x' Tpzq™ + qzp*x' ) I

=3(x'pzq*x’ +x'qzp*x"),
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hence (2.53a), and similarly (2.53b), (2.54a) and (2.54b), preserve the
truth of (i).

For the case of different first letters, we introduce the following pair of
definitions, where i=1, j=1, and either p#1 or q# 1:

Mxip,y"q = 2Ux‘,y‘Mp,qH vp.xiq (p € Ya qe X); (2553)
Myip’xiq =2 in,xiMp,q - Mxip’yiq (p S X, qe Y) (255b)

Now consider (2.55a). If M, , and M,;, ., satisfy (i), then so does M,
by the following calculation, starting from (2.55a):

‘p.yiq

M, 10z = 5% (pzq™* + qzp™)y’ +3y' (pzq* + qzp™)x’
—3(¥'pzq*x’ + x'qzp*y’)
=5(x'pzq™y’ +y'qzp*x).

Similarly, (2.55b) preserves the truth of (i).

Notice that in (2.53a)~(2.55b) M, is defined in terms of operators M, ,
where w(p)=w(r) and w(q)<w(s), or w(p)<w(r) and w(q)<w(s).
These definitions, and (2.52), cover all the cases where r and s both have
weight =1. To cover the remaining cases we include the following

definitions; where i=1:

M,y =2T M, ;— M, (peYy), (2.56a)

Ml’xip = 2TxiM1’p - Mxi,p (p S Yo), (2.56b)
My =2TyM,, — M,y (peXo), (2.57a)
Ml,yip = 2TyiMl,p - My‘,p (P € XO) (257b)

Actually, (2.56a) is the special case (excluded above) j=0, g=1 in
(2.55a), and therefore by the same calculation preserves the truth of (i).

This finishes the definition of M, ,. The reader may not, however, be
convinced that we have covered all combinations p, q. To see that we
have, let us agree to colour the point (m, n) in the grid {(m, n): m,neZ,
m, n=0} if we have succeeded in defining M, , whenever (w(p), w(q)) =
(m, n). By (2.52) we can colour (0, 0), (0, 1), (1,0) and (1, 1). By (2.53a)-
(2.55b) we can colour (m+1, n+1) provided (m, n), (m, n+1) and (m +
1, n) are coloured. By (2.56a) and (2.57a), if m=1, (m+1,0) can be
coloured if (m, 0) and (m, 1) are coloured. Similarly, if (0, m) and (1, m)
are coloured, (0, m+1) can be coloured. It is now clear how we can
colour Z,x{0, 1}, namely in the order (2,0), (2,1), (3,0), (3, 1), (4,0),
(4,1),.... It is now simple to complete the colouring of 7, %X Z,. Thus we
have defined M, , for all pairs p, g of monomials. It is clear that, by
induction, M, , =M, , is a multiplication operator in the two variables x,
y, and that (i) holds.
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To prove (iii), by symmetry between the two letters x, y it is enough to
prove the formula

UM, g = My xig-

If p, qe Y, this follows from (2.53a). If p, g€ X, write p= x'r, q=x's,
where re Y or s ¢ Y. If the formula we will prove holds for M, ;, we get

kaMp,q = kaM xirxis = I_I,ckai]\/Ir,s = ka+iMr,s
= Mxk+ir’xk+is: Mxkp,xkq‘

Hence we are reduced to the case where either p or q belongs to Y, but
not both. By symmetry we may assume p € X,, so that p = x'r, re Y. Since
qeY, we find, using (2.53a),

M, v, = Mxk+i,’xkq = kaMxi,.,q: kaMp,q.

X'p,x"q
This proves (iii).

The main bulk of the proof is to show (iv). The simplest case is
p=q=1, in which case (iv) is immediate from (2.52). We shall proceed
by induction on the weight, so that we now assume n=1 and (iv) holds
whenever w(p)+w(q)<n. We shall prove that it holds when w(p)+
w(q)=n.

We first assume that p, q € X,. By the symmetry between p and q we
may assume p = x'r, ¢ = x's, where i=j=1and r, s € Y. Using (2.53a) and
then (2.48) with m =j, n=m+k we have

Ux",y‘Mp,q = Ux",y ‘Mx‘r,xis
= ka,yl xiMxi_jr,s
= (2 Uxi+k_yl X Ux2)‘+k,yl)Mxi—ir’s
= (2 Uxi‘rk,lexi,yO— Ux2i+k’yl)Mxi-ir’s.
Note that w(x''r)+w(s) <w(p)+w(q). Therefore we can use induction
on the right-hand side of this formula. We get
ka’ylMuq = ij*k,y’(Mx‘r,s+ Mxi‘ir’xis) :
- %(Mxi+j+kr,y lg + My Uiy x 2 +lcs)
= xi+",ylMx“ir,x"sM%My‘xi"'r,xz"*"s
-+ Uxi;k,ylMxir’s _‘.%Mxiﬂ'—ﬁ-kr,yls.
Consider the first two terms on the right-hand side. If i=j then
w(x'7r) + w(x's) < w(p) + w(q), so we can use (iv) with x'7'r, xs replacing
p, q by induction. If i>j then w(x'”'r)+w(x’s)=w(p)+w(q), but

(i—j)+j=i<i+], so we can use induction on i+ j instead. Next consider
the last two terms. Here w(x'r)+ w(s) <w(p)+w(q), so we can again use
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(iv) by induction. We find then,
Ux",y ‘Mp,q = %(Mx“"‘r,y‘x"s + My lx‘r,x“"‘s)'

= %(M **p.ylat My ‘p,x"q)‘
This proves (iv) when p, g € X,.

By the symmetry between the letters x, y we also get (iv) when p,
qe Y. .

It remains to prove (iv) in the case p € X, g € Y; by symmetry, the case
qge X, peY will follow. If k, [=1, (iv) is just a reformulation of (2.55a).
(That is, unless p =q =1, but this case has been covered before.) So we
must cover the case k=0 or [ =0. Again, we may by symmetry assume
I=0. In other words the formula we must prove is (remember that
Ux",l = Tx"):

Tkap,q = %(Mx "p,q+ Mp,x"q), (25 8)

where k=1, pe X, qeY, and p#1 or q# 1. The proof of (2.58) is again
broken down into several cases.
First, assume both p and q have weight <1; that is, p=x, q=v'" If
i=k then by (2.49)
ToMy g = ToxUyyi
= %( ka Uxi—k’yj+ Uxi+k’yj)
= %(Mxi,xkyi + Mxi*"‘,yj)’
where in the last line we used (2.52) and (2.53a). This is (2.58) for this
case. To handle the case i <k we use (2.47) and get
ToxMyq= TixUyiys
= *Txaka’y;v-F Ui oo Tyit Uyion i,
By the previous case, (2.58) applies to the first term. For the second term,
note that (2.45) implies U, = U,:Tyx~. Also, Tyi=M,:,, SO we can use
(2.56a) in the second term and get:
Tx"Mp,q B **%(Mxi-»k’yi + Mxk’xiyi)'*"%Uxi(Mxk—iyi’l + Myi’xk—i) + Mxi+k’y1‘
= __%(Mx"p,q + Mx",x‘y") + %(Mx"y",x‘+ Mx‘yi,x") + Mx"p,q
= %(Mxkp,q + Mp,xkq)’
where we also used (iii). Thus we have proved (2.58) in the case where
both p and q have weight <1.

We consider next the case when either p or q-has weight >1, say
p=x'r, q=Y¥'s, re Y, se X. Again we shall consider the cases i=k and
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i <k separately. First assume i=k. We start with the following:
ToMp g = TyxxMyiryis
= T 2U s M, s — My, ). (2.59)
This follows from (2.55a), if i, j = 1. (Note that either r# 1 or s# 1, since
p or q has weight >1.) If j =0 and s =1 it follows from (2.56a). In (2.59)

we can apply (2.49) to T,«U,:,: in the first term and, by induction, (iv) to
the second, since w(y'r)+w(x's) <w(p)+w(q). The result is

Tkap’q = (ka Uxi—k’yi + Uxi-t-k’yi)M,’s — %(Mxkyj’,’xis + Myir’xi—t-ks),

Apply (2.53a) to the third term to extract the factor U, and group with
the first term:

ToMy = U Ui yM, o —3M s, i) + Ui M, o =3 M1, oo
Since w(r)+w(s)<w(p)+w(q), we can use induction on (iv) and apply
(iii) to get
Tkap’q = % kaMxivkr’yis + %Mxnkv’y,'s
= %(Mx*r;xky"s + Mx”"r,y"s) s
which is (2.58) again.

We are left with the case i <k. Equation (2.59) is still valid. We should
note that now i =0, r=1 is possible, but (2.59) still follows from (2.57b)
in this case. We now apply (2.47) to TU,. s in (2.59), and use (iv), by
induction, on T, «M s i

Tx"Mp,q = 2(* Tinxk,yj + Uxi’kayi + wak,yi)M,,’s
- %(Mxkyjr,x‘s + My’},x"“s) .
In the following calculation, we use (2.49) in the first term above, apply
(iii) and, by induction, (iv):
Tx"Mp,q = ( I]xi ka_i,yj + Uxi+",yj)Mr,s + Uxi,xk(Myjr,s + Mr,y‘s) ’
+ (Mxi“‘r,y"s + My"r,x”ks) - %(Mxky"r,xis + My’},x”"s)
= —% Uxi(Mxk’ir,yis + Myir,x"'is) - %(Mx“"‘r,yis + My"r,x“”"s)
+ %(Mxiyjr,x"s + Mx"y"r,x‘s + Mx‘r,xky"s + Mx"r,x‘yis)
+ Mx“’"r,y"s + %Myjr,xi+ks - %Mxky‘r,x‘s
= _%Mx"r,x‘y isT %Mxiy"r,x"s + %Mx‘y"r,x"s
+ %Mxir,x"y"s + %Mx"r,xiyjs + %Mx“kr,y"s
= %(Mxir,xkyis + qu-kr’y is),

which is again (2.58). This finishes the proof!
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2.4.25. Proof of Macdonald's theorem (2.4.13). We adopt the notation
of 2.4.24. We get a linear map t— M, from the tensor product

FAlx, y}% FA{x, y}

into the algebra of multiplication operators on FJ{x,y, z}, defined by
M,gq= M, ,. Since M, only depends on the symmetric part of ¢, we may
restrict the map to the space S of symmetric tensors. Let E be the range
of the map. By 2.4.24(ii), (iii) and (iv), 1 € E, and E is invariant under left
multiplication with {U,;: a, be{l, x, y}}. By 2.4.23 E then contains the
algebra of multiplication operators in x, y, so we have: every multiplica-
tion operator in x, y on FJ{x, y, z} is of the form M, for some teS.

Assume now that te S, and M, vanishes on FS{x, y, z}. To finish the
proof, we must show it vanishes on FJ{x, y, z}. More precisely, we shall
use that M,(z)=0 in FS{x, y, z} to conclude that t=0.

From 2.4.24(i) we see that what must be proved is the following.
Consider the map vy: FA{x, y}®FA{x, y}— FS{x,y, z} defined by
v(p®q) =3(pzq*+qzp*). Then the restriction of y to the space S of
symmetric tensors is injective.

To prove this, note that the monomials form a basis for FA{x, y}, so
that the family of 3(p®q +q®p), indexed by the unordered pair {p, q}, is
a basis for S. Therefore it is enough to show that the image of this basis,
3(pzq™+ qzp*), indexed by the unordered pair {p, q}, is linearly indepen-
dent. But pzq* and qzp* are monomials in FA{x, y, z}, and the mono-
mials in FA{x, y, z} are linearly independent. If p, q, r, s are monomials in
FA{x, y} and {pzq™, qzp™} N{rzs*, szr*} # &, then {p, q} ={r, s} (note the
role of z as a ‘separator’ here). The wanted linear independence follows
easily.

2.5. Operator commutation and the centre

2.5.1. Consider a pair a, b in an associative algebra A. We may ask: what
properties of the pair a, b can be expressed, in terms of Jordan structure,
corresponding to the commutation relation ab =ba? Of course, the
Jordan algebra A’ is commutative, However, it need not be associative,
and this suggests two conditions: for any ce A’, ao(cob)=(a°c)ob, or
the subalgebra of A’ generated by a, b is associative. It is clear that these
two conditions are implied by the relation ab = ba.

In general two elements a, b in a Jordan algebra A are said to operator
commute if the operators T,, T, commute, i.e. if (a°c)ob=ac-(cob) for
all c € A. We shall see later that, if A is a JB algebra, this is equivalent to
stating that a and b generate an associative subalgebra.
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By the centre of A we mean the set of all elements of A which
operator commute with every other element of A.

2.5.2. We now give two examples to show that in general the two
conditions T, T, = T, T, and ‘a, b generate an associative Jordan algebra’
are independent. ‘

First, let A be the algebra of linear maps of the polynomial ring R[x]
into itself. Let p be derivation and q multiplication by x. Then [p, q]=1,
since (xf)' = f+xf'. For any re A we then have

[T,, T,Jr=po(qer)—qe(per)=illp, ql, r]=0,

so that p and q operator commute. However, we find pq®=2q+q°p, or
[p, g*]1=2q. We then get

[T,, T2lp =illp, a°), p1= 3,

so (q*°p)ep# q*°(pop). Therefore, p, ¢ do not generate an associative
subalgebra of A’

For an example in the converse direction let A be the 3 X3 matrix
algebra over the reals, and let

01 0 0 0 O 0 0 1
€1y = 0 0 O), €93 = 00 1), €13 = 0 0 0).
0 0 0 0 0 0 0 0 90

Then €17,0€93 = %613, Whﬂe €15,°€13 = €y3°€13— 6%3 = e%2 = e%:; - 0. ThuS €12
and e,; generate an associative subalgebra of A’, but they do not
operator commute since [T, , T, lei; = —4e43 # 0.

2.5.3. Lemma. The centre of a Jordan algebra is an associative sub-
algebra.

Proof. The centre is clearly a linear subspace. If x, y belong to the centre
and a, b are in the given algebra, we have
Ty Tab = (xoy)e(acb) =xeo(ye(a-b))
=x°((yeb)ea)=(x°(y°b))°a
=((xey)eb)ea =T, T.,b,
which proves that xcy belongs to the centre. The associativity of the

centre is immediate.

2.5.4. Let p be an idempotent in a unital Jordan algebra A, i.e. p*=p.
Let p*=1-p. Then a straightforward calculation shows that

pea=3(a+{pap}—{p*ap*}),



46 JORDAN OPERATOR ALGEBRAS

or
T, =30+ U, - U,.). (2.60)

From Macdonald’s theorem we have for any a€ A that UZ=U,. and
U U,_,=U, 4. Applied to a =p this becomes

U2=U,; Ui=U,; UU,=U,U,=0. (2.61)

Thus, (2.60) can be considered a ‘spectral decomposition’ for T,. Com-
bining (2.60) and (2.61) we get in particular,

LU, =U,T, = U,; LU, =U,nT,=0. (2.62)

2.5,5. Lemma. Let A be a unital Jordan algebra and p an idempotent in
A. For any a € A the following conditions are equivalent:

(1) a and p operator commute,
(i) T,a=U,a,
(i) a=(U,+U,.)a,
(iv) a and p generate an associative subalgebra of A.

Moreover, U,A and U,.A are subalgebras of A, and a°b=0 if ae
UpA, be Up_LA.

Proof. (i) = (i) From (i) we get 0=[T,, T,]Jp=pe(a°p)—pea, or T,a =
T?a. But then U,a = (2T}~ T,)a = T,a, which is (ii).

(i) = (iii) is immediate from (2.60).

(iii)=> (i) From the linearized Jordan axiom (2.33) with b=c=p we
get '

2[Tp’ Tpoa] = [Tpa Tu]' , . (263)

Let r=U,a, s=U,.a. By (2.62), pes=0, so (2.63) implies [T,, T,]=0.
Also by (2.62), per=r, so again, by (2.63), [T,, T,]=0. Hence a =r+s
operator commutes with p. '

Before showing the equivalence of (iv) with the others, we prove the
final statement of the lemma. From 2.4.17 we have {pap}* = {p{apZa}p}
for any a<A. This shows that U,A is closed under squaring and is
therefore a subalgebra of A. Similarly U,.A is a subalgebra of A. Let
acUA, beU,.A. Since (iii) = (i), a operator commutes with p. This
implies T,.(a°b)=acb, and hence U, .(a°b)=(2T2.~T,.)(a°b)=acb.
Interchanging a, b and also p, p*, we similarly get U,(a°b) = ab. Hence
acb=U,U,.(a°b)=0, by (2.61).

(iii) = (iv) Assume (iii) holds. Let b= U,a, ¢ = U,.a. The algebra B
generated by a, p and 1 is then generated by b, p, ¢ and p*. But be U,A
and p is by (2.62) the unit of U,A. By power associativity (2.4.4) b and p
generate an associative subalgebra B, of U,A. Similarly, ¢ and p*
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generate an associative subalgebra B, of U,.A. Hence B =B 1B B, is
associative, and (iv) follows.

(iv) = (ii) If (iv) holds then po(poa) =p*ca=pea, i.e. T2a = T,a. Thus
U,a=QT>—-T,a=Tya.

2.5.6. Lemma. Let e be an idempotent in a unital Jordan algebra. Then e
belongs to the centre if and only if T, is a homomorphism.

Proof. If e belongs to the centre then by 255 A=UA®U,.A, and
moreover T, is the projection on the first summand. Clearly then T, is a
homomorphism.

Conversely, if T, is a homomorphism and a is arbitrary, then T.a =
T,(a°1)=(T,a)oe =T2a, so T>=T,. Since U, =2T.~T,) =T., e is cen-
tral by 2.5.5.

2.5.7. From the above proof it is clear that, if e is a central idempotent in
a unital Jordan algebra A, then U,A is a direct summand and, in
particular, an ideal in A. Conversely, if e is an idempotent in A such that
U,A is an ideal, then e is central. For then, if a€ A, we must have
ecac UA, ie. U/(eca)=eca. By (2.62), however, this implies U.a =
T.a. Hence by 2.5.5, e is central.

2.5.8. Central projections can be used to construct more general ideals.
For example, if A is a unital Jordan algebra, B a subalgebra of Aandea
central projection in A (or more generally e operator commutes with all
b € B), then the set of all b€ B such that e°b =0 is an ideal in B. For if
eob=0 and ceB, then ec(bec)=ce(e°b)=0.

2.6. Peirce decomposition

2.6.1. Consider a unital, associative algebra &. If & contains orthogonal
idempotents p1, ..., pn (.e. p7=p, pip; =pipi =0 if i#)) with sum 1, we
have a decomposition o =@®;; ;;, where sf; = p,p;. We may think of A
as consisting of matrices a = (a;), where a; € sf;;. The product in & is like
matrix multiplication in that ab = axby) if a=(ay), b=(by). The
present section is devoted to the generalization of this idea to Jordan
algebras. Of course, psfp;, does not make sense in the Jordan algebra
setting, but p,sdp; + p;Ap; = {p.Ap;} does. The analogy with matrices should
be kept in mind when reading this section.

2.6.2. Throughout Section 2.6, A will be a unital Jordan algebra. Let p
be an idempotent in A. Recall that by (2.60) we have

Tp = %(L + Up - UDL).



48 JORDAN OPERATOR ALGEBRAS

Also, by (2.61), U, and U,. are orthogonal, idempotent mappings.
Rewriting the above formula as
T,=U,+3(—-U,— U,)+0-U,., (2.64)

and noting that U, +— U, ~U,. and U,. are mutually orthogonal idem-
potent mappings with sum 1, we must conclude that T, has eigenvalues 1,
1 and 0, and that we have the following vector space decomposition:

A :A1®A1/2®A0, (2.65)

where A, is the eigenspace corresponding to the eigenvalue i (i=0,3, 1).
This is called the Peirce decomposition of A with respect to p.
From the definition of the triple product mapping we get

[Jp,pL = Tpr*+ Tp*Tp - Tp°DL
=Ty~ Tp)—l— (e~ TD)Tp -0= 2(T,J - Tg).
From (2.64) we then get
Upps= %("‘“ U, - Up*)'

Thus U, 2U,,- and U, are the projections on the direct summands A,
A, and A, respectively corresponding to the Peirce decomposition.

2.6.3. Lemma. Let A be a unital Jordan algebra and p an idempotent in
A. Let A=A ,DBA,,DA, be the corresponding Peirce decomposition.
Then we have the following multiplication rules:

Aovong; A1°A1§A1; A0°A1:0;

(Ag®@ AN A1pE Ap; Aip°A1pS AP A,

If ac Ay, be Ay, then a and b operator commute.

Proof. The first three rules follow from 2.5.5. If ac A;@ A, then by
2.5.5 a operator -.commutes with p. Therefore, if be A, pe(acb)=
ao(peb)=3a°b, so that acbeA;,. Next, assume a, beA,. The
linearized Jordan axiom yields

0=|T,, Tyl +[ Ty, Taopl+ [Ty, Taop]
=3{T., T,]+ 1T, T.1+[T,, Tos]
=[Tp, Tas):
By 2.5.5 then a°bec Ay A,. This proves the multiplication rules. If

acAy, beA; then peb=b, pea=0, a°b=0, so the linearized Jordan
axiom, as above, yields [T,, T, ]=0.

[
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2.6.4. Two idempotents p, g will be called orthogonal if poq =0. We shall
generalize the Peirce decomposition to the case of several orthogonal
idempotents. Thus the decomposition described in 2.6.5 will be called the
Peirce decomposition with respect to py, ..., p..

2.6.5. Theorem. Let A be a unital Jordan algebra. Suppose p;,.. .., p, are
pairwise orthogonal idempotents in A with sum 1. Let A; ={p.Ap;}. Then
A;; = A;;, and we have the decomposition

A= @ A,

1<i=j=n

Furthermore, the following multiplication table holds:

AjcAu=0 if {i, ik, } =, (2.66)
Ayo Ay S Agc if i, j, k are all distinct, (2.67)
Ao Ay S Aut Ay (2.68)
Ao A, < Ay (2.69)

Proof. That A;; = A;; is trivial. It is also clear that A =} A, since if ac A
we can write a ={1lal} =) {p.ap;}. To show that the sum is direct, it will
be enough to show

0 if k¢{ij},
1 ifi=j=k, (2.70)
1 ifi#jand ke{ij}.
Let A=AYPAL,P AL be the Peirce decomposition with respect to p;.
Then

Af= {PAD} = A,

Alp={pApit= 2 {pAp}= Z A

T,

Dy

|Ai,~ =

ixtk
Abs={piApil= ). 2 {pAp}=2 D Ay
i#k j#<k ik j#Fk

and from these the assertion follows.

The multiplication rules (2.66)—(2.69) are more or less trivial conse-
quences of 2.6.3 together with (2.70). Indeed, to show (2.66), let p = p; +p;
if i#j, p=p; otherwise. Then, by (2.70) A; <A, and A,; < Ay, where
A=A DA,,DA, is the Peirce decomposition relative to p. Then (2.66)
follows from 2.6.3. To show (2.67), use the Peirce decomposition with
respect to k. Since A; S Af, Ayc Ak, 2.63 vields A oA, <Ay
Similarly A;eA; S Alp, 0 AjeA S AfLNAL,=A,, by the above
formulae. Relations (2.68) and (2.69) in the case i=j, follow directly
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from 2.6.3 with p =p,. If i# j they also follow from 2.6.3 with p = p,, and
working in the subalgebra U, _,(A).

2.6.6. Lemma. Let A be a unital Jordan algebra and p,, . .., p, pairwise
orthogonal idempotents in A with sum 1. Let A; ={p,Ap,}. Then:

(1) {AjARAL S A, for all i, j, k.

(i) {A;AA;}=01if i, ], k are distinct.

Proof. (i) Let ac Ay, be Ay, ce Ay. From the definition of the triple
product and 2.6.5 we have

{abc} S Aii -+ Aﬁ -+ Akk'

We show that, if j#i the A; component is zero. The same result for the
Ay component is similar. From 2.4.20 we have

p;e{abc}={(p;oa)bc}+{ab(p;°c)}—{a(p;°b)c}.

Then, from (2.70) we get p;o{abc}=0 whether k=i, k=j, or i k#].
This proves (i).

To show (ii) suppose a €Ay, be Ay, ce A, and let p =p;+p;. Then
a ={pap}, so from 2.4.18 we get

{aba} ={{pap}b{pap}} = {p{a{pbp}a}p} =0,

since {pbp}=0. Similarly, {cbc}=0, and {(a+c)b(a+ c)} =0. Combining
these identities, we get {abc}=0.

2.7. Jordan matrix algebras

2.7.1. Let R be any algebra. Then M, (R), the space of n X n matrices
with coefficients in R, is also an algebra with the usual matrix product:
(a5)(by.) = O a;by). If R is, moreover, a * algebra then so is M, (R) with
(a;)* = (aj ). The Hermitian, or self-adjoint, part of M, (R) is denoted by
H,(R). H,(R) is also an algebra, with the product defined by acb=
3(ab+ba). H,(R) may be a Jordan algebra. This is certainly the case if R
is associative, but, as will be seen below, that condition is not necessary.
A Jordan algebra of the form H,(R) will be called a Jordan matrix
algebra.

Jordan matrix algebras of prime concern to us will be H,(R), H,(C),
H,(H) and H5(0). Since R, C and H are associative it is clear that the first
three are Jordan matrix algebras. Our first objective will be to prove the
corresponding statement for H;(0). Then we proceed to show that, over
the reals and with mild restrictions, the above-mentioned examples are
canonical.

We are really only interested in Jordan matrix algebras H, (R) for
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n=3. The reason for this is that then the product in R can be recon-
structed from the Jordan product in H,(R) using formulae like

0 a O 0 0 O 0 0 a
a* 0 0) o0 O b) =3 0 0 0}
0 0 0 0 b* O b*a* 0 0

In the case n =2 we get algebras looking like the spin factors studied in
Chapter 6 (see also 2.9.7).

2.7.2. Since we shall work quite a bit with matrix algebras it is useful to
introduce some compact notation. Let R be a unital * algebra. The
matrix units in M, (R) are the elements e;, where 1<i<n and 1<j=n.
Here, e; is the matrix whose (i, j) entry is 1, the others being zero. We
then write ae; for the matrix whose (i, J) entry is a, the others being zero.
This is consistent with identifying aeR with Yi; ae; € M, (R). The
matrix (a;) may then be written as Y; a;e;. Note that et =ey, Yic1 6 =1,
the identity in M,(R), and that e;e, =0 if j# k, e;ex = e

2.7.3. Lemma. Let a, b, ¢, dc Q. Then we have:
@) [d,[a, b, cIl+[ab, ¢, d)+[bc, a, d]+[ca, b, d]=0,
(i) [a, b, c]=—[G, b, al=—[a, b, c],

(iii) [a, b, c]=—[a, b, c]=—[a, b, c]=—[a, b, ]

Proof. Recall the definition of the associator, in any algebra:
[a, b, c]=(ab)c — a(bc).

Let us linearize the Moufang identity (2.2.2) (ca)(bc)=(c(ab))c, i.e.
substitute ¢ +d for ¢, and subtract the original identity twice, the second
time with d replacing c. We get

(ca)(bd) +(da)(bc) = (c(ab))d +(d(ab))c.

In the following calculation we use this formula and the fact that
associators alternate in O:

dla, b, c]=d((ab)c— a(bc))
=—[d, ab, ¢]+(d(ab))c —d(a(bc))
=—[ab, ¢, d]+(d(ab))c +[d, a, bc]—(da)(bc)
= —[ab, ¢, d]—[bc, a, d]—(c(ab))d + (ca)(bd)
=—[ab, ¢, d]—[bc, a, d]+[c, a, bld —((ca)b)d
+ (ca)(bd)
=—[ab, ¢, d]—[bc, a, d]+[c, a, bld —[ca, b, d],
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.- which is (i). The first half of (ii) follows from ab= ba. The second half of
(ii) follows from (iii) and the fact that associators alternate. Finally, (iii)
follows from the fact that a-+d is a real scalar, so that [a+a, b,c]=0
(and similarly in the other variables).

2.7.4. Lemma. Let x = (a;) € Hy(Q). Then [x?, x]=2[a;5, azs, as,]-1.

Proof. We get
[x% x]1=[x, x, x1= Y [ay, o, alen (2.71)

ikl

If i=j then a; €R, so [ay, ay, ay]=0. Similarly if j =k or k = . Hence,
the only nonzero terms in the above sum are those for which i jEk#L
Furthermore, if i =k then

[aij': Gk G ] = [aij, a;;, anl= [aij, a, G ]= —[aﬁ, A, a,]=0

by 2.7.3(iii) and the alternative law. Similarly, if j = then [ay, ag, a 1=
0. It follows therefore that the only nonzero terms on the right-hand side
of (2.71) are those for which i, j, k are distinct, and | =i (since there are
only three distinct possibilities for the indices). Therefore (2.71) becomes
the following, where the sum is over indices such that i, J, k are distinct:

[x% x]= Z [ay, Ty (2.72)

Using 2.7.3(iii), the fact that d; = a; and the fact that associators alter-
nate we see that [a;, a;., a,;]is invariant under the transposition of any two
indices, and therefore under any permutation. Thus (2.72) implies

[x23 x]=2[ays, as, as] Z ;i

which completes the proof.

2.7.5. Theorem. Hs(O) is a Jordan algebra.

Proof. Since the product defined by xoy =3(xy + yx) is clearly commuta-
tive, we must only verify the identity (x®ey)ox =x2o(yox), for x, ye
H(0). Let us write [x, y, zT for the associator relative to this product, i.e.

[x,y, zF = (xey)ez—xo(yoz).

By symmetry in the indices, it is enough to show that the (1, 1) and (1, 2)
entries of [x, y, x*} vanish.
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We set
x=D age;, y =2, bey
x*= Z Gij€ij» G = Z A Qij = Z Ay G

The following identity is immediate, where [a, b, ¢] denotes the as-
sociator as computed in the ordinary matrix product on M;(0), i.e.
[a, b, c]=(ab)c—a(bc):

Ax, y, x*F =[x, y, x*]-[x%, y, x]+[y, x, x*]-[x?, x, y]
+[x, x2, y1-[y, x2, x]1+[y, [x, x*1]. (2.73)

By 2.7.4, [x, x*]=-2al, where a=[ay,, as3, as;]. So the last term in
2.73) is

[y, [x, x*]1=—2[y, a11=2} [a, b;le;. (2.74)

Each matrix entry of an associator [u, v, w] where u, v, w € H3(O) is itself
a sum of associators in (9, and is therefore skew by 2.7.3(ii). From this
fact, together with (2.73) and (2.74), we find that the (1,1) entry of
[x, y, x*F is skew. But because [x, y, x*F € H3(0), the same entry must be
Hermitian, and then it must be zero.

It remains to show that the (1,2) entry of [x,y,x*} vanishes. By
linearity in y it is enough to check this in the following cases:

(a) y = beii7 (b = 5),

(b) y=be;z+ 5331,

(c) y=bey,+bes.

The case y = be,;+ bes, follows from (b) by the symmetry in the indices.
(a) If y = be;, b R so all the associators on the right-hand side of (2.73)

will vanish, since any associator in O involving b must vanish. By (2.74),

the last term in (2.73) also vanishes in this case, so [x, y, xZF=0.
(b) In the case y = be,;+ bes;, we find that the (1, 2) entry of [x, y, x*] is

Z [a1k; b, ciz]1=1a11, b, €3]+ a3, I;, ciz]=[ays, E, C12)

Kl
because a;,€R. We find similar formulae for the (1,2) entries of the
other terms on the right-hand side of (2.73), using (2.74) to see that

[y,[x, x*1] has no (1,2) term. We conclude that the (1,2) term of
4[x,y, x*7 is

[ais, 5, ci2]—[c1s, 5, arx]+[b, Gz, €1,]-0+0— [b, €13, a12]+0,

which vanishes by 2.7.3(iii) and the fact that associators in O alternate.
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(¢) If y = be,y,+be,,, we find by a similar argument, using (2.73) and
(2.74), that the (1,2) term of 4[x, y, x*7 is

2d=[a,, Ea ci2]—[cso, 5, ay2]+[b, azy, c12]
+[b, az3, ca2]l—[c12, A21, b]—[ €13, a4, b]
+[as2, €21, b]+[ays, ca1, b1—[b, cz1, a1}
—[b, c23, as,]—2[b, al,

where a ={ay,, a3, as;]. Again, using 2.7.3(iii) and the fact that as-
sociators in O alternate, we can reduce this to

—d =[c12, Gz, b]+[cCa3, a3, b]+[c13, asy, b]+[b, a] (2.75)
Now we use ¢; =) a4, and the fact that a;, a; €R to get
[cijn aj;, bl=(a; + ajj)[aii’ ;s b]+[a1‘kaki’ ;s b]

where i, j, k are distinct. Using 2.7.3(iii) and the alternative law we find
[ay, a;, b]1=[ay, a;, b]=—lay, a;, b]=0, so the above reduces to

Lei azi b]= [aiai, aji, b]
with i, j, k distinct. Substitute this into (2.75) to get
—d =[ay3a3,, asy, b]+[as1a43, asz, b]+[a12a,3, asy, b]+[b, a]
=[a23a31, a12, b]+[az1a12, azs, b]
+[a12023, asy, b1+[b, [a12, 23, a5,]1=0,

where we first used 2.7.3(iii) on the first two terms and then 2.7.3(j) to see
that it all vanishes. But this ends the proof.

2.7.6. Theorem. Let A =H,(R) be a Jordan matrix algebra. Then we
have:

(1) if n=4 then R is associative,

(i) if n=3 then R is clternative.

Proof. () Let x,y,ze R and define four elements of A as follows:
a=xep+x%es, b=ye,+y*es, c =zes4+2%¥e43, p=e;,+e,. Then p is
an idempotent, giving rise to a Peirce decomposition A = A, P A, ,D A,.
Clearly, a € A, and c€ A,. Therefore, by 2.6.3, a and ¢ operator com-
mute, so that (a°b)ec =ae(boc). Multiplying out the matrices, we get
(xy)z = x(yz).

(i) Let n=3. If x=x%y,ze R, we can mimick the above proof,
setting a = xe(,, b =ye,+y*ey, ¢ =zey+z%es,, p=e;;. As before, we
get (xy)z =x(yz). For general x, x+x* is Hermitian, so the above
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equality vyields .
x(yz)+x*(yz) = (xy)z + (x*y)z, x, 9, z€R. (2.76)

Let g =e,,+ ey, and define b and ¢ as above. Then b ={gbq}, so using
2.4.18 we have

{bcb} = {{gbq}cigbq}} ={a{biqcqlblq} =0,

since, in the Peirce decomposition given by e;;, €5, €33, ¢ € Az, so that
{geq}=0. (This can also be seen by direct calculation.) In these calcula-
tions it must be kept in mind that, because R may not be associative, the
triple product is not given by {bcb}=bcb but rather by the definition
{bcb}=2bo(boc)—b*oc. Computing the matrix products in 2beo(bec) =
b%s¢, we arrive at the identity

x*(xy) = (x*x)y, x,vyeR. .77
With y =x, (2.76) becomes
x(xy) + x*(xy) = x%y + (x*x)y.

When combined with (2.77) this yields x(xy) = x?y, i.e. the left alternative
law. Taking adjoints, we obtain the right alternative law.

2.7.7. When we consider R, C, H and O as = algebras, the involution is
defined to be the identity on R, and the usual conjugation in the other
cases. This involution is characterized by linearity over R and the require-
ments 1% =1, i* =—i whenever i*=—1 (see the proof of 2.2.6).

2.7.8. Theorem. Suppose R is a real * algebra with 1 such that R, =R1,
and x*x#0 for all nonzero elements x of R. Suppose H,(R) is a Jordan
matrix algebra, n=3. Then R is * isomorphic to R, C, H or O. If n=4
then R is = isomorphic to R, C or H.

Proof. We shall use 2.2.6. Hence we must prove that R is a quadratic,
alternative division algebra, that R is associative if n>4, and that the
involution on R satisfies the requirement of 2.7.7.

By 2.7.6, R is alternative and, if n=4, it is associative.

If xeR is nonzero, the assumptions imply that x*x =A1, for some
nonzero real number A. Thus, A *x* is a left inverse for x. Similarly x has
a right inverse, so R is a division algebra.

To see that R is quadratic, let y e R. Then y =3(y +y*)+3(y—y®), or
y=Al+z AeR, z*=—z. Then y>=A%1+2z?+2Az. Since z*>=—2z*z eR]1,
this implies that y? is a linear combination of 1 and z, hence of 1 and y.

Finally, if i*=—1, write i*i=A1 for some A €R1. Multiplying by —i
from the right, we get i* = —\i and taking adjoints i = —Ai* = AZi, so that
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A=+1, or i*==i. If i*=i then iR, which is impossible since i2=—1.
Hence i* =—i, so the condition of 2.7.7 is satisfied.

2.8. Coordinatization theorems

2.8.1. In this section we shall give conditions for a Jordan algebra A to
be a Jordan matrix algebra, say A =H,(R), where R is a unital = algebra
and n=3.

It is clear that a necessary condition is the existence of n pairwise
orthogonal idempotents with sum 1. Further, we must have elements in
the algebra corresponding to e; +e;, i# j. Notice that (e; +¢;)*> =e; +e;.

Let p, g be orthogonal idempotents in a Jordan algebra A. They are
said to be strongly connected if there is v e{pAq} such that v>=p+gq.

Thus a necessary condition for the existence of an isomorphism A =
H,(R) is the existence of n pairwise orthogonal and strongly connected
idempotents with sum 1. One of the main objectives in this section is to
prove the converse.

In proving this coordinatization theorem one easily gets bogged down
in technical details. However, the whole proof is hinged on a few simple
observations. Consider a Jordan matrix algebra H, (R). It contains the
orthogonal idempotents ey, ..., €,,, With sum 1, and the elements f =
es;+€, implement the strong connectedness between e;; and e;, for
j=2,...,n From this we can recover the whole set of ‘symmetrized
matrix units’, defined by

G = ey, L; = e; + e, i#].

Indeed, ty; =t; and ; = {s;t;s;}, where i#j and s; = t; + Y41 €;. Next, with
symmetries s; defined by

9= 2 Tty (#]),
k=i
k#j
we can compare elements of different Peirce components, since
I 5 — *
{5 (xep + x% )8} = xey + x* ey,

where i, j, k are distinct and x € R. Thus each Peirce component A;; can
be identified linearly with R. Finally, the multiplication in R can be
recovered by the formula

2(xe; +x"e;) o (yeu + y¥er) = xyey + (xy)* e,

where i, j, k are distinct. _
We shall first prove a coordinatization theorem for special algebras.
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The result will be of independent interest, and also the proof will serve to
clarify the above ideas.

2.8.2. Lemma. Let A be an associative * algebra with a complete set of
nXn matrix units (e;), ie. ejeg=0 if j#k, ejen=ey, ef=e; and
Yicie;=1. Letsdo={ac dA: ae; = e;aforalli, j}. Then A, is a * subalgebra
of d such that the map (a;) — Y, ; a;e; is a * isomorphism of M,,(4,) onto A.

Proof. 1t is trivial to show that &, is a * subalgebra of . It is also easy
to see that the map a: (a;) — ), a;e; is a * homomorphism of M, (4,)
into &{. To show that « is injective, assume that ) ;; aye; =0, a; € . For
any indices r, s, t we find

0 = ers(Z aijeij>err = asterr'
ij

Summing over r, we get a, =0, proving injectivity. If aec ¥ let a; =
Yiegaey. It is easy to see that a;csd,, and that aye; = e;ae;, so that
a((ay)) =3 aye; = a. In other words, « is surjective.

2.8.3. Theorem. Let A be a unital associative * algebra over a field ®
with involution and of characteristic not 2. Let ®,={A e ®: A = A}. Let A,
be the special Jordan algebra over ®, consisting of self-adjoint elements in
s, and let A be a Jordan subalgebra of sA,,. Suppose A contains n mutually
orthogonal and strongly connected idempotents with sum 1, where n=3.
Then there is a * subalgebra s, of A, a * subalgebra R of o, (over ®,)
and an isomorphism of M, (H4,) onto § mapping H,(R) onto A.

Proof. Let p,,...,p, be mutually orthogonal and strongly connected
idempotents in A with sum 1. For j=2,...,n, let t,e{p,Ap;} be such
that t7 =p,+p;. Let t; =p,, and define

eij:titi i?éj,i,je{l’~'-’n},
éii=pi iE{l,...,n}.

Note that the orthogonality of p, p; if i#j means pp;+pp; =0.
Multiplying from both sides with p; we get pp,p; =0, while multiplying
from the left only yields pp;+ppjp; =0. Together these two formulae
show that p;p; =0. Symmetrically p,p;, = 0.

It is now simple to show that (e;) form a complete set of n X n matrix
units. Indeed, since for i#1, t=p,tp;+pitip;, we have e; = tt; = t;p;§;
when 1, i, j are distinct. Also, p;t;, = t;p,. Clearly these equalities also hold
if i#j but i or j equals 1. Hence we have pe; = pitit; = t;p,t; = €, and
similarly e;p; = e;. Therefore, if j#k, e;e = e;ppees =0. The formula
e;ey = ey follows, if i =j or j =k, from pe; = ey or e;p; = e;. Otherwise,
ey = Lt it = ;(p1+ Pyt = Pt = ey :
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Evidently, e; € A and ¢;+e; € A, if i#].
Let o, be as in 2.8.2. If i#j let

Rij = {a € do: aeij + a*eﬁ € A}.

We claim that all the R;; are equal to the same * algebra R, and that, if
a; € Ay, Yi; aze; € A if and only if a; = a% € R for all i, j. By 2.8.2 this
will complete the proof. .

Let i, j, k be distinct. If acR; then, since ae;+a*e;€A and
e;+te,te,eA,

aey +a*e; = (e; + ey +e)(ae; +a*e;)(e; + ey + e) (2.78)
belongs to A. Therefore, a € Ry. Similarly
a*e;+ ae; = (e; +¢;)(ae; + a*e;)(e; +e;) (2.79)

belongs to A, so a*e Ry, or a€ R;. From the properties R; = Ry and
R; =R;; we conclude that all the R; (i#]) are equal to the same ®,
vector space R, and also that a € R implies a* € R.

Let a, be R. Then, since ae;,+a*e,; and be,;+ b*e,, belong to A, so
does

abel3 + (ab)*e31 — 2(a612 +a- €,1)°(bess =+ b*e32). : (2.80)

Therefore ab € R, so that R is a * algebra over @,,.

To complete the proof of our assertion, let x =}, ase; belong to A,
a; € . Since x =x%, a¥; = a;, by 2.8.2. We must show a; € R. Note first
that a;e; = e;xe; € A. Then if i #j

ae; + aﬂi(ieji =2(e; 1 €;)°(aze;)
belongs to A, so that a; € R. Next,

aze; + a;e; + aze; + age; = (e; + e;)x(e; + ;)
belongs to A. Since the first two terms on the left-hand side belong to A,
so does aye; + afe; = aze; + ey, 50 a; € R.

In the converse direction, if x is given as above with a; = ajf € R, we
must show that xe A. For this it is sufficient to show that, for i#j,
a;e; €A and a;e; + aye; € A. The latter statement is true by definition of
R. Further, we have a; =a¥ € R, so a;e; + a;e; € A. This implies that

a;(e; +e;) = (aiieij +age;)o(e; +e;)

is in A, and, therefore, so is a;e; = (a;(e; +e;))oe;. This completes the
proof of our assertion, and hence the theorem.

2.8.4. Corollary. If A is a special, unital Jordan algebra containing n =3
pairwise orthogonal and strongly connected idempotents with sum 1, then
A =H,(R) for some associative * algebra R.
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Proof. Let ¢: A — B’ be an injective homomorphism, where B is an
associative algebra. Let B® be the algebra opposite to B; it is charac-
terized by the existence of an anti-isomorphism a — a° of B onto B°.
B®B° is a * algebra with involution (a®b®%)* =b@®a’. Then ¢: a—
d(a) D ¢(a) is an injective homomorphism of A into the Hermitian
part of B@B® Let & be the * subalgebra ¢(1)(B® B)Y(1) of
B®B®. Again ¢: A —> o, is injective, and (1) is the unit of .
Theorem 2.8.3 can now be applied to & and its Jordan subalgebra $(A).

2.8.5. Corollary. H;(Q) is exceptional.

Proof. Assume H;(Q) is special. The idempotents e, €55, €33 in Hi(0Q)
are orthogonal with sum 1. They are also strongly connected via e; +e;,
i# j. Working through the proof of 2.8.3 with t; = e;; + =2,3, we get
a real, associative * algebra R and an 1somorphlsm a: H3(®) — H;(R)
mapping e; to e; and e; +e; to e; +e;, wWhen i#].

If i#j and xcO, consider a = xe; +x%e; €{e;H3(0)e;}. Since then
a(a) e{e;Hi(R)e;}, we have

a(xeii + x*eji) = d’ij(x) e; + oy (x)*eﬁ,

where ¢;: O — R is a real linear isomorphism. By (2.78) and (2.79) ¢; is
independent of i, j, so we drop the indices and call it ¢. Using (2.80) we
see that ¢(xy)=d¢d(x)¢(y), so O and R are isomorphic as algebras.
However, since O is not associative (see e.g. (2.16)), this is absurd. This
contradiction completes the proof.

2.8.6. Let A be a unital Jordan algebra, and s€ A a symmetry, i.e.
s?=1. Then U, is an automorphism of A, for by Macdonald’s theorem
we have {cac}e{cbc}={c{ac*b}c} for any a, b, ¢ in a Jordan algebra, and
with ¢ =s this is (Ua)=(Ub) = U,(a°b).

2.8.7. In a Jordan matrix algebra H,(R) consider the symmetry

=e;tet Y. ew
k#i,j
for i#j. The corresponding automorphism, Ug;: a — {s;as;}, acts on a
matrix simply by interchanging the indices i and j. Thus, all the auto-
morphisms Uy, generate a group isomorphic to the full symmetric
group S, on n elements. This will be our clue to the general coordinatiza-
tion theorem. The following theorem on generators of S, will be needed.

2.8.8. Theorem. Let F(x,, ..., x,) be the free group on n—1 generators,
and let '

G, =F(xs, ..., x)I(x7, (%%,), (xixpxxi)*; i, J, k distinct),



60 JORDAN OPERATOR ALGEBRAS

in other words G,, is the quotient by the normal subgroup generated by the
indicated elements. Then G, is isomorphic to the symmetric group S, on
{1, ..., n} via an isomorphism mapping x; to the transposition (1i), i=
2,...,n

Proof. Let us rewrite the relationships defining G,. (xx;)*> =1 is equival-
ent to (xx%)(xxx)=1. Since x?=1, xxx; is its own inverse, so the
above is equivalent to

XXX = XXX, (2.81)

Similarly, the inverse of xxXX, iS X%XXX;, 80 (x%%%)> =1 is equivalent
to

(626 ) % = % (X%, ) (2.82)

Thus G, is the group defined by the relations x?=1, (2.81) and (2.82).

For permutations we have (1i)*=1, and if i, j, ke{2,...,n} are
distinct,

(1HANQA) = G) = ANAHAP,
[(ADANADILK) = ()(Lk) = (1)) = L)L AL,

so (1i), i=2, ..., n, satisfy the relations defining G,.. Therefore, there is a
homomorphism m: G, — S, such that (x;) = (1i). Clearly, = maps G,
onto S,.

Let H be the subgroup of G, generated by x,, ..., x,_;. We assert that
the index satisfies

(G,: H)=n. , ' (2.83)

Suppose for the moment that (2.83) is true. Notice that H is a quotient of
G,_, if n=3. Therefore,

(G,.: D=(G,,: HY(H: )=n(G,_;: 1).

Since G, has two elements, (G,,: 1)<n! follows by induction. However,
since S, is a quotient of G,, and S,, has n! elements, it follows that # is an
isomorphism, which was to be proved.

To motivate the proof of (2.83), we point out that S./S,_; can be
identified with {1, ..., n} via the map j = (jn)S,_, j=1,...,n—1, n—
S,-1- We ought to have H=S,_;, so by analogy we should be able to
guess at representatives for the n cosets in G,/H. Thus, let

$1= an7 §2= xenH’ sy Sp—1 7 xn—lxnI_I) Sp = H.

We shall show that, under the action of G, on G,/H, each x; maps
{s4,...,s,} into itself. Then, since G, acts transitively on G,/H, (2.83)
follows.
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First consider the action of x,. Clearly, x,s,=s,, X,5, = s,. For 2=sis<
n—1 we get, using (2.81), x,s; = x,.xx.H = x;x,x:.H = x;x, H = 5,. Next, let
2=i=n-1 and consider the action of x,. Clearly x;5; = 8y, X;8; = §;, X;S,, =
s,. For 2<j<n-—1 and j#i we find, using (2.82), xs; = xxx,H =
XXX, X H = xx, %%, H = x;x,, H = s;. This completes the proof of (2.83) and
hence of the theorem.

2.8.9. The coordinatization theorem. Let A be a unital Jordan algebra.
Suppose that A contains n=3 pairwise orthogonal strongly connected
idempotents with sum 1. Then A is isomorphic to H,(R) for some
* algebra R.

2.8.10. The proof of 2.8.9 will be broken into a series of lemmas. We
first fix some notation to be kept throughout the proof. Let py, ..., p, be
the idempotents mentioned in 2.8.9. Let A; be the Peirce component
A; ={pAp;}. For each j, 2<j=<n, let t;c A;; satisfy t7=p,+p;. (All we
shall need to prove 2.8.9 is the existence of the t;, i.e. that p, and p; are
strongly connected.) Further, we fix the following notation:

tii:pi (i:17"'7n)’
ty =2t ()]
Sy =ty + 2. b

Ko,

For the definition of t; to work in all cases we let t;=p,, so that
tlj = tjl = tj.

We shall need the following two identities, of which the second follows
from the first, and both follow from Macdonald’s theorem:

4(a°b)e(a~c)={aba}oc+{acateb+{a(boc)a}+{ba’c}, (2.84)
4(a°b)*=2{aba}ob +{ab%a}+{ba>b}. (2.85)

2.8.11. Lemma. The t; form a set of symmetrized matrix units, i.e. they
multiply like ti; = e;, ti; = e; +e¢;:
() =ty Jiati=1;
(i) tot;=3t; (#));
(iii) tizi:tii+tij i#1;
(iv) tyoty =3tx (i K);
W) tota=0 i, jiN{k, I} = Q).

Proof. (i) is trivial.

(i) is also trivial, since ;€ Ay, € A,; implies t; =2f°4€ A, (see
2.6.5).

(iif) If i=1 or j=1 (iii) follows immediately from the assumption
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t?=p,+p. So we may assume that 1, i, j are all distinct. By 2.6.6
{AliAleli}:()’ SO by (2.85) we get
15 = 4(06)% = 2{ngt o +{aef )+ {57}

=0+ {t;(p, +p)t}+{t(p1 + P}

={tpst;} +{tp:4;},
since {p;t;} = {t:pit;} =0 by 2.6.5 (and the definition of the triple product).
Furthermore, we get {tp,t}=2t°(top;))—~t7op,=t;—t7op;=(p;+p;)°
(1-py) =p, =t; and similarly {tp,} = t;. Thus (iii) follows.

(iv) If i=j or j=k this is (i), so we may assume that i, j, k are all

distinct. If j =1 then ; =, ty = &, so (iv) is nothing but the definition of
by Hi=1 we find, since as above {tit,t;} =0, that

ty ot = 2t o(ot) = {fht}H7oh
=0+(p1+p)ot = Sty

If k=1 we prove (iv) similarly. We may therefore assume that 1,1i,j, k
are all distinct. Using (2.84) we get

tioty =4t ot)o(tot)
={ttt ot gt ot H{t (1 otk)t}+{tt &t

The first two terms vanish by 2.6.6 and the third by 2.6.5, since f ot €
Ay Hence

ti oty ={t:(p1+ptc} ={tp1ti}
=(tepyote +(top)ot —(tot)op,
=3tot +3tot;—0
=19t = 3l

Finally,- (v) is obvious from 2.6.5.

2.8.12. From 2.8.11 it is immediately clear that s; =; + Y. b IS @
symmetry. From the remarks in 2.8.7 we expect the automorphism Uy, to
have no effect other than interchanging i, j in our matrix algebra
representation of A.

2.8.13. Lemma. Let i#j. Then U is the identity on Ay if {i, )}k, [} =
&. It interchanges A; and A;; and also Ay and Ay, if k#1i, j. It maps A;
into itself. Moreover if k# 1, j then

U (tu) ” 5

U ( ) = ty; Usi,- (sij) = Sij»

U (t]k) 1k 5 Usi,-(sjk) = Sik-
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Proof. If we remember that ;€ A; and the rules for multiplication of
Peirce components, the first statement is easy. Next we find

Ui, (t:) = {ttaty} = 28; 0 (80 1) — th0t
=tiot;—(t; +pot;
=it = b
Symmetrically Uy (¢;) =t;. By the first part of the proof Uy (tiw) = iy if

k # i, j. From this the statements on Peirce components follows, since U,
is an automorphism. Indeed, any automorphism « maps {pAq} onto

{a(p)Aa(q)}.
It is immediate that

U, (6) = t5= (8 + ty) oty = 3t; +3t;, = 1,

and, even more trivially, U, (sy) =s;. Next if k#i,j we have

U&j(tjk)={(tﬁ+ >t )tjk<tﬂ'+ 2 tmm)}

141, meEij
={t;tat;}+2 Z {tatity} + Z Z {tutiitum -
14, e

Here the first term vanishes by 2.6.6(ii). By the multiplication rules for
Peirce components ecach term of the double sum vanishes, and so do all
terms of the middle sum except the [ =k term. Hence by 2.8.11(iv),

U, (6x) = 2ttt
= 2[(t; ° t) © tige + (b © tae) © by — (5 ° o) © B ]
=t Otige T g oty — 0
=3ty + 3t = by

The equation U (sy)=s; follows, since U, is an automorphism and
S"k = t]k + 1~ t,‘zk.v

2.8.14. Lemma. There is a group isomorphism w — U, of the symmetric
group S, on {1,...,n} into the automorphism group Aut(A) such that
U= U, if i#]. Moreover, if weS, then U, (Ay) = A wmay Un(ty)=
Leyn@ Ux(Si) = Snmmg for all i, j. Finally, the restriction of U, to A;
depends only on w(i) and =(j).

Proof. We must first show that the operators U , i =2, ..., n, satisfy the
relations of 2.8.8. First, for any symmetry s we have U?= U,.=1. Next,
by 2.8.13 the identity {a{b{aca}lb}a}={{aba}c{aba}} (2.4.18) implies

U, U, Uy, = Ugys,60 = Uy, (2.86)

S 78y
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if i#j. In particular, by symmetry
USuUSnUsn = U UsliUs

which is the relation (2.81). Also, if i, j, k are distinct in {2, ..., n} then,
using 2.6.3 with p=1¢;+1¢; we see that ¢; and t;, operator commute.
Since they both operator commute with #; +t; and t;;+#;, and with
Yi<1iik ty We see that s; and sy, operator commute. Hence U U, =
U,, U, and using (2.86) we find that the Uj; satisfy relation (2.82).

From 2.8.8 it now follows that there is a homomorphism =« — U, of S,
into Aut(A) such that Uy,=U,, i=1,...,n From (2.86) and the
formula (if) = (1i)(1j)(1i) we see that Uy, = U,

The formulae U, (Ay) = A mi> Un(ti) = te@eg and U, (8) = Sqama)
are proved in 2.8.13 for a generating set (12), ..., (1n), so it follows for
all 7. Evidently, if U,, =1 it follows from this that 7 =1, so = — U, is an
isomorphism into Aut(A).

To prove the final statement it is enough to show that if w(i)=1i,
m(j) =j then the restriction of U, to A; is the identity. But = is then a
product of transpositions (kl) with {k, [} N{i, j} = &, so this also follows
from 2.8.13.

147

2.8.15. We are now in a position to define the * algebra R which will
satisfy A = H,(R).

Let R be the set of all indexed families x =(x;);+;, Where x; €Ay,
subject to the condition

U, (%) = X ymay (2.87)

for all weS,, i#].

We remark here that x — x;; is a linear isomorphism of R onto A; for
i#J; hence all the ‘off-diagonal’ Peirce components A; are isomorphic to
each other and to R. However, these isomorphisms are not canonical,
because x; may be different from x;. This gives rise to our definition of
the adjoint: if x € R define

Xi=x  G#). (2.88)
It is clear that x*e R,
Similarly, we define a product in R as follows: if x, ye R let

(xy)i5 = 2% © Vi (i, j, k distinct). (2.89)

We must show three things: (xy); as defined above does not depend on k,
U, (xy)) = (x¥) wym(p and (xy); € Ay;. The latter follows from the Peirce
multiplication rules (2.6.5), and the former from the following computa-
tion, in which we use that U, is an automorphism:

U, (o © ij) = U, (xy)° Uy, (ij)

= X @ k) © Yo ) )
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Finally, if we choose 7 such that w(i)=i, w(j)=j we see that the
definition (2.89) does not depend on k, and then a general choice of
shows xy e R.

2.8.16. Lemma. R is a * algebra with unit 1= (t;);»;.

Proof. From (2.88) it is clear that x™* = x. From (2.88) and (2.89) we get

Cey)s = (xy)i = 2% © Y »
= 2x>ll<<j °y>‘z§k = zyﬂ:k °x>£j = (y*x*)ijn
so (xy)*=y*x* ie. R is a * algebra.
Define t = (t;);;.. Clearly, by (2.87) and 2.8.14, te R. We must show
that ¢ is a (right) identity for R. Since t = t*, it will also be a left identity.

By the Shirshov—Cohn theorem (2.4.14) any symmetry s satisfies
Uy(a)os = acs. From this we get, with i, j, k distinct,

;528 = Uiy (%) © Sjre = X © Sy
Also,

— — 1
Xij O Sjpe = X5 Oy + Z Xy 0ty = Xi 0 G T 2%,
17k

Xite ©Sje = Xige © by + 3 X
Comparing the above three equalities we obtain

Xige © by + 3 X = X550 by + 3.
The terms of the above equality belong to the Peirce components A, Ay,
Aix and Ay respectively, in that order. Hence we must have x; ot = %xi,-,

or xt = x. This completes the proof.
From now on, the identity of R will be denoted by 1.

2.8.17. If it had not been for the ‘diagonal’ > A, of A, our proof of the
coordinatization theorem would now almost be finished. We must show
that each A; is canonically isomorphic to R, and that we get formulae
like (2.89) when for example x =x* and i =k.

2.8.18. Lemma. If i#j the map A; — A, given by a — 2aot; induces a
linear isomorphism of A; onto R, which is independent of j. The inverse
map, denoted x —> x;;, satisfies U, (x;) = X ymay, and Xy ot = Xy + X;;.

Proof. If ac A;, then act; € Ay, so there is some x € R such that x; =
2act;. It is the map a — x that is claimed to be an isomorphism of A;
onto R,. From the identity U (a°s)=acs, valid for any symmetry s, we
get for any a € A; that

U(ij)(a o t”) = U(ij)(a ° Sij) =acs;=ac tij' (2.90)
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Therefore, if xeR is such that x; =2ac°t; then x;= Ugyx; =xy SO
x =x*. In other words, we have a linear map «;: A; — R,, so that
a;(a); =2act;.

To see that this definition is independent of j, note that

U,QRac°t;)=2U,(a)°triymi) (2.91)

for any permutation . Choosing # such that w(i)=i, w(j)=k, we
conclude that the above definition of «; is independent of j. By choosing a
more general permutation 7 in (2.91), we see from (2.87) that the
diagram

A
&

Ay

Rsa

commutes, where w(i)=].

Our next task will be to construct the map B;: R, — A;; which will be
inverse to «;. If i#j and xe R, then, since x;<€ A;;, we get from the
multiplication rules for Peirce components that

X oty = Xy + Xy, (2.92)

where x; € Ay, x;; € A;j. A priori, this definition of x; depends on j, but if 7
is a permutation such that 7 (i) =i, 7(j) =k, we can apply U, to (2.92)
and find

Xix © tik = X + U—rr(xjj)3 (293)

since U, is the identity on A; (2.8.14). Furthermore, U, (x;) € Ay, 0 the
definition of x; is the same when k is substituted for j in (2.92). It should
be noted that, since x*=x, x;=x;. Therefore the definition (2.92) is
symmetric in i and j. We write B;(x) = x;;.

From (2.93) we get U, (x;) = X.(y=()> Which is part of the conclusion.
Formula (2.92) is another part of the conclusion, so we are left with
showing that o; and B8; are inverses of each other.

First, let x € R,,. Then, from the definition of the Jordan triple product
together with the multiplication rules for Peirce components, we obtain

(xjoty)oty = 3( U+ T.2)%;
= %( Uan+ Ttﬁ+t.,-,-)xij
= %(xji + xij) = X
Substituting (2.92) in this we have

(o + X35) o b = X
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However, using (2.90) we have
X 0ty = Ugp (% ) = X550 .

From the last two formulae we thus have 2x; o t; = x;;, so that «;{B;(x)) = x.
Finally, let a € A;. Again, from the definition of the triple product we
have

2(a © tlJ) ° tij = (Uti,‘ + Tti’_Z)a
= U(ij)a +a,

and, noting that a € A;, Ugja € A;;, we get that B(e;(a)) = a.

2.8.19. Proof of the coordinatization theorem (2.8.9). We shall define
B:H,(R)— A by

B(Z ai}eij) = Z (ay)y (ay = a,-’fe R). (2.94)
5] i=<j

This notation may look confusing; however, note that each matrix entry
a; € R is itself an indexed family ((a;)i)es, Where (i) € A (ay)y 18
simply the (i, j) entry of this family. If i =j, (a;); is defined by 2.8.18.

Note that B maps the Peirce component {xe; +x*e;: x € R} of H,(R)
linearly isomorphically onto A, whenever i#j. (It was noted in 2.8.15
that x — x; is a linear isomorphism of R onto A;.) Also, 8 maps the
Peirce component {xe;: x € R} linearly isomorphically onto A; by
2.8.18. Hence B is a linear isomorphism of H, (R) onto A.

It remains to show that 8 preserves products. By bilinearity it is
sufficient to show this when each of the factors is of the form xe; (x = x¥),
or xe; +x*e; (i#j). This is clear if the two factors do not involve the
same index; the product will then be zero in both A and H,(R). In other
words, we must show that B(a°b)=8(a)oB(b) in the following cases:

(1) a = Xe€;, b= Yéu, X,y € Rsa:

(i) a=xey, b=ye;+y*e;, xe R, YER, i#],
(i) a=xe;+x%e;, b=yey +y*ey x,yeR, i, , k distinct,
(iv) a=xe;+x%e;, b=1ye;+y*e;, x, yeR, i#].

Case (iii) immediately reduces to the formula (xy); = 2x;°yu, which
holds by definition (2.89). In cases (i) and (iv) we may by polarization
assume x =y (i.e. acb=3[(a+b)*—a*—b?]). Therefore the cases (i), (ii)
and (iv) reduce to the following formulae:

(%3 ) = (x?); (x =x%), (2.95)
X © Vi — %(xY)ij ‘ (x=x%i# D, (2.96)
(xij)2 = (XX*)ii + (X*x)ji (#7). 2.97



68 JORDAN OPERATOR ALGEBRAS

We prove (2.97) first. Let i, j, k be distinct. In the following computa-
tion we start out using 2.8.18, and then use the definition of multiplica-
tion in R, the fact that 1 = (t;),.; is the unit of R, and the definition of the
triple product:

(™) + () e = e (0™ = 21 © (3350 Xi5)
' = 2(—{xistuc X} (X5 © i) © X5 + (i © b ) 0 X))
= —2{xi,-tikxkj} + x%ﬁ— x12,
Consider the A;; component of the terms in this equality. By 2.6.6(i),
{x;taxiit € Ay Also, xii €A+ Ay, and xje A; + A, Tt follows that
x5=(xx™); +b,

for some b e A;. Applying this to x* with i and j interchanged, we get
x5 = (x®)7 = (x*x);; + c, for some ¢ € A;. Comparing this with the above we
obtain (2.97).

We next prove (2.95). If x =x™ we get from (2.97) that

xizj = (x%)y + (xz)jj-
In the following computation we use this, 2.8.18 and (2.85). Let i#j:
(xii)z + (xy'j)2 = (x; + xjj)2 = (fij °xij)2
= al2{ ity o +H{tx Gt} + {xt5x 1
= }t[zxizj + {tij ((xz)ii + (x2)jj)tij} + xizj
711[3xi2j+ (xz)jj +(x%);]
= (x%); + (xz)jj-
If we look at the A; component of this, we have (2.95).

Finally, to prove (2.96) let x =x*, yc R, and let i, j and k be distinct.
From 2.8.18 and the definition of the triple product,

il

X © Yy = (X + Xiae) © Yig = (X © ) © Vi
= —{tae Y} + (K © Yig) © e + (V3 © tae) © X
By 2.6.6(ii) the triple product vanishes. Therefore,
X O Yy = %(xy)kj Ol ‘*‘%ij © Xix
= %(xy)ij + %(xY)ij = %(x)’)ij,
which is (2.96). The proof of the coordinatization theorem is complete.
2.8.20. For later reference we note that we have proved the following. If

p1, p» and ps are pairwise orthogonal idempotents with p; strongly
connected to both p, and ps, then p, and p; are strongly connected. For,

¢
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assuming p; +p,+p; =1, as we may, the proof of 2.8.11 is still valid, and
in the notation of that lemma, t,3 €{p,Aps} and t3; = p, + ps, i.e. p, and p,
are strongly connected.

2.9. Formally real Jordan algebras

2.9.1. We shall now consider Jordan algebras over the field R of real
numbers. Such an algebra A is called formally real if a,c A, Y’y a?=0
implies a; =...=a, =0. To justify our interest in this notion note that
the Jordan algebra of all self-adjoint operators on a Hilbert space is
formally real. In fact, the JB algebras to be introduced: below will be
formally real (3.3.8) and it will be shown later that for finite-dimensional
algebras the converse is true (3.1.7).

This section is concerned with the classification of finite-dimensional,
formally real Jordan algebras. These will turn out to be mostly direct
sums of matrix algebras H,,(R), with R =R, C, H or Q. In order to prove
this we need minimal idempotents. These are defined in any ring or
algebra to be nonzero idempotents p with the property that, for any
nonzero idempotent ¢, pq = gp = q implies q = p. Proposition 2.9.3, which
incidentally characterizes those Abelian rings which are direct sums of
fields, will be used to make certain there are enough minimal idempotents
in a finite-dimensional, formally real algebra. The following lemmas will
then lead us up to a point where the coordinatization theorem can be
used.

2.9.2. Proposition. Suppose R=R, C, H or 0. Let n=2; if R=0,
assume n<3. Then H,(R) is a formally real Jordan algebra.

Proof. By 2.7.5, H3(0O) is a Jordan algebra. Since H,(Q) ~ U.,, +e,,H3(0),
H,(0) is a Jordan algebra as well. That the other examples mentioned are
Jordan algebras is clear. (The algebras H,(R) are examples of spin
factors, described in Chapter 6; see also 2.9.7.)

Iet Tr be the usual trace in H,(R), i.e. Tr(a)=Y",a; Then, if
acH,(R),

Tr(az) - Z dﬁaﬁ.
ij

However, a;a; is a positive real number if a;#0, so Tr(a?)>0 if a#0.
From this the formal reality immediately follows.

2.9.3. Lemma. Let R be an Abelian ring without nilpotent elements such
that any descending chain I, > I,>. .. of ideals in R is finite. Then there
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exist minimal idempotents ey, . . ., e, in R such that e;e; =0 whenever i # j,
e, +...+e, is an identity in R, and Re; is a field fori=1,...,n.

Proof. Pick any nonzero minimal ideal I of R. It exists by virtue of the
assumed ‘descending chain condition’. We claim that I contains a nonzero
idempotent e. Indeed, let x be a nonzero element of I. Because R has no
nilpotents, x* 0. But then x>< Ix, and so Ix is a nonzero ideal contained
in I. By the minimality of I, Ix = I. In particular ex = x for some ee L
Now we have (e*—e)x =0, so that e”—e belongs to the annihilator ideal
in I of x. Since this ideal does not contain x it must be zero by the
minimality of I. Thus e*—e =0, so e is an idempotent.

Actually e is a unit for I, as we shall see next. For if x €I is a general
element, then e(x —ex) =0, so an argument with annihilators, like above,
proves that x —ex =0. Even more is true: I is a field, by the previous
paragraph, for if x# 0 belongs to I then e € I = Ix, so x has an inverse in I.

Let J be the annihilator in R of e. Then J is an ideal of R, and
R=1I®J. Indeed; if xcR then x=ex+(x—ex)eI+J, while if xeINJ
then x =ex =0.

If J=0 then R is a field, and we are through. Otherwise, noting that J
satisfies the same requirements we made for R, we can repeat the above
argument with J replacing R. T}Alus, we get a sequence I, I,,... of
minimal ideals, which are fields with identities e, e,,..., and ideals
Ji, I, .. .such that R=1,8J, J,=1,,.,BJ,.;. Butthen J;,>J,>...isa
descending chain of ideals, which by assumption must stop. This com-
pletes the proof, since now I, = Re.

2.9.4 Lemma. Let A be a finite-dimensional, formally real, unital Jordan

algebra over R. Then we have:

(1) A contains no nilpotent elements.

(i) An idempotent p in A is minimal if and only if {pAp}=Rp.

(iii) Any element of A is contained in some maximal associative sub-
algebra of A, and every such subalgebra is of the form Rp,®...®
Rp,, where py,...,p, are pairwise orthogonal minimal idempotents
with sum 1.

(iv) If p and q are orthogonal minimal idempotents in A and a €{pAq},
then a’>=A(p+q), where AeR and A=0. In particular, either
{pAq}=0 or p, q are strongly connected.

(v) If ae A and p is a minimal idempotent in A then {pa’p} = Ap where

AeR, A=0.

(vi) Let a=Y7_1 a;p;, where p,,...,p, are pairwise orthogonal minimal
idempotents and «o; €R. Then a is a square if and only if a;=0,
i=1,...,n

(vii) If ay, ..., a, €A then Y%, a} is a square.
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Proof. (i) If ac A is nilpotent, assume a™ '#0, a™=0. Let k be the
integer satisfying 3m <k <3i(m+1). Then 2k=m, hence a** =0. But
then, by formal reality a* = 0. Since k <m this is a contradiction.

(ii) Clearly, if p and q are idempotents and peq=q, then q ={pgp}e
{pAp}. Hence if {pAp}=Rp we must have q=0 or g =p, so that p is
minimal. Conversely, assume that p is minimal, and let a € {pAp}. Since
the algebra generated by a and p satisfies the conditions of 2.9.3, it is a
direct sum of fields, and in particular the identity p of this algebra is a
sum of the identities qq, . . ., g, of these fields. By the minimality of p we
must have n =1, so the algebra generated by a and p is a field. The only
finite-dimensional fields over R are R and C however (2.2.6), and the
latter must be eliminated because it is not formally real. Hence this field is
Rp, so a €Rp, or {pAp}=Rp.

(iti) By power associativity (2.4.5) every element of A is contained in
an associative subalgebra of A. Clearly, the union of an ascending chain
of associative algebras is an associative algebra, so induction proves that
there must be a maximal one containing the given element. (By Zorn’s
lemma this is true even in infinite dimensions.) Let R be a maximal
associative subalgebra of A. Then 1€ R. By 2.9.3 there are idempotents
P1- - ., P in R which are pairwise orthogonal and with sum 1, such that
Rp;, is a field. Again, since this field is finite~dimensional and formally real
over R, it must be Rp;, so that R =Rp;®D. . .ORp,. If p; is not minimal in
A choose an idempotent g such that p;oq=gq while 0#q# p,. Then
q ={p1gpi}, so that p,oq=0 whenever i#1. It follows that Rq®
R(p.—q) DRp, ®...PRp,is an associative algebra properly containing R,
which is impossible. Hence p, is minimal, and similarly so are p,, . . ., p,.

(iv) Let p, q be orthogonal minimal idempotents and a ¢ {pAq}. By (ii)
and the multiplication rules for Peirce components, a®= A;p+A,q where
A; €R. This can be rewritten as a®= A(p+q)+ up. However, a operator
commutes with p-+q as well as with a2, so if w#0, then a operator
commutes with p. Since a € {pAq}, this implies a = 0. Therefore . =0, so
a’?=Aap+q). If A<0 then a’>+[(-—A\)"?*(p+q)P =0, which contradicts
formal reality. Therefore, A=0. If a#0 then A >0, so that (A\"*?g)’>=
p+q, whence p and q are strongly connected.

(v) Let ac A, and let p be a minimal idempotent. By (iii) there are
orthogonal minimal idempotents p,,...,p, with sum 1 and pe
Rp,D...®Rp,. Clearly p=p; for some i, say p =p,. Write a =Y,; a;,
where a; € {p;Ap;}. From the multiplication rules for Peirce components
we get N

{p1a®ps}= '21 {pla%jp1}~
i=
Since ay; €Rpy, ai;=A1py, A1=0. By (iv) we also get {p;aipi} = Ap1,
A;=0, for j=2,...,n Thus {pa®p}=). A\p, and ¥ A;=0.
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(vi) Let a =Y} a;p;, where py,...,p, are pairwise orthogonal mini-
mal idempotents and o; €R. If a; =0 then a is the square of Y ; a}”p,
Conversely, if a =b?, then a;p; ={p;b*p;} s0 &; =0 by (v).

(vii) Let a,...,anc€A and let a=Y", aj. Write a=Y a;p,, where
D1, ..., D, are pairwise orthogonal, minimal idempotents. Then

m

ap ={pap}= 2, {paipi,

j=1

so o; =0 by (v). By (vi) a is a square.

2.9.5. Lemma. Let A be a finite-dimensional, unital, formally real Jordan
algebra. Let py, . . ., p. be a family of pairwise orthogonal minimal idempo-
tents with sum 1. Write p; ~ p; if p; and p; are strongly connected. Then ~ is
an equivalence relation, and for all i, 3, _,, p; is a central idempotent in A.

Proof. Clearly the relation ~ is reflexive and symmetric. Transitivity
follows from 2.8.20, so ~ is an equivalence relation.

Let e=Y, _, p;. To show that e is central it is enough to show that e
operator commutes with any element of A, ={p. Api} for any k, L. This is
clear if p. ~p, ~p, or if neither p, ~p;, nor p,~ p, for then, if ac Ay,
dce=a or ace=0, so 2.5.5 shows [T,, T,]=0. If, on the other hand,
P ~ D7 P then Ay =0, by 2.9.4(iv). This completes the proof.

2.9.6. Theorem. Every finite-dimensional, formally real, unital Jordan
algebra A is a direct sum of simple algebras. If A is simple then it contains
n =1 pairwise orthogonal and strongly connected minimal idempotents with
sum 1. If n=1, A=R. If n=3, A is isomorphic to one of H,(R), H,(C),
H,) or, if n=3, H5O).

Proof. Let A be a finite-dimensional, formally real, unital Jordan
algebra. Then by 2.9.4 A contains n =1 pairwise orthogonal minimal
idempotents py, ..., P, With sum 1, If e is a central projection in A then
eA is an ideal, and A =eA +(1—e)A is an algebra direct sum. Therefore,
from 2.9.5 we may conclude two things. First, if A is simple there can be
no nontrivial central projections, and so p;,...,p, are all pairwise
strongly connected. Secondly, A is a direct sum of algebras which do
contain pairwise orthogonal and strongly connected minimal idempotents
with sum 1. If A satisfies this requirement we must show that A is simple.
So let I be an ideal in A, let a<I be nonzero, and write a =) ,; a;,
where a; € A; = {p,Ap;}. Pick i, j so that a;#0. If i =], then a; ={piap;} €
I. Since by 2.9.4(ii) a; =Ap; with A#0, p,e L If i#j then by 2.9.4(iv)
a2=A(p,+p;), a; =2{pap;} €1, so again p, = A7'p; °a; belongs to I This
implies that any be Ay, belongs to I, for any k, since b=2p;ob (or
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“

b=p,ob, if k=1i). Repeat the previous argument with any nonzero
element of A,; to conclude pp eI, so 1=Y p, e, and thus I=A, i.e. A is
simple.

If n=1 A =R by 2.9.4(ii). If n =3 the coordinatization theorem (2.8.9)
tells us that A = H, (R), for some real * algebra R. Since U, (H,(R))=
R, .eyq, 2.9.4(i1) implies that R, =R1. Suppose that x € R is not zero. Let
a =xe;,+x*%ey,. Then 0+ a? = (xx*)e,; + (x*x)e,,. Thus either xx™ or x*x
is nonzero.

However, since x+x*e R, =R1, x and x* commute, so x*x#0. By
2.7.8 R is * isomorphic to either R, C, H or, if n=3, to O.

2.9.7. To complete the classification of finite-dimensional, formally real
Jordan algebras we must consider the case n =2, left out of 2.9.6. This
produces the so-called spin factors, which are radically different from
other examples we have encountered so far. More precisely, a finite-
dimensional spin factor is an algebra constructed in the following way.
Start with a real vector space H of finite dimension =2. Assume that a
positive definite symmetric inner product ( , ) is given on H. Then
define the product in H®R1 by

(DA (MBul) =An+ud D n)+Ap)l.

This procedure may be described as ‘appending a unit to H’. The reader
may check that HORI1 is a formally real Jordan algebra, that it is also
simple, and that, if £ is a unit vector in H, then 3(1+¢) and 3(1— &) are
minimal projections with sum 1. It is also true, but not so obvious, that
H®R1 is a special Jordan algebra. This may be proved in many different
ways, e.g. using Clifford algebras. However, we shall return to all this in
Chapter 6.

2.9.8. Theorem. Any finite-dimensional, formally real, unital Jordan
algebra which is also simple and contains two minimal projections with sum
1 is a finite-dimensional spin factor.

Proof. Let p and q be minimal projections in such an algebra A, with
p+q=1. Clearly, p and q are orthogonal. By 2.9.4(ii), this gives rise to a
Peirce decomposition

A =RpBORqD A4,

where A, ={pAq}. By 2.9.4(iv), if ac A, then a®*=A1, where AR,
A=0. Since aob=3[(a+b)>*—a>—b?], we have acbeRl for all a, be
Aj,. Thus, there is a symmetric, positive definite inner product on A,
such that

acb={a, b)l (a,be A (2.98)
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If acA,, then pea=3a=q-a, so that (p—q)°ca=0. Also, (p—q)*=1.
Therefore the above inner product can be extended to H=
R(p —q)® A5, so that (2.98) holds for a, be H. Note that dim H=2, for
if A;,=0 then A =Rp @Rq is not simple. Since A = H @R1, this com-
pletes the proof.

2.9.9. Remark. The reader may verify directly that the algebras H,(R),
H,(C), H,(H) and H,(0O) are finite-dimensional spin factors. Indeed, an
orthonormal basis for the inner product space H consists of the first two
(resp. three, five or nine) matrices of the following list:

b Go (o)
G G Gool
Caol Gio) (G 0)

2.10. Comments

The topics presented in this chapter are by now quite classical, and have
already appeared in book form [4,9,11]. Our aim has been to prove
exactly what will be needed in the subsequent chapters and to classify the
finite-dimensional formally real (unital) Jordan algebras. We have used
several sources. In Section 2.2 we have followed Schafer [11]. Section 2.3
on special Jordan algebras is mostly extracted from Jacobson’s book [9].
Our proof of Macdonald’s theorem (2.4.13) is based on those of Jacobson
[62] and McCrimmon [80]. In Section 2.7 our proof that Hs(0Q) is a
Jordan algebra is taken from Jacobson [9]. The coordinatization theorem
(2.8.9) is due to Jacobson. QOur treatment is based on his proof [9]. The
classification of finite-dimensional simple formally real Jordan algebras is
due to Jordan, von Neumann and Wigner [69]. Our proof is more in the
spirit of the subsequent chapters in this book.
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JB algebras

3.1. Definition of JB algebras

3.1.1. One of the major contributions to the theory of Jordan algebras
was made by Jordan, von Neumann and Wigner [69] when they classified
all simple finite-dimensional formally real Jordan algebras (theorem
2.9.6). We shall now introduce the proper Banach algebra version of the
formally real Jordan algebras and shall consider a concrete case first. Our
nomenclature will be a Jordanization of the corresponding usage in C*
algebras. Thus the reader will encounter the following concepts: JB
algebras will correspond to (abstract) B* algebras, JC algebras to (con-
crete) C* algebras, JTW and JBW algebras to W* algebras, i.e. von
Neumann algebras, in concrete and abstract formulations respectively.

3.1.2. Let H be a complex Hilbert space and B(H) the algebra of all
bounded linear operators on H. Let B(H),, denote the special Jordan
algebra of all self-adjoint operators in B(H) equipped with the operator
norm. By a JC algebra we shall mean any norm-closed Jordan subalgebra
of B(H),,. We shall sometimes call a normed Jordan algebra a JC algebra
if it is isometrically isomorphic to a JC algebra as defined above.

In finite dimensions H,([®R), H,(C) and H,(H) are all JC algebras.
Indeed, H,(C) = B(C").,, where C" is the n-dimensional Hilbert space, so
H,(C) is a JC algebra by definition. H,(R) is a norm-closed Jordan
subalgebra of H,(C), hence is a JC algebra. Since H can be identified with
a real * subalgebra of M,(C) via the representation

a+bi c—di)

e—di a—bi a, b, c,deR,

a+bi+cj+dk—9(

H,(H) is a Jordan subalgebra of H.,,(C), hence is also a JC algebra.
Note that by 2.8.5 H3(0) is not a JC algebra.

3.1.3. A Jordan Banach algebra is a real Jordan algebra A equipped

’ : 75
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with a complete norm satisfying
la<bll<lall||bll a,beA.

3.1.4. A JB algebra is a Jordan Banach algebra A in which the norm
satisfies the following two additional conditions for a, b€ A:

@ lla?|=lal?,

(i) la?<lla®+b?

If A is unital we denote the identity by 1. Then it is clear from (i) that
11 =1.

It is clear from 1.3.2 that each JC algebra is a JB algebra, and we shall
see below that H3(@) is also a JB algebra, and indeed all finite-
dimensional (unital) formally real Jordan algebras are JB algebras. We
note, however, that this is false in infinite dimensions. Indeed, let A
denote the set of complex functions f(z), analytic for |z|< 1, continuous
for |z|=1 and real for z real. With pointwise multiplication and norm
given by

£l = sup |f(2)],
lzl=1 i
A is a formally real Jordan Banach algebra satisfying (i) but not (ii). Pick,
for example, f and g in A such that f(z)*>=z>—z* and g(z)*=z*. Then
% =2, but [[f*+g%|=1.

3.1.5. An important aspect of JB algebras is their order structure. We
shall show that unital JB algebras can be characterized among all real
Jordan algebras as. those which are order unit spaces (see 1.2.1) with
certain properties. We begin by showing the first half of this characteriza-
tion, and postpone the second half until later (3.3.10).

3.1.6. Proposition. Suppose A is a complete order unit space which is a
Jordan algebra for which the distinguished order unit acts as an identity
element, and suppose :

~l=sa=1 implies 0sa’<1 foracA. 3.1)

Then A is a JB algebra in the order norm.

Proof. Consider two elements a,b in A with |lal|<1, {|b||<1. Then
[3(a+b)|<1 and |i(a—b)|<1, so that —1=<i(a+b)<1 and —1<
3a—-b)<1. By 3.1) 0=<[3(a+b)P=<1 and 0<[i(a—b)PP=<1, so that

—1=Y(a+bP—(a—-Db)*]=<1.
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It follows that
laebll=3 (a+b)>~(a-b)}=<1,

proving that A is a Jordan Banach algebra.
Assume next |la®|<1. Then a®<1 by definition of the order norm.
Since by (3.1) all squares are positive we obtain

a=Ya*+1-(a—-1Y]=s3(a®>+1) =1
and
a=3(a+1)*—-a*~1]1=}(-a’~1)=-1,

which gives —1<a=<1, i.e. |a|=<1. Thus ||a¥ <1 implies |lal*<1, and
hence for all a, |jal?<|la?|. Since A is a Jordan Banach algebra the
converse inequality is obvious, so (i) follows.

By (3.1) sums of squares are positive, so if a,be A then 0<a’<
a*+b>. It follows that

lla?|=inf{A >0: 0<a’<A1}
<inf{lA>0:0=<a*+b*=A1}
~lla®+ 7).

This establishes (ii), so A is a JB algebra.

3.1.7. Corollary. Every unital finite-dimensional formally real Jordan
algebra A is a JB algebra.

Proof. By 2.9.4 the set of squares from a proper cone in A, hence A is a
. partially ordered vector space. By the same lemma, if a € A there exist
orthogonal idempotents py,...,p, in A with sum 1 such that a=
Y1 ouPr, o €R. Moreover a is a square if and only if each oy 20, from
which it follows that 1 is an order unit. If

1 &1
<=1=Y =
a4 n k2=:1 n P ‘
for all neN, then o <1/n for all n, hence o, =<0 and a<0. Thus A is
Archimedean, and so is an order unit space. If ~1=<<a=1then ~1=q, =<
1 for all k, hence a®>=Yy_, aip. <1, so A is a JB algebra by 3.1.6.

3.1.8. Remark. It was noticed in 3.1.2 that the algebras H,(R), H, (C)
and H,([H) are all JC algebras. In Chapter 6 we shall see that the
finite~dimensional spin factors (2.9.7) are JC algebras too. By 2.9.6 and
2.9.8 the only formally real finite-dimensional Jordan algebra remaining
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is H3(0). It was noted in 3.1.2 that H4(0) is not a JC algebra; however,
by 3.1.7 it is a JB algebra.

3.2. Spectral theory

3.2.1. Just as for C* algebras spectral theory will be a major technical
tool in the theory of JB algebras. We shall prove two spectral theorems,
one for general associative JB algebras and one for singly generated ones.
Among all the available proofs we shall choose the quickest, namely to
reduce to the well known complex case (1.3.3 and 1.3.4).

If X is a locally compact Hausdorff space then from 1.3.2 Cy(X) is the
self-adjoint part of the Abelian C* algebra C§(X). Thus Cy(X) is an
associative JC algebra under pointwise multiplication and supremum
norm. We next show the converse result.

3.2.2. Theorem. Let A be an associative JB algebra. Then there is a
locally compact Hausdorff space X such that A is isometrically isomorphic
to Co(X). Furthermore, A is unital if and only if X is compact.

Proof. Let s denote the complexification of A, i.e. o ={a+ib:a,be A}.
With the product

" (a+ib)(c +id) =(acc—bod)+i(acd +boc)

and involution (a+ib)* = a —ib, o becomes an involutive Abelian com-
plex algebra. Define

lla+ib|| =||a®+ b2||*'2, a,beA. : (3.2)

We shall show that | || is a norm on & making & into an Abelian C*
algebra containing A as its self-adjoint part. By the characterization of
Abelian C* algebras (1.3.3) this will prove the theorem.

Let z =a+ibe . Then |z|* =|lz*z||, so that || ||is a C* norm if it is a
Banach algebra norm. Clearly ||Az{l=|A|||z|| if A €C, and if w € &/ then by
the C* property of || |,

2wl = [w*z* 2wl = [(z*2) e (w*w) <122l [lw*wl| = ||P [w]?,

which shows ||zw| <||z||||wl| for all z, w e &.
We next show the triangle inequality. Let z =a +ib, w = c +id belong
to . Then we have

z*w+w*z=2a0c+2bode A. (3.3)

Furthermore, by the defining properties of JB algebras and associativity
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of A we find
lacc+bod|?<|(acc+beod)*+(acd—boc)?
=|[(a®+b?)(c*+d?)|
<lla®+b|lc*+d?|
={lz|* [lwl*.
Therefore, by (3.3) we have
Iz + wiP =[I(z + w)*(z + w)|
=|z%z||+||z*w + whz||+ | w*wl|
<zl +2 llzll [wl| + || wi?
= (lz[|+[Iwl)>,

proving the triangle inequality. Since it is clear from (3.2) that & is
complete, we have shown that &f is a C* algebra, proving the theorem.

3.2.3. If A is a unital Jordan Banach algebra and a € A we denote by
C(a) the smallest norm-closed Jordan subalgebra of A containing a and
1. Then C(a) is associative. We define the spectrum of a, denoted by Sp aq,
to be the set of A R such that a — A1 does not have an inverse in C(a).

3.2.4. The spectral theorem. Let A be a unital Jordan Banach algebra.
Let ac A and suppose C(a) is a JB algebra in an equivalent norm ||| |||
Then C(a) is isometrically isomorphic to C(Sp a) with respect to ||| |||

Proof. By 3.2.2 and its proof there is a compact Hausdorff space X such
that C(a) with the norm || ||| is mapped isometrically and isomorphically
onto C(X). Thus Sp a as defined above equals the spectrum of a as an
element in C(X). Thus by the complex spectral theorem (1.3.4) C(a) is
isometrically isomorphic to C(Sp a).

3.2.5. Corollary. Let A and B be unital JB algebras and + a unital
homomorphism of A into B. Then for each ac A, C(m(a)) = w(C(a)).

Proof. If a € A is invertible then clearly w{a) is invertible. It follows that
Sp w(a)=Sp(a). If fe C(Spa) recall from 1.3.5 the definition of f(a)
through the isomorphism C(a)=C(Sp a). Then w(f(a))=f(w(a)). In-
deed, this is trivial if f is a polynomial, and follows in general from the
Stone-Weierstrass theorem [7, IV.6.16]. The corollary follows from 3.2.4
and the Tietze extension theorem [7, 1.5.3]. '

3.2.6. Proposition. Let A be a unital Jordan Banach algebra such that
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C(a) is a JB algebra in the given norm for each ac A. Then A is a JB
algebra.

Proof. Let S(A)={pe A*:|p||=p(1)}, and let A*={acA: p(a)=0 for
all pe S(A)}. Then clearly A* is a cone. By the spectral theorem (3.2.4)
and the fact that C(Sp a) is an order unit space with the identity as order
unit and the norm being the same as the order norm, we have by 1.2.5
that a=0 as an element in C(a) if and only if p(a) =0 for all states p of
C(a). By the Hahn-Banach theorem (1.1.12) and 1.2.2 each state of C(a)
has an extension to a functional in S(A), and each functional in S(A)
restricts to a state on C(a). Thus the positive part of C(a) is C(a)NA™,
so A™ is a proper cone with respect to which A is an order unit space in
which the norm coincides with the given norm. Since —1<<a =<1 implies
a’<1in C(a) so in A for each ac A, A is a JB algebra by 3.1.6.

3.2.7. Recall that if a and b belong to a Jordan algebra, then U,b =
{aba}=2a-(a°b)—a’*-b. Hence U, is a continuous operator on a Jordan
Banach algebra for each element a, and |U,||<3|a|?.

3.2.8. Lemma. Let A be a unital Jordan Banach algebra such that C(a)
is isomorphic to a JB algebra for each ac A. Let ac A and A eR. Then
X €Sp a if and only if U, _, has no bounded inverse as an operator on A.

Proof. Let b be an element in A such that U, has a bounded inverse. Then
there exists k>0 (k =||U,[™") such that | U,x||=k ||x|| for all x c A. If b is
not invertible in C(b) there is by the spectral theorem (3.2.4) a sequence
(x.) in C(b) with |lx,||=1 such that ||U,x,||—> 0, contradicting the above
inequality. Thus b is invertible. Conversely, if b is invertible in C(b) let ¢
be its inverse in C(b). From the identity 1= U, = Upcpy= U,U.:U,
(2.4.18) U, has a bounded inverse, completing the proof of the lemma.

3.2.9. If A is as in 3.2.8 we define the inverse of an element a € A to be
its inverse in C(a), if it exists, and denote it by a~'. It should be
remarked that this definition is equivalent to the usual definition of
inverse in Jordan algebras; namely, b is the inverse of a if b satisfics
a°b=1 and a®-b = a. However, we shall not need this latter definition.

3.2.10. Lemma. Let A be a unital Jordan Banach algebra for which C(a)
is isomorphic to a JB algebra for each a € A. Suppose a € A is invertible.
Then U, is invertible as an operator on A, and (U,) ' = U,.

Proof. 1t was shown in the proof of 3.2.8 that U, is invertible. From
the identity Ugpa = U,U,U, (2.4.18) we have U, = U,U,-U,, hence
1=(U,)'U,U,-U, = U,-:U,, proving the lemma.
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3.2.11. Corollary. If a and b are invertible elements in a unital JB algebra
then so is {aba}, with inverse {a ‘b~ *a~1}.

Proof. By 3.2.8 and 2.4.18 Ul 4ey = U, U, U, is invertible, and so.{aba} is
invertible. By 3.2.10 and 2.4.18 we get

{aba} " = U gpay-{aba} = Uy, {aba}
=U U U UMb ={a b a1

3.3. Order structure in JB algebras

3.3.1. We saw in 3.1.6 that a Jordan algebra which is also an order unit
space with certain properties is automatically a JB algebra. This result
together with experience from C* algebras indicates that the order
structure is very important in JB algebras. We shall in the present section
prove the basic results along these lines, one of which is the converse to
3.1.6 for unital JB algebras. For non-unital JB algebras the situation is
not so clear, but can be resolved by adjoining an identity. While this is
easy for C* algebras, it is not so simple to prove that we get a JB algebra
when we adjoin a unit to a non-unital JB algebra.

Let A be a JB algebra. We let A =A®R with pointwise addition,
multiplication given by

(a, M)o(b, u)=(a°b+pa+Ab, An), a,beA, ApeR,
and norm given by
lita, Ml = llall+[A].

By 2.4.2 we know A is a Jordan algebra. It is clear that | | is a norm
and that multiplication’ satisfies

llac o yll <Ilxlly iylly x,yeA. (3.4)

Let B be a unital closed subalgebra of A, and consider A as a Jordan
subalgebra of A via the identification of a and (a,0). Then we have
B=(BNA)", so B is itself a JB algebra with the identity adjoined. In
particular, if ac A then C(a) is by 3.2.2 isometrically isomorphic to
Co(X)™ for some locally compact Hausdorff space X. In particular C(a) is
isomorphic to some C(Y) with Y a compact Hausdorff space, so it follows
that C(a) is a JB algebra in an equivalent norm. Thus A is a Banach
Jordan algebra for which C(a) is isomorphic to a JB algebra for all a € A.

3.3.2. With A as above we define the spectral radius norm for an element
acA by

llall=sup{|A]: A €Sp a}.
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From the previous paragraph it is clear that | || extends the norm on A;
however, it is not clear that | || is a norm on A. Let be A and choose
p €Sp b such that |u|=||b||. If A eR, by the spectral theorem (3.2.4) it is
easy to verify the following:

I, il =bl|+ [A] if Au =0,

(B, M)l = max{||bf|—|Al, [Al} if A =<0.
Thus in every case 2|/(b, A)||=]|b]| and ||(b, A)||=|A|. We therefore obtain
the estimate

lall<llal,<3|al foracA (3.5)

3.3.3. Let A be a JB algebra. An element a € A is called positive, written
a =0, if Sp a [0, «). By the spectral theorem (3.2.4) a=0 if and only if
a is a square. We write

A.={acA:a=0}={a> ac A},

A,=A.NA={a%acAl

3.34. Lemma. Let A be a JB algebra. Suppose a is a positive invertible
element in A. If b € A satisfies ||b—all,<55|la™Y|™* then b is invertible.

Proof. By 3.2.7 U, satisfies the estimate ||U,x|, <3 |lal?|x|; for x € A.
Apply this to the inverse of the positive square root a'/? of a, which exists
in C(a) by the spectral theorem (3.2.4). Then by (3.5) we have

[Ua-n(b—a)lly <3 |la™ " Ib - al,,
<3x9{a” " {Ib - all,
=27 la™ " lb - all;
<1.

Thus 1+U,w(b—a) is invertible in A, so by 3211 b=
U,w2(1+ Uz-2(b—a)) is invertible.

3.3.5. Lemma. Let A be a JB algebra. Then A_ is a closed subset of A.

Proof. First we note that, if ac A, and A € (0, %), then a + A1 is invertible
with |[(a+A1)"Y|<<A™*, where we write 1 for the unit (0, 1) of A. Indeed,
this is clear from the spectral theorem (3.2.4), since the restriction to
C(a) of || | is a norm making C(a) into a JB algebra.

Suppose now that a, € A, and |la, —all; — 0, and suppose further that
a is nonpositive. Then we can find A >0 such that a+ A1 is not invert-
ible. By the above remark, however, a,+A1 is invertible for all n,
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and |(a. +AD)7Y<A"*. When n is sufficiently large [[(a+A1)—
(a, + A D)y =lla—a,ll;=A/27, and so by 3.3.4 a + A1 is invertible. This is a
contradiction. ’

3.3.6. Proposition. Let A be a JB algebra and a,bec A. If b=0 then
{aba}=0.

Proof. We first assume that both a and b are invertible. Assume that
{aba} is not positive. For te[0, 1] let

¢ ={a((1—0)b+t1)a}.

From the spectral theorem and (the proof of) 3.2.11 we see that ¢, is
invertible in A for all t. Further, c,={aba}, ¢, = a® By 3.2.7 the family
(c,) is also continuous and bounded.

Define the subset I of [0, 1] by

I'={t: ¢, is nonpositive}.

Then Oc I, 1¢1 Let to=sup{t:tel}. If t,<1 then, for all t>¢, ¢ is
positive. Then by 3.3.5 and the continuity of (c,), c,, is also positive. Of
course, this is also true if to=1. Let & =|c;."||*/27. We shall prove that,
whenever |ic, — ¢, ]l <&, ¢ is positive. This will contradict the definition of
ty, and thereby complete the proof in this first case.

Therefore, assume that |c,—c,|; <e, and pick any A>0. Since c,, is
positive, the spectral theorem will imply that ||(c,,+ A1) 7| <llc;. |, so that

I(ce, +A DY =27,

Since (¢, +AD)—(c,,+AD|;=llc. —c,Ji<e, it follows from 3.3.4 that
c,+ A1l is invertible. Because this holds for any A >0, ¢, is positive, as
desired.

By the spectral theorem the invertible elements are dense in A.. Since
U, is a continuous operator on A it follows that U,b =0 whenever b =0
and a is invertible.

Let now b be positive and invertible and a be general. Let ¢ = b'* be
the positive square root of b in C(b). From the identity {cac} ={c{aba}c}
(2.4.17) we have U.U,b =(U.,a)*=0. Since by 3.2.10 U.=U,", the
previous paragraph applied to U, - shows U,b = U (U, U,b)=0.

Finally, for general a and b with b =0 we can again approximate b by
positive invertible elements and use the continuity of U, to conclude
U,b=0.

3.3.7. Lemma. Let A be a IB algebra. Then both A, and A, are proper
convex cones.
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Proof. Since A, = A, NA it suffices to show A, is a proper convex cone.
It is clearly homogeneous. Let a, b e A and choose A >0. By the spectral
theorem (3.2.4) ¢ = a®+ A1 is positive and invertible, hence has a positive
invertible square root ¢*/?. Then we have a*+ b*+ A1 = U 2(1+ U,-12b?),
where by 3.3.6 U.-:b*=0. Thus 1+ U,-2b? is invertible, and so by
3.2.10 a2+ b>+A1 is invertible. Therefore a®+b*c A, which is there-
fore a convex cone. It is proper since Sp a [0, «) for each ac A.,.

3.3.8. Corollary. A JB algebra is formally real.

Proof. Suppose Y7-; a7=0 for a; in a JB algebra A, i=1,...,n If
ke{l,...,n}, since sums of squares are squares by 3.3.7, there is bec A
such that Y., a?=b? Thus ||la; [P =|aZ|<|ai+ b3 =0.

3.3.9. Theorem. Let AbealB algebra. Then the spectral radius norm is
a norm on A making A into a JB algebra.

Proof. By3.37 A, isa proper cone. By the spectral theorem (3.2.4), for
each ac A, C(a) is an order unit space with order unit 1 satisfying
—1<b=1 implies 0=<<b*=<1, and in which the order norm equals the
spectral radius norm. Thus A is an order unit space with the same
properties, hence the theorem follows from 3.1.6.

3.3.10. Proposition. If A is a unital JB algebra, then A is a complete
order unit space with the ordering induced by A, and order unit the identity
1. The order norm is the given one, and a € A satisfies —1<a<1 implies
0=sa’<1.

Proof. The result, which is the converse to 3.1.6, is proved by an
immediate modification of the proof of 3.3.9.

3.4 ideals in JB algebras

3.4.1. Let A be a JB algebra and J a norm-closed ideal in A. Then J is
also an ideal in A, as is easily seen from the definition of the product in A

(3.3.1). It is also easy to see that A/J is a Jordan algebra. Indeed, it is a
Jordan Banach algebra in the quotient norm, for if a, b€ A we have

lasb+J|=infllab+cl< inf |(a+c)o(b+d)|

< int [la-+ ||+ d]=lla+ I o+ J].
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3.4.2. Theorem. Let A be a JB algebra and J a norm-closed ideal in A.
Then A/J is a JB algebra in the quotient norm.

Proof. Since by 3.4.1 J is an ideal in A, and A/J =A7)/', we may assume
A is unital. Let w: A — A/J be the quotient map. By the spectral
theorem (3.2.4) C(a) is isometrically isomorphic to C(Sp a), and by 1.3.6
and 1.3.7 the image of a continuous homomorphism of C(Sp a) is itself
the continuous real functions on a compact Hausdorff space. Thus
w(C(a)) is a JB algebra in the quotient norm for each a € A. Then the
same is true for C(m(a))= w(C(a)), and so by 3.2.6 A/J=m(A) is a JB
algebra.

3.4.3. Proposition. Let A and B be JB algebras and ¢ a homomorphism
of A into B. Then ||p(a)l<|a| for all ac A, and $(A) is a JB subalgebra
of B. Furthermore, if ¢ is injective, then it is an isometry.

Proof. Considering A and {¢(1)B¢(1)} if necessary we may assume A, B
and ¢ are all unital. Let acA. Then ¢:Cla)—> C(d(a)) is a
homomorphism, hence |[¢(a)l<|la| by the spectral theorem (3.2.4) and
the same estimate for homomorphisms on C(Sp a) (1.3.7). Since ¢ is
continuous its kernel J is a norm-closed ideal in A. Let 7r be the quotient
map of A onto A/J and « the canonical isomorphism a: A/J — ¢(A).
Since a restricted to @w(C(a)) is an isomorphism onto C(¢(a)), and
w(C(a)) = C(mw(a)) is a JB subalgebra of the JB algebra A/J (3.4.2), a is
an isometry on mw(C(a)) by 1.3.7. In particular « is an isometry on A/J.
Since A/J is complete, so is ¢(A), so that ¢(A) is a JB subalgebra of B.
Finally, if ¢ is injective then by 1.3.7 ¢ restricted to each C(a) is
isometric, hence ¢ is an isometry.

3.44. In the course of the proof of 3.43 we showed that
llé(a)l|=lla + J—the quotient norm of a+J in A/J.

3.5. Approximate identities

3.5.1. An increasing approximate identity in a JB algebra A is a family
(uy)r ey of elements in A indexed by a directed set J such that

@ llupl=1 for all A&,

(i) 0<u,=<u, whenever A=<y in J,
(i) luyca—all— 0 for all ac A. ,

In C* algebras such approximate identities are usually used in order to
prove the results on ideals in the previous section. We shall also need
them in order to study ideals, but in a different connection.
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3.5.2. Lemma. Let A be a JB algebra and a, be A. Then we have:
(i) [{ab?a}| ={ba’b},
(ii) lla<bl?<llalll{bab}l for a=0.

Proof. We may by 3.3.9 assume A is unital. Then we have from the
positivity of U, and U, (3.3.6), 2.4.17 and 2.4.21

{ab?*aY* ={al{b{ba’*b}b}a}
<|{ba’b}||{a{b1b}a}
= |{ba’b}||{ab’a}.

Thus |{ab?a}l><|{ba’b}| |{ab?a}|, and (i) follows by cancellation and
symmetry.

To show (ii) note that (a°b)?>=3ac{bab}+{ab?a}+3{ba’b}, as follows
from Macdonald’s theorem. Since a =0, a*><l|a|| a, so by 3.3.6, {ba’b}=<
llall {bab}; thus (ii) is immediate from (i).

3.5.3. Lemma. Let A be a unital JB algebra and a,be A. Suppose a is
invertible and 0<<a<b. Then b is invertible and 0<b '=<a™'.

Proof. By 2.4.17 and 3.3.6 we have
{bl/Za—1b1/2}2 — {bl/z{a_lba_l}bl/z}?{b”z{a_laa'l}b”z}
={p2q"1p2} =0.

Since in general for xe A, x=0 and x*=x#0 imply x=1, we have
{bY?a"*b¥?}=1. Since a is positive and invertible there is by the spectral
theorem (3.2.4) £ >0 such that e1<<a. But then €1=<b, so b is invertible.
Since by 3.2.10 U,-12=(U,2)"" we have, using 3.3.6,

a—l — {b—1/2{b1/2a—1b1/2}b—1/2}Z{b—l/Zlb—l/Z} — b_l.
3.5.4. Proposition. A JB algebra has an increasing approximate identity.

Proof. Let A be a JB algebra and A={uec A: u=0,|lul|<1}. Then Aisa
partially ordered set by the usual ordering on elements in A. We show A
is directed. Let f and g be real functions defined by f: [0, 1) — [0, ) and
g:[0,%) —[0, 1), and
s 1 t 1
===+ =——=1——.
&) =175 1-s s=7 =171

Then fog and gof are the identity functions on [0, <) and [0, 1) respec-
tively, so that f: A— A, and g: A, — A are inverses to each other. By
3.5.3 f and g are order preserving, hence A is order isomorphic to A,
and therefore directed upwards.
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In order to show A is an increasing approximate identity, for ¢ >0 let f,
be the nonnegative real function defined on all of R by £.(0)=0, f.(t)=
1—¢ for |t|=¢, and f, is linear on the intervals [—e, 0] and [0, £]. Let
ac A. Then f.(a), defined via the spectral theorem (3.2.4), belongs to A
and satisfies

lim lla”—{af. ()} = 0. | (3.6)

Let ueA,u=f.(a). Since u<l in A, we have a’={aua}={af,(a)a},
using 3.3.6. Thus by (3.6) lim, _, lla®—{aua} = 0; hence by 3.5.2, consider-
ing A as a subalgebra of A,

la—aoul?=lla-(1-uw)?
<|1-ul|{a(1—w)al
=1 —ul{la*>—{aua}j — 0.

It follows that A is an increasing approximate identity for A.

3.6. States on JB algebras

3.6.1. We saw in 3.3.10 that a unital JB algebra A is an order unit space,
hence the results of Section 1.2 are applicable. If A is non-unital we can
still talk about positive linear functionals, namely those which map A™
onto R™. If a positive functional in addition has norm 1 it is called a state.
We shall in this section prove the Jordan algebra version of the Cauchy—
Schwarz inequality together with some consequences.

3.6.2. Lemma. Let A be a JB algebra and p a state on A. Then if
a,be A we have

() placb)*<p(a®p(b?),

(i) p(a)*<p(a?.

In particular, the map a — p(a®)'?

is a seminorm on A.

Proof. Let A €R then we have
0=<p((Aa+b)>)=Ap(a®)+2\p(a°b)+p(b?).

In particular, if p(a®=0 then p(ach)=0. If p(a®#0 let A=
—plasb)p(a®™, and (i) is immediate. (ii) is immediate from (i) if A is
unital, letting b = 1. Otherwise by 3.5.4 let (u,) be an increasing approxi-
mate identity for A. Then p(a°u,)— p(a) while p(az)p(u}\)<p(a2) Thus
(ii) follows from (i).
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It is clear that the expression p(a®)Y? is homogeneous in a and
nonnegative. Thus in order to show it is a seminorm it remains to show

the triangle inequality. However, this follows from (i) since

p((a+bY)=p(a”)+20(a) 2p(b) ™+ p(b) = (p(a®) > + p(6) P

3.6.3. Corollary. Let A be a JB algebra and p astateon A. If ac A™ and
p(a)=0 then p(a°b)=0 for all be A.

Proof. If a=0 then 0<a’</alla, so p(a®)=0. Now 3.6.2(i) implies
plasb)=0.

3.6.4. For any JB algebra A let its state space S(A) be the set of all states
on A. If A is unital then, since A is an order unit space, we know from
1.2.3 that S(A) is a compact convex set. If A is not unital then
compactness fails, and even the convexity of S(A) is not obvious. To
restore compactness, we sometimes use the set S(A) of all positive
functionals on A with norm <1 instead. Since S(A) is characterized by
loll<1 and p(a)=0 for all ac A*, the w* compactness of S(A) is
immediate from Alaoglu’s theorem (1.1.17).

3.6.5. Lemma. S(A) is convex for any JB algebra A.

Proof. Let (u,) be an increasing approximate identity for A (3.5.4). Let p
be a bounded positive linear functional on A. Then lim p(u,) exists. For
any a € A we can use the Cauchy-Schwarz inequality (3.6.2) twice to get
lp(aou)l=<pud)?p(a®)"*< p(uy?oui)"?pl*||al]
<pw) o) |l llal

<p()"*lol*"* |lal.
Taking the limits in the inequality we conclude
lp(@)|<[tim p(u) T [l lall,

which implies |p|<lim p(u,). The opposite inequality is obvious, so
llpll = lim p(u, ). From this it is clear that S(A) is convex:

3.6.6. Lemma. Let A be a JB algebra. Every functional pe S(A) has a
unique extension pe S(A). Thus the sets S(A) and S(A) are affinely
isomorphic.

Proof. Since any state  on A must satisfy 5(1) = 1, uniqueness is clear. If
p€S(A) define p(a+Al)=pla)+A (acA,AcR). Given ac A and A eR
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3.6.2(ii) implies
p(a+A11)?) = p(a®)+2rp(a)+A?
= pla)*+2rp(a)+ A% =(p(a)+A)* =0,

so p is positive. Since é(l)zl, p is a state on A. Clearly, then, the
restriction map S(A)— S(A) is an affine isomorphism.

3.6.7. For any JB algebra A, whether unital or not, we call any extreme
point of S(A) a pure state.

3.6.8. Lemma. Let A be a IB algebra. For any a € A there is a pure state
p on A such that |p(a)|=|all.

Proof. If A is unital this follows from the corresponding result for order
unit spaces (1.2.5). In general, we get a pure state p on A with
|6(a)|=lall. Let p=p | A. Then, by 3.6.6, p is an extreme point of S(A).
Then |ip|| =0 or ||p|| = 1. We cannot have p =0 unless a =0, in which case
there is nothing to prove. Thus p is a state, and indeed a pure one.

3.7. GNS representations of Jordan matrix algebras

3.7.1. Proposition. Let A=H,(R), n=2, be a Jordan matrix algebra
which is also a JB algebra. Assume R is associative. Then there exists a
% representation of M, (R) on a complex Hilbert space carrying A isometri-
cally onto a reversible JC algebra.

Proof. Clearly M, (R) is a unital real * algebra whose self-adjoint part is
A, which by 3.3.10 is a complete order unit space having the identity as
order unit. The proof is complete if we can show M, (R) satisfies the
conditions of 1.3.10.

Let {e;: 1=<<i, j <n} be the standard matrix units in M, (R). We identify
each xe R with the diagonal matrix } xe;. Let xe R, x#0. We show
x*xe A", xx*e A", and both are nonzero. Let a= xe;,+x¥e,,. Then
acA, hence 0=a?=xx%e;;+x*xe,, is nonzero. Thus xx* and x*x
belong to A* and are not both zero. If, say x*x =0, then (xx*)*=
x(x*x)x* =0, so xx*=0, contrary to the above. Thus both x*x#0 and
xx*#0.

Let a e M, (R). Suppose a*a=<0. We show a =0. Let a =Y, a;e;, a; €
R,i,j=1,...,n Then a* =Y aje;. If we apply the preceding paragraph
successively we find, since a*a =<0,

n
* *
0=e;a™ae; Z A€ =0.
K=1
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Since A is formally real (3.3.8), af.a,; =0 for all i, k, and thus a,; =0. In
particular a =0, as asserted.

Now let aeM,(R). Then a*ac A, so by the spectral theorem (3.2.4)
there are by, b,e A* such that bocb,=0 and a*a=b,—b,. Now
(abz)*(abz)*bza ab,=—b3=<0, so by the preceding paragraph —b3=
a*ab, =0, hence b, =0, and a*a=0.

It remains to show M, (R) is a Banach * algebra in a suitable norm.
For this define Ha\l:Ha"‘aH”2 for a € M, (R). Since the norm coincides
with the order norm on A we find |lab|”=|b*a*ab||<|b*(la*al)b| =
llal?|Ibl* for a, b e M,(R).Thus |lab||<|\a||||b|l. If a, be M,(R) by 1.2.5 we
have

la+blP=l(a+b)*(a+b)|= sup p(a*a+a*b+b*a+b*b).
peS(A)
Now each pe S(A) can be extended to M, (R) by letting it be zero on
skew-adjoint elements. Then by the Cauchy—-Schwarz inequality (1.3.10)
we find

lla+bl?< sup [p(a*a)+p(b*b)+2p(a*a)"*p(b*b)"*]
peS(A)

<llal*+{Ibl*+ 2 {lal b}l = (lal|+[IblD>.

Thus || || is a Banach algebra norm on M,(R) with respect to which
M, (R) is complete since A is. We finally note that M,(R) is a Banach
+ algebra with respect to the norm. Indeed, let a € M,,(R). Then

lal*=lla*a|* = la*aa*a|<lla*(laa*Dal =llaa*| la*al| =la*|* lal.

Thus |lal|<]la*|, and by symmetry they are equal. Therefore M,(R)
satisfies the conditions of 1.3.10, and the proposition follows.

3.7.2. Corollary. Let A = H,(R), n=4, be a Jordan matrix algebra which
is also a JB algebra. Then there exists a * representation of M,(R) on a
complex Hilbert space carrying A isometrically onto a reversible JC algebra.

Proof. By 2.7.6 R is associative, so the result follows from the proposi-
tion.

3.8. JB* algebras

3.8.1. The complex version of JB algebras are called JB* algebras or
Jordan C* algebras. These algebras have applications in the theory of
bounded symmetric domains. Their formal definition is as follows.

Let & be a complex Banach space which is a complex Jordan algebra
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equipped with an involution *. Then & is a JB* algebra if the following
three conditions are satisfied for x, y e A:

@ lxoyli=lxlllyll.

(i) [ =l

(i) [{axx™xH] = [lx[.

3.8.2. Proposition. Let o be a IJB* algebra. Then the set A of its
self-adjoint elements is a JB algebra.

Proof. If s is associative then {xx*x}=(x°x*)ox, hence ||x|? =|{xx*x}||<
[l x| el <]l o *| xl| = [lx[’, so that [lxox*|=[|x|?, and o is a C*
algebra. Let A be A with the identity adjoined. Then A is a Jordan
Banach algebra (3.3.1), and for all a € A it follows by the above that C(a)
is isomorphic to a JB algebra. Thus as in the proof of 3.3.9 A is an order
unit space in which ~1<a =<1 implies 0<<a?<1. By 3.1.6 then, A is a JB
algebra in the order norm, hence so is A. Since the order norm coincides
with the given norm on each C(a), A is a JB algebra in the given norm.

3.8.3. It is possible to prove the converse, namely that the complexifica-
tion of a JB algebra is a JB* algebra. For the much longer proof of this
we refer the reader to the original paper of J. D. M. Wright [116].

3.9. Comments

JC algebras were first studied by Topping [110] and Stgrmer [102] (see
also [41]). Their reasons were different. Topping’s background was order
theoretic, and he realized that much of that part of the theory of von
Neumann algebras, see especially Chapter 5, could be extended to JC
algebras. Stgrmer’s studies arose from an interest in Jordan homomorph-
isms of C* algebras.

The study of JB algebras was initiated by Alfsen, Shultz and Stgrmer
[19], even though earlier approaches had been made by von Neumann
[81] and Segal [88]. The axioms for JB algebras are basically streamlined
versions of those given by Segal. Our treatment of JB algebras is mainly
based on Alfsen et al. [19], except that many proofs are altered. There is,
however, one major exception. In Alfsen et al. [19] only unital JB
algebras were studied. This was remedied by Behncke [21], who proved
theorem 3.3.8. The definition of JB* algebras is due to Kaplansky, who
first presented it at a lecture for the Edinburgh Mathematical Society in
July 1976.

In Section 3.6 we only stated the essentials about state spaces of JB
algebras. Alfsen, Hanche-Olsen and Shultz [18, 15] made a detailed study
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of state spaces, and characterized them among all convex sets. An
important ingredient in this characterization was the concept of face of a
convex set. The relationship between faces of the state space and ideals of
the JB algebra has been studied by Edwards [36, 37] and Hanche-Olsen
[54].

We have in the present chapter defined the necessary Jordan algebraic
concepts to describe the relationship between JB algebras and bounded
symmetric domains. This is therefore a timely point to remark on this
important aspect of JB algebras. For this we follow the survey article of
Kaup [74].

Let A be a JB algebra, and let () denote the interior of A*. Then it is
an easy consequence of the spectral theorem that if ac A" then ae() if
and only if a is invertible. In particular () is a non-empty open convex
cone. By 3.2.10 and 3.3.6 for every ae() the operator U, is a
homeomorphism of ( which sends 1 to a®. Therefore the U,’s, ac ),
generate a transitive transformation group on €2; in particular €} is what is
called a homogeneous cone. Let now U= A®iA be the complexification
of A. As remarked in 3.8.3 it follows from the work of Wright [116] that
U is a JB* algebra with involution (x+iy)*=x—iy. Let '

D={zcU:ImzeQ},

where for each z=x+iye U we write y=Im z. D is an example of a
tube domain associated with the cone (), also called a generalized upper
half plane for U. For example, if A =R, U=C, then D is the classical
upper half plane. In that case the Cayley transform
.z—1

o(z)=i z+i
maps D biholomorphically onto the open unit disc A={zeC:|z|<1}. In
the general case we do the same, because then each z € D is invertible,
and

c(2)=i(z-D(z+i)™?

defines a biholomorphic map from D onto a bounded convex domain
A < U called the generalized unit disc. It can be shown that A is the open
unit ball in U.

A bounded domain B in a complex Banach space U is called symmet-
ric if for each -a € B there exists a holomorphic map s,: B— B whose
square is the identity, such that a is an isolated fixed point (s, is uniquely
determined if it exists and is called a symmetry at a). The map so(z)=—z
is the symmetry at 0 for the generalized unit disc A, and it can therefore
be shown that A is symmetric. Thus D is holomorphically equivalent to a
bounded symmetric domain, and is therefore a symmetric tube domain,
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where the latter is defined as follows. If P is an open convex cone in a
real Banach space X the domain T={zc X®iX:ImzcP} is called a
symmetric tube domain if it is biholomorphically equivalent to a bounded
symmetric domain.

The converse is also true, but is much harder to prove; see Braun et al.

[32].

Theorem. Suppose X is a real Banach space and D is a symmetric tube
domain in U= X®iX defined by the open convex cone (). Then to every
e € () there exists a unique Jordan product on X such that X is a JB algebra
with unit e and generalized upper half plane D.

Thus JB algebras, as well as JB* algebras, are in one-to-one correspon-
dence with symmetric tube domains. The reader is referred to the notes
of Loos [10] for the Jordan algebra (or Jordan triple system) characteriza-
tion of more general domains.



4
JBW algebras

4.1. Topological properties

4.1.1. Recall from 1.4.5 that a C* algebra is called a von Neumann
algebra if it is also a Banach dual space. It is one of the standard results of
C* algebra theory that this is the case if and only if the algebra is
monotone complete and has a separating family of normal states (for
definitions see below). Furthermore, the predual is unique, and consists of
all normal, bounded linear functionals. The second dual of any C*
algebra is also a von Neumann algebra; see 4.7.2 (below). The Jordan
analogue of an (abstract) von Neumann algebra will be called a JBW
algebra. In this chapter we shall prove the Jordan algebra analogues of
the above C* algebra results. In fact most of the results in this chapter are
direct analogues of similar results for von Neumann algebras.

Let M be a JB algebra. M is said to be monotone complete if each
bounded increasing net (a,) in M has a least upper bound a in M. A
bounded linear functional p on M is called normal if p(a,)— p(a) for
each net (a,) as above. M is said to be a JBW algebra if M is monotone
complete and has a separating set of positive normal bounded linear
functionals. We call a set of functionals separating if for any nonzero
a €M, there is a functional p in the set satisfying p(a) # 0.

" We shall use the word ‘state’ for a positive linear functional of norm 1
even if the JB algebra is non-unital, cf. 3.6.1. In the definition of JBW
algebras above we could then just as well have assumed that M has a
separating set K of normal states. Since we could also have taken a larger
set of normal states, we may, and shall, assume K is the set of all normal
states. We denote by V the real vector subspace of M* spanned by K.

In order to systematize notation we shall always use letters M, N, . ..
for JBW algebras, and A, B, ... for JB algebras.

4.1.2. An alternative description of von Neumann algebras is that they
are ultraweakly closed C* algebras on a Hilbert space; cf. 1.4.6. The

94
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corresponding Jordan algebras will be called JW algebras. This will turn
out to be a smaller class than that of JBW algebras, as there are
exceptional JBW algebras like H5(Q); see 2.8.5 and 3.1.7.

Let H be a complex Hilbert space and B(H) the von Neumann algebra
of all bounded operators on H equipped with the ultraweak topology; see
1.4. A Jordan subalgebra M of B(H),, is called a JW algebra if M is
ultraweakly closed. More generally, we shall sometimes use the term JW
algebra to mean a JB algebra which is isomorphic to a JW algebra like M
above. It will be a consequence of 1.4.4 and 4.4.16 below that a JW
algebra as defined above is indeed a JBW algebra. This is, however, a
trivial observation for the reader who knows that the ultraweakly con-
tinuous linear functionals on B(H) are normal, and that the least upper
bound of a bounded increasing net in B(H)s, is the ultraweak limit of the
net.

4.1.3. Let M be a JBW algebra with set of normal states denoted by K
and V the vector space spanned by K. Then the weak topology on M is
the o (M, V) topology; see (1.1.7). The strong topology on M is the locally
convex topology defined by the seminorms a — p(a®)'?, p € K; see 3.6.2.

If pe K then p(a®)?=<||all, hence norm convergence implies strong
convergence. From the Cauchy-Schwarz inequality 3.6.2(ii) p(a®)**— 0
implies p(a)—> 0, hence strong convergence implies weak convergence.
Furthermore, if (a,) is a bounded increasing net in M with least upper
bound a in M, written a, /a, then (a,) converges strongly to a. Indeed, if
peK then a—a, =0, so that

p((a—a)))<lla—a,| pla—a,)<|al p(a—a,) —0.
In the second inequality we assumed a, =0, as we may without loss of
generality.
4.1.4. Recall that if a € M then T, is the operator b — acb and U, the
operator b — {aba}. By a straightforward computation we find

Ta = %(U1+a— Ua + ")a
where 1 is the identity in M and « the identity map. We denote by T and
U?¥ the adjoint maps on M*; cf. 1.1.20.

4.1.5. Lemma. Let M be a JBW algebra with normal states K and vector
space V spanned by K. Then for all ac M, TH{ V)< V and UX(V)< V.

Proof. By 4.1.4 it suffices to show UX(K)c V*, where V" denotes the
positive linear functionals in V. Suppose b, /b in M, and let p € K. Then
(U%p)(c) = p(U,c) for each ce M, so it suffices to show U,b, 2 ULb. If a
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is invertible, by 3.2.10 and 3.3.6 U, and U = U,-: are positive maps, so
U, is an order automorphism of M, and the result follows. For arbitrary a
choose A >0 in R such that both A1+a and A1—a are invertible in M.
Then by the above we have

U)\ 1:taba } U)\ 1ﬂ:ab‘ (4-1)

It follows from the definition of U,,., that U,1.,=A%£2AT,+ U,
hence Uyqiq+ Uyi—a=2A%+2U,. Thus by (4.1) 2A%b, +2U,b, /2A%b +
2U,b. Since by assumption b, /b and U,b, < U,b we obtain U b, .7 U,b.

4.1.6. Coroliary. Let M be a JBW algebra. Then T, and U, are weakly
continuous for all a € M.

4.1.7. Lemma. A JBW algebra M is unital.

Proof. Let by 3.5.4 (u,) be an increasing approximate identity for M.
Then (u,) is a bounded increasing net, so has a least upper bound e in M.
By 4.1.3 u, — e strongly, hence weakly. If a € M then by 4.1.6 u,ca —
eca weakly. But w,ca—a in norm, hence weakly by 4.1.3. Thus
eca=a, and e is the identity in M.

4.1.8. Lemma. Let M be a JBW algebra. Then T, and U, are strongly
continuous for all ae M.

Proof. Let by 4.1.7 1 denote the identity in M. By 4.1.4 it suffices to
show that U, is strongly continuous. Suppose b, — 0 strongly. Then
p(b2) — 0 for all pe K. Since by 4.1.5 and the positivity of U, (3.3.6)
p(a® 'poU, €K whenever p(a®)#0, and poU,=0 if p(a®)=0, we
have p(U,b2)— 0. But by 2.4.17 and the positivity of U,, if be M then

(U,b)? ={a{ba’b}a}<lla[*{a{b1b}a}=|a|PU,b>.
Thus p((U,b,)%) — 0, and U,b, — 0 strongly.

4.1.9. Lemma. Multiplication is jointly strongly continuous on bounded
subsets of a JBW algebra.

Proof. Let (a,) and (bg) be bounded nets in a JBW algebra M. Suppose
first a, — 0 strongly. From the inequalities 0 < (a2)*><||aZ||a? we find that
a’— 0 strongly. If furthermore bg — 0 strongly then from the identity
a°b=3((a+b)*—a*—b? and the fact that addition is strongly continuous
by definition of the strong topology, it follows that a, °bg — 0 strongly.

Let now a, —>a and bg—> b strongly. Then we have the identity
a°b—a,obs =(a—a,)°b+(a,—a)o(b—bg)+ac(b—bg). From the previ-
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ous paragraph the middle term converges strongly to 0, while by 4.1.8 the
other two terms converge strongly to 0.

4.1.10. Let M be a JBW algebra and a € M. We denote by W(a) the
weak closure of C(a), where the latter is defined in 3.2.3.

If b, c € W(a) choose nets (b,) and (¢z) in C(a) which converge weakly
to b and ¢ respectively. By 4.1.6 we get b, ocg — bocg weakly with «, so
bocge W(a). Again we find becg — boc weakly, so bece W(a). Thus
W(a) is a subalgebra of M. Note that since the norm topology is finer
than the weak topology, W(a) is norm closed, hence is a JB algebra. If
(b,) is an increasing net in W(a) with least upper bound b then b, —b
strongly, hence weakly. Thus b € W(a), and W(a) is monotone complete.
It is thus a JBW algebra, since the states in K restrict to normal states on
W(a). Finally we note that a modification of the approximation argument
above shows that the associativity of C(a) implies that W(a) is associa-
tive. By an application of 3.2.2 we can conclude:

4.1.11. Lemma. Let M be a JBW algebra and a € M. Then W(a) is an
associative JBW subalgebra of M isometrically isomorphic to a monotone
complete C(X), where X is a compact Hausdorff space.

4.1.12, An idempotent in a JB algebra will be called a projection. Just as
for von Neumann algebras projections will play an important role in the
theory of JBW algebras.

4.1.13. Lemma. Let M be a JBW algebra and p a nonzero projection in
M. Let K denote the set of normal states on M. Then M, = U,(M) is
a JBW subalgebra of M with set of normal states K,=
{p|M,; pe K, p(p)=1}. Furthermore, if acM,,be M and 0<b=<a then
beM,.

Proof. By 2.5.5 M, is a subalgebra of M. It is weakly closed, for if (a,) is
a net in M and U,a, — a weakly, then by weak continuity of U, (4.1.6)
together with the formula U, = U,== U} (2.5.4), we have

U,a = weak lim U, (U,a,)) = weak lim U,a, = a,

so ae M,. By 3.3.6 and 4.1.8 U, is positive and strongly continnous. Thus
if a, /a in M then U,a, 7 U,a, so if a, € M, then acM,, hence M, is a
monotone complete JB algebra.

If pe K and p(p) # 0 then clearly p(p) 'p | M, is a normal state on M,.
In particular K, is a separating set of normal states on M,, so that M, is a
JBW algebra. Let @ be a normal state on M,; then there is pe K such
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that w =p | M,. Indeed, let p = U w. Since U, is positive and preserves
monotone limits p is normal, hence p € K, and we have shown K, is as
asserted.

Finally suppose O0=b<=a with aeM, beM. By 3.3.6 O0sU,.b=<
U,.a=0, so that U,.b=0. Since 0<b’<|b||b we have in particular
0<U,.b’<|b| U,:b=0, and so U,.b>=0. From 2.4.17 (Uy)’=
U,U,x? for all x, y, hence we have U,p* =0. By Macdonald’s theorem
(2.4.13) we also have the following identity:

A(xoy)?=2xoUpx+ Uy*+ Uy

Thus (p*°b)*=0, hence pob = b. But then U,b =2po(pob)—pob =b, and
beM,.

4.1.14. For later reference we note that in the final paragraph of the
preceding proof we actually proved that if p is a projection and a a
positive element in a JB algebra, then {pap}=0 implies pea =0.

4.2. Projections in JBW algebras

4.2.1. Just as in the previous section we denote by W(a) the JBW
algebra generated by an element a and 1 in a JBW algebra M. By 4.1.11
it is quite straightforward to modify existing theory for von Neumann
algebras to obtain the usual integral form of the spectral theorem for
a€M. We shall not need that much and will satisfy ourselves with a
weaker result. Recall that two projections p and g are said to be
orthogonal, written p Lq, if peq=0.

4.2.2. Lemma. Let A be a JB algebra and p, q projections in A. Then the
following five conditions are equivalent:
(i) p and q are orthogonal.
(if) p+q is a projection.
(i) p+q=1.
(iv) U,qg=0.
W) U,U,=0.

Proof. (i)=>(ii) follows since peq =0 implies (p+q)*>=p*+q*=p+q.

(i) = (ii)) is immediate since each projection is majorized by 1.

(i) = (iv) follows by positivity of U, (3.3.6) since p<p+U,q=
Uyp+U,q=U,(p+q)=<p, so that U,q=0.

(iv)=>(v) If acM, then 0<U,a<lal g, hence by (iv) 0<sU,U,a<
llall U,g =0, so U,U,a=0. Since M is linearly spanned by its positive
elements, (v) follows.
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(v)= (i) follows from the fact that U,q = U,U,1=0, and so peq =0 by
4.1.14.

4.2.3. Proposition. Let M be a JBW algebra, ac M, and € >0. Then
there exist pairwise orthogonal projections py, ..., p, in W(a) and real
numbers A4, ..., A, such that

_ Z Aipi <eg
i=1

Proof. By 4.1.11 W(a) is isometrically isomorphic to C(X) with C(X)
monotone complete. We shall therefore identify W(a) with C(X) and
write elements b in W(a) as functions b(x). It follows from the monotone
completeness of C(X) that X is Stonean, i.e. the closure of an open set is
open. However, we shall not use this. Let A €R and let ) be the set of
xeX where a(x)<A. We shall prove directly that Q is open. Let
f.:R—R be the continuous function such that f,(u)=1 when p<
A—1/n, f,(u) =0 when w =), and f, is linear in [A —1/n, A]. Then (f.(a))
is an increasing bounded net in C(X), and hence has a least upper bound
ec C(X). Clearly, 0se=<1. If xeQ then for large n, f,(a(x)) =1, hence
1=e(x)=1. By the continuity of e, e(x) =1 for all x Q. If x¢Q there is
some b e C(X) such that 0<<b=<1, b(x) =0, b|g=1. Then b=f,(a) for all
n, so b=e, and 0=<<e(x)=b(x)=0. Thus the continuous function e is the
characteristic function of (), which is therefore open and closed.

Pick now Ag<A;< ... <A, such that Ay<a=<\A, and A, —A; <g for

i=0,...,n—1. By the above, there are open and closed subsets E; such
that a=<x;, on E; while a=\; outside E,. Clearly, S=E,cE S ... <
E,=X. let p, be the characteristic function of E\E;_,i=1,...,n

Then, if b=Y""1 Ap;, b |s\5_, = A and it easily follows that [la — b <e.

4.2.4. Recall from 2.5.1 that two elements a and b in a Jordan algebra A
operator commute if T,T, = T, T,. We showed in 2.5.5 that if A is unital
and p is an idempotent in A then a and p operator commute if and only
if p and a generate an associative algebra, if and only if U,a =p-a. We
next extend this result for JBW algebras.

4.2.5. Lemma. Let M be a JBW algebra and a € M. If p is a projection in
M the following conditions are equivalent.
(i) p operator commutes with a.
(ii) p operator commutes with all elements in W(a).
(iii) p operator commutes with all projections in W(a).

Proof. (i)=> (ii) If p operator commutes with a then p and a generate an
associative Jordan algebra (2.5.5), hence by the argument of 4.1.10 the
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weakly closed algebra generated by p and a is associative. Since this
algebra contains W(a), again by 2.5.5 p operator commutes with all
elements of W(a).

(i) = (iii) is trivial.

([{i)=> (@) If p operator commutes with all projections in W(a) it
operator commutes with all their linear combinations. By norm continuity
of T, and U, (3.2.7) p operator commutes with a by 4.2.3.

4.2.6. Lemma. Let M be a JBW algebra and a € M. Then there exists a
smallest projection r(a) in M with the property that r(a)oa = a. r(a) belongs
to W(a).

We call r(a) the range projection of a.

Proof. For each neN let f, be the real continuous function defined by
fu(®) =1 for |t|=1/n, £,(0)=0, and f, is linear on the intervals [—1/n,0]
and [0, 1/n]. Then (f,) is an increasing sequence of functions bounded by
1. As in the proof of 4.2.3 the sequence (f,(a)) is increasing and
converges strongly to its least upper bound r(a). Using 4.1.9 it is easy to
see that (f,(a)?) converges strongly to r(a) as well, hence r(a) is a
projection in W(a). Since lim,, ||f,(a) e a—al|=0, r(a) c a = a.

Suppose p is a projection in M such that pea=a. Then U,a =
2pe(pea)—pea=peca, so that p and a operator commute by 2.5.5. By
4.2.5 p, and hence 1—p, operator commutes with all elements in W(a). If
J denotes the set of b e W(a) such that (1—p)ob =0 then by 2.5.8 J is an
ideal in W(a). Now, by the Stone-Weierstrass theorem, polynomials
without constant terms are dense among the functions in C(Sp a) vanish-
ing at 0. Since a €7 it therefore follows from the spectral theorem (3.2.4)
that J contains all elements f(a) in C(a), where f is a continuous real
function on R such that f(0) = 0. In particular f,(a)e J for all n. Since J is
strongly closed by 4.1.8, r(a)eJ. Thus r(a)=por(a), so that r(a)=
{pr(a)p}=<p, proving the minimality of r(a).

4.2.7. If M is a JBW algebra we use the symbols V and A to denote the
least upper bound and greatest lower bound in the set of projections in M
if they exist, as we now proceed to show that they do.

4.2.8. Lemma. Let M be a JBW algebra and P the set of projections in M.
n 13 n n 1
() If ps, ..., po€P then \/1 pi =r(z pi) and /\1 pi = (,\/1 p#) .
- i= i=1 i= i=

(ii) If (Pa)ucr is a family of projections in P then \/ p, and A p, exist.

ael ael
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Proof. (i) By 4.1.13 0<a=<b implies r(a)=<r(b). Therefore

p=r(p)= r<§1 pi),

so that
V p Sr(Z Pi>~
i=1 i=1

If geP and pi<q, i=1,...,n, then Y, p;<ng, so that rQi_, p)<q.
This proves

for all j, hence

n L n
(V Qi> = A p-
i=1 i=1

" Conversely, since Aj'-; p; <p; we have

n L
4 =pji < (_/_\1 pi> :

hence
n n L
(V qi)s(/\ pl) ,
i=1 i=1
so that

and they are equal.

(i) X (p)eer is a subfamily of P let & be the directed set of finite
subsets of I ordered by inclusion. For Fe % let pr = Vcgpi- By () pre P,
and (pg)rcg is an increasing net in P, which converges strongly to its least
upper bound p. By strong continuity of multiplication on bounded sets in
M (4.1.9) p is a projection, so lies in P. Thus V,rp. exists in P.

Finally the same argument as for \/,.;p, in the previous paragraph
applies t0 Aycrp. and shows that A,.;p, € P.
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4.2.9. Remark. Let M be a JBW algebra and (a,)..r an indexed family
of elements in M with ||a,[|<k < for all ael and with pairwise
orthogonal range projections r(a,). Then the infinite sum Y, _; a,, exists in
M as the strong limit of the bounded net (¥, .r a,)r.q, Where % is the set
of finite subsets of I ordered by inclusion. Moreover, [[Yoc;d.l|<k. In
particular, if (p,).cr is @ family of pairwise orthogonal projections in M
then },.; p, is a projection in M, indeed, Yo po = Voct Po

To prove the above note that by the spectral theorem (3.2.4) each
a, = a,—a, with la|<k and a’ca;=0. By strong continuity of addi-
tion we may consider the two families (a;),.r and (a;).c; separately,
hence we may assume 0<aq, < k1 for all « € . Since the range projections
r{(a,) are pairwise orthogonal, it follows from 4.2.2 that if Fe % then
0=}, cr Oy <Yqcpkr(a,) < kl. Then the net (¥, .ra,)r.q is bounded and
increasing, so by 4.1.3 converges strongly to its least upper bound Y., a,,.
Note that since multiplication is strongly continuous on bounded sets
(4.1.9), if a, = p, are pairwise orthogonal projections then by 4.2.2 each
sum Y, ra, is a projection, hence so is their strong limit ¥, rp.. By
4.2.8 it is clear that Y c; Do = Vel Po-

4.3. The centre

4.3.1. By 2.5.1 the centre of a Jordan algebra A is the set of elements in
A which operator commute with all elements in A. Since by 4.1.6
multiplication is separately weakly continuous in a JBW algebra M, the
centre Z of M is an associative JBW subalgebra of M. We shall often
write ab instead of a°b if acZ and be M.

Recall that a symmetry in M is an operator s such that s?=1. The
following characterization of the centre is quite useful.

4.3.2. Lemma. Let M be a JBW algebra with centre Z. If ac M then
aeZ if and only if U,a = a for all symmetries s € M,

Proof. There is a one-to-one correspondence between the set of projec-
tions in M and the set of symmetries in M given by p—>s=2p—1.
Furthermore it is easily verified that U,,_, =2U,+2U;_,—.. By 4.2.5
a € Z if and only if a operator commutes with all projections in M, hence
by 2.5.5 if and only if a = U,a + U,_,a for all projections p in M. By the
above identity this is equivalent to U,a = a for all symmetries s € M.

4.3.3. Let M be a JBW algebra with centre Z. If p is a projection in M
then its central support c(p) is the smallest projection in Z majorizing p.
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4.3.4. Proposition. Let M be a JBW algebra with centre Z. Let p be a
projection in M. Then the map T,: Z — Zp is a homomorphism with kernel
Z(1-c(p).

Proof. The map T, is by 2.5.8 and 4.1.6 a weakly continuous
homomorphism of the associative JBW algebra Z onto Zp. In particular
its kernel is a weakly closed ideal J in Z. By 4.2.3 J is generated by its
projections. If e is a projection in J then (1—e)p=p, so 1—e=c(p),
hence e <1—c(p). Since conversely (1—c(p))p =0, the proof is complete.

4.35. Lemma. Let M be a JBW algebra with centre Z. If p is a projection
in M and e a projection in Z then c(ep) = ec(p).

Proof. Clearly c{ep)<ec(p). Conversely since ((1L—c(ep)e)p =
(1—c(ep))ep =0 it follows from 4.3.4 that (1—c(ep))ec(p)=0. But then
ec(p)=c(ep), and they are equal.

4.3.6. Proposition. Let M be a JBW algebra and J a weakly closed ideal
in M. Then there exists a central projection e in M such that J = eM.

Proof. Since J is itself a JBW algebra, it has by 4.1.7 an identity e. Thus if
acM then ecael, and so eca=ec(eca), so that e is central in M by
2.5.5, proving the proposition.

4.3.7. Remark. If ¢ is a weakly continuous homomorphism of a JBW
algebra M into another JBW algebra, then its kernel is a weakly closed
ideal, hence of the form eM. The projection e is called the support of ¢,
and is the smallest projection f in M such that ¢(f) = ¢(1).

4.38. Lemma. Let J% be a von Neumann algebra and M a weakly closed
Jordan subalgebra of M,, and assume that M generates M. Then the centre
of M is contained in the centre of M.

Proof. By 4.2.3, since the centre of M is a JBW algebra it is enough to
show that any central projection e in M belongs to the centre of . If
acM then by 2.5.5 a = eae + e*ae", from which ea = ae follows. Since M
generates M, ea = ae for all ae M, so e is in the centre of M.

4.4. The second dual

4.4.1. A useful result on C* algebras is the observation that the second
dual of a C* algebra is a von Neumann algebra. Furthermore, a C*
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algebra is a von Neumann algebra if and only if it is a dual space. We
shall in the present section prove the analogous results for JB algebras. In
the process we shall make heavy use of the results and concepts of
Sections 1.1 and 1.2. Our first result is a weak form of the GNS
representation for states on C* algebras.

442, Lemma. Let A be a JB algebra and p a state on A. Then there
exists a real Hilbert space H, with inner product { , ) and a linear map
Mp: A — H,, with |In,||<1 such that n,(A) is dense in H, and p(ab)=
(m,(a), m, (b)) for all a,bec A.

Proof. Define a bilinear form on A by (a, b)=p(ach). Let N=
{ae€ A:(a, a) = 0}. By the Cauchy-Schwarz inequality (3.6.3) a € N if and
only if (a, b) =0 for all be A. Thus N is a linear subspace of A, and A/N
is a real pre-Hilbert space with completion H,. If n, denotes the quotient
map m,: A — A/N < H, then p(acb)=(a, b)={(n,(a), n,(b)) for all a, be
A, and |, (@)|* = p(a®)=<[la?|=llal?, so |In,/l<1.

4.4.3. Theorem. Let A be a JB algebra. Then its second dual A** is a
JBW algebra whose product extends the original product in A and which is
separately weak-* continuous. Furthermore, the weak-* continuous exten-
sion to A™* of a state on A is normal.

Proof. We first assume A is unital. Let S(A) be the state space of A
(1.2.1) and let p € S(A). By 4.4.2 there is a real Hilbert space H, and a
linear map n,: A — H, with |n,||<1 such that n,(A) is dense in H, and

p(a°b)={(n,(a), n,(b)), a,beA. (4.2)

Since Hilbert spaces can be identified with their duals, H, = H**. By
1.1.21 let n3* denote the extension of m, mapping A** into H* = H,,
Then [n}*[l<1. If a, be A** define f,,: S(A) >R by

fas(p) = (m* (), n3* (B)). (4.3)

Since by 1.1.21 n%* is continuous when A** is given the weak-x*
topology and H, the weak topology, f,,(p) is separately weak-# continu-
ous in the variables a, b in A™ for each p< S(A). By (4.2) and (4.3) if
abe A, peS(A) then f,(p) = p(acb). Thus f,, is a w*-continuous affine
function on S(A) when a,b € A. Now A is weak-* dense in A** (1.1.19).
Hence if a,be A** we can choose nets (a,) and (b;) in A converging
weak-# to a and b respectively. Then we have

f a,b(p) = nin f awb(p) = liin lién f a.,,bB(P),

so that f,, is an affine function on S(A). It is also bounded since
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fapo)=<lng* (@l [In3* B <llall|bl. By 1.2.11 £, can thus be extended
to a unique element acb in A™* satisfying (a°b)(p) =f.,(p), pc S(A).
Then the map A*™*x A** — A** defined by (a, b)— a°b is separately
weak-* continuous in a and b.

Recall from 2.4.3 that the linearized Jordan axiom is

([TaOba Tc] + [Tboca Ta] + [Tcea’ Tb ])(d) = 0

for a,b,c,de A. If we take weak-* limits in each variable a, b, ¢, d
separately we see that the identity also holds in A**. Since commutativity
is obvious, A** is a Jordan algebra.

By 3.3.10 A is a complete order unit space such that —1=<a =<1 implies
0<a®=<1. It follows from 1.2.7 that A** is a complete order unit space
such that if a € A* and —1=<a =<1 then ||a]|=<1. But then, if pe S(A), we
have

a’(p) = foulp) =IIM* (@IP<lalP=1,

so that 0=<a®*<1. Thus A** is a JB algebra by 3.1.6. Furthermore, A**
is monotone complete since it is by 1.2.11 order isomorphic to A®(S(A)).

In order to show that A** is a JBW algebra it remains to exhibit a
separating set of normal states. Let pe S(A) and let § be its weak-*
continuous extension to A** (1.1.22). Suppose (a,,) is a bounded increas-
ing net in A™* with least upper bound a in A**. Since A** is order
isomorphic to A®(S(A)), and since a, a,a,!|S(A)—a|S(A) point-
wise. In particular g(a,) = a,(p) — a(p) = p{a), so that p is a normal state
on A™*. Since S(A) separate points on A** we have shown that A** is a
JBW algebra whenever ‘A is unital.

Finally, if A is non-unital we can apply the previous results to A. Then
by 1.1.23 and the previous discussion A** is a weak-* closed subalgebra
of (A)**, hence A** is in particular a JB algebra. It is monotone
complete, since if (a,) is a bounded increasing net in A** with least
upper bound a in (A)** then for all p e S(A), p(a,) — p(a). Thus a, — a
weak-*, proving that a e A**. Any state p, of A extends to a state p of
A by p(1)=1 (3.6.6). Then p restricts to a weak-* continuous state g, on
A** extending p. Since we have seen that any bounded increasing net in
A™* has a least upper bound in A** coinciding with its least upper bound
in (A)**, 5, is normal. Thus A** has a separating set of normal states, o
it is a JBW algebra.

4.4.4. From 4.4.3 it immediately follows that weak convergence in A**,
as defined in 4.1.3, implies weak-#* convergence. For, by 1.1.8 every
weak-* continuous linear functional on A** is g for some p € A*. Since
by 1.2.6 p is a linear combination p = Ao + u7 of states, it follows from
4.4.3 that p=AG+ u7 is a linear combination of normal states on A**,
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It will follow from 4.4.16 below that the weak and weak-* topologies
coincide on A*¥,

For the moment, however, we shall note that any weak-* closed ideal
in A** is weakly closed, hence by 4.3.6 is of the form eA™* for a central
projection in A™*,

4.4.5. Our next objective is to show A™* is the monotone completion of
A, ie. A™ is the smallest monotone complete subset of A** which
contains A. For this we shall need some results on orthogonal states. We
say two states p and w on A are orthogonal, written p L o, if [jp — || =2.
We shall identify a state p on A with its normal (and weak-* continuous)
extension p on A**,

4.4.6. Lemma. Let p and o be states on a JB algebra A. Then p L if
and only if there is a projection p € A** such that p(p)=w(1—p)=1.

Proof. If p is a projection in A™ such that p(p)=w(l-p)=1 let
s =2p—1. Then s is a symmetry such that (p — w)(s) = 2, hence ||p — w||=2
(1.1.22).

Conversely assume p L . Since by the Alaoglu theorem (1.1.17) the
unit ball A¥* of A** is a weak-* compact convex set there exists by the
Krein—Milman theorem (1.1.6) an extreme point s of AY* such that
(p—w)(s) =2. By the spectral theorem (3.2.4) it is easy to see that an
extreme point of AT* must have its spectrum contained in {+1}. There-
fore s is a symmetry, hence there is a projection p in A™* such that
2=[p2p)—1]-[w(2p)—1], or p(p) =1+ w(p). Since 0=<p(p)<1and 0=
w(p)=1 this shows p(p)=1=w(l-p).

4.47. If B< A** we denote by B, (resp. Bs) the set of weak-+* limits of
increasing (resp. decreasing) sequences in B. We write B,; for (B,)s. As
before we denote by A; the unit ball of A.

4.4.8. Lemma. Let p and w be orthogonal states of a JB algebra A. Then
there exists y € (A7), such that p(y) =1, o(y)=0.

Proof. We consider A as an ideal in A. By 1.2.8 A7 is weak-* dense in
AN A¥* By 4.4.6 there exists a sequence (x,) in A7 such that

n—1

1
plx,)> and w(x,) <—r:2_".

For n=sm let

m ~1 m m
Yom = (1 + Z kxk> ° Z kxk :f( Z kxk),
k

=n k=n k=n
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where f is the real function f(t)=¢/(1+1)=1-1/(1+¢). By 3.5.3 f is
operator monotone, i.e. 0=<<a =<b implies f(a) <f(b). Thus (y,..) increases
vzith m and decreases with n. Note also that y,,, € A since A is an ideal in
A. Let

Y= weak-* hyin Yium € (AT)U

Since (y,,,) decreases with n, (y,) is a decreasing sequence. Let
y =weak-* lim y, € (A7) s

We have

w(%mJ’5&<iZ:kx;)$ Z:ki%z_ksgz—n+{
k

k=n =n

Since w is normal on A** 0<w(y,)<2™""", hence w(y)=0. If n<m,
since 0=<<x, =<1, we have

_ m
pme>p®w0=p«l+an‘mnuap(———ng
m+1
m m—1 m-—1
m+1 m m+1’

m
= —— =
, m+1p@@

Thus p(y,)=1, hence equal to 1. It follows that p(y)=1.

4.4.9. Let A be a JB algebra. We say a subspace B of A™** is monotone
closed if a, € B, a, /'a implies a ¢ B.

4.4.10. Theorem. Let A be a JB algebra. Then A*™* is the monotone
completion of A, i.e. A** is the smallest monotone closed subspace of
A** containing A.

Proof. Since A** is a JBW algebra (4.4.3) it suffices by 4.2.3 to show that
each projection in A** lies in the monotone completion of A. Let p be a
projection in A**, p#0, 1. We shall find, for any pair p, @ of states on A
such that p(p)=1 and w(p)=0, a projection p,, in the monotone
completion of A satisfying p(p,.) =1 and w(p,.)=0.

Assume now that p, @ is such a pair. By 4.4.6 p L. w so there is by 4.4.8
y€(Al)as such that p(y)=1, o(y)=0. By 4.2.6 there is an increasing
sequence (f,,) of continuous real functions with £, (0) =0 such that (f,(y))
converges to the range projection r(y) of y. In particular r(y) e (A7)ss0-
Since 0<y=<1, 1=p(y)<p(r(y))=<1, so that p(r(y))=1. Since w(y)=0,
the Cauchy-Schwarz inequality (3.6.2) implies w(yep(y))=0 for all
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polynomials p. Since f,(0) =0, then the Stone-~Weierstrass theorem im-
plies w(f,(y))=0. By the normality of  on A*™ (4.4.3), w(r(y))=0. We
can therefore let p, .= r(y).

To convince ourselves that there are p, w in S(A) with the properties
p(p)=1, w(p)=0, we shall show that more generally, if g is a nonzero
projection in A** there is p € S(A) such that p(q) = 1. Indeed, pick some
po€ S(A) such that py(q) #0. Let p=py(q) U p,. Then p is a state on
A** such that p(q) =1. By 4.4.3 p is weak-* continuous, and so belongs
to S(A).

Let T={dcS(A): ¢(p)=0}. By 4.2.8 and its proof p,=AwecrPow
belongs to the monotone completion of A, and if wq,...,w,€T then

1 Do, = (AN'=1 Do) ™. Since p(p,.,) =0 for all we T, p(Xi-y Ppaw) =0,
hence it follows as for r(y) above that p(r(Q -, p;.)) =0. But then by
4.2.8 p(\Vi-1Ppw) =0, and so p(A'~1 p,.) =1 whenever wy,...,w,eT.
By normality of p and the proof of 4.2.8 p(p,) = 1. Since w(p,,) =0 for
all we T it is clear that w(p,) = 0.

Let S={peS(A): p(p)=1}, and let p =/ .5 p,- We shall show p=p,
thus proving that p belongs to the monotone completion of A, since it is
clear by 4.2.8 that p belongs to this set. As above p(p)=1 and w(p)=0
for pcS,wecT. The previous arguments applied to pAp now show
p(@Ap)=1and w(p—pAp)=0for all peS. But if p# p Ap then there is
peS(A) such that p(p—pAp)=1. But then peS, and we have a con-
tradiction, hence p=pAp, and p<p. If p#p we can similarly find
w € S(A) such that w(p—p)=1. But then we T, again a contradiction.
Thus p =p, as asserted, and we have shown each projection in A**
different from O and 1 belongs to the monotone completion of A. Since
evidently 1=V ,c4 r(a), the same is true for 1, and we are done.

4.4.11. Corollary. Let A be a IB algebra and p a normal bounded linear
functional on A**. Then p is weak-* continuous.

Proof. By 4.4.10 p is uniquely determined by its restriction to A, and by
1.1.22 each functional in A* has a unique weak-* continuous extension
to a functional on A™**. Since this extension is normal, it must be p, so p
is weak-* continuous.

4.412. A linear map E: A — A with A a JB algebra is said to be
idempotent if E*>=E. In C* algebras idempotent maps which map A,
into A have been quite important. In the JB algebra case we shall need
the following result.

4.4.13. Lemma. Let A be a JB algebra and B a JB subalgebra of A.
Suppose E: A — B is a surjective linear idempotent map with ||E|<1.
Then E(a°b)=E(a)°b for all ac A, be B.
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Proof. By 1.1.21 E extends to a map E**: A** — B** such that |E**|<
1 and E** is continuous in the weak-* topologies. By 1.1.23 we may
consider B** as a subset of A** and then by weak-* density of B in B**
(1.1.19) E** is idempotent, hence surjective. By 4.4.3 A** and B** are
JBW algebras with B** a JBW subalgebra of A**. Thus we may replace
A, B and E by A™, B* and E** respectively, i.e. by 4.1.7 and 4.2.3 we
may assume

(i) A has an identity 1,
(i) B has an identity e,
(iii) B is the norm-closed linear span of its projections.

We first show E(1)=e. Indeed, if E(1—e)=b#0 let 8 =|bl. Then
be U,(A), so that

I1—e+p7"bl|=max{|l1—ell, B7Y|bl} = 1.

Since [E(1—e+B7'b)|=|lb+B7*b||=B(1+ B 1) >1 we have contradicted
the assumption that ||E||<1, proving our assertion.

Just as for states (1.2.2) it now follows that E is positive, i.e. a=0
implies E(a)=0. Indeed if a € A7 then ||1—a|=<1, hence |le—E(a)||=
IE(1—a)|| =<1, so that E(a)=0 by the spectral theorem (3.2.4) and the
fact that e is the identity in B.

Let p be a projection in B. If a€ A™ then by positivity of U, (3.3.6)
0=<{pap}=<l|lall p, so that 0= E({pap}) <|\al| E(p) =|al| p, and in particular
by 4.1.13 E({pap}) € U,(A). By linearity this holds for all a €A, so we
have

{pE({pap})p} = E({pap}) for all a € A, (4.4)

"~ or U,EU, = EU,,

We first assume e = 1. Let A = A; DA, ,,P A, be the Peirce decompos-
ition of A with respect to p (2.6.2). By (4.4) E(A)< A,, and similarly
E(Ag) <A, Let acA,p,. If peS(B) and p(p) =0 then pEe S(A) and
pE(p) =p(p)=0. Since pea=3a we therefore have from the Cauchy-
Schwarz inequality (3.6.2) that p(E(a))=2pE(pca)=0. For a general
state p e S(B), pU,.(p)=0, so that p(U,.E(a)) =0. Since the states of B
separate points U,.E(a)=0, and E(a)e A;P A,,,. By symmetry E(a)e
A1pD Ay, hence E(a)e A,),. We have thus shown E(A) < A, i=0,3 1.
But then ET,=T,E or E(pca)=p-<E(a). Since by (iii) B is the closed
linear span of its projections E(beca)=boE(a) for all be B, a c A.

Assume next e#1 and let p be a projection in B as above. Let
A=A;DA,,DA, be the Peirce decomposition of A with respect to e.
Then A;> B, so E(A;)=B. By the previous paragraph we then have
E(boa)=b°E(a) for ac A, beB. Since A;°A,,=A,, and AgeA;=0
(2.6.3) we have B°A,,< A, and BoA,=0. Therefore it suffices to
show E(A;;)=E(Ap)=0. Let peS(A) and a€ A, or acA,,. Then
a=e"oc with ¢ equal to a if acA, and c=2a if acA,,. Since
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pE€S(A) and pE(e*) =0 the Cauchy-Schwarz inequality (3.6.2) implies
p(E(a)) = p(E(e*oc)) =0. Since this holds for all states p, we get E(a)=
0, proving the lemma.

4.4.14. If X is a Banach space a norm-closed subspace Y of X* is a
predual for X if X =Y* in the natural duality (x, p) = p(x) between X
and X* (1.1.24). f X has a predual we say X is a Banach dual space. If
V is a subspace of X recall from 1.1.9 that the polar V° of V is the
subspace of X* defined by V°={pe X*: p(x)=0 for all xe V}.

One of the classical results in C* algebras is due to Sakai (see 1.4.6),
and states that a C* algebra is ultra-weakly closed if and only if it is a
Banach dual space. The analogous result is true for JB algebras. We first
prove a preliminary result.

4.4.15. Lemma. Let M be a JBW algebra. Let K be the set of normal
states on M and V the linear span of K in M*. Let J = V° be the polar of V
in M**. Then there exists a central projection e in M** such that J=
(1—e)M**, and the map a — ea is an isomorphism of M onto eM™*.

Proof. By 4.1.5 T¥(V)c Vforallae M Thusif xeJ= V%and Pe V we
have T¥*(x)(p) = x(T¥p) =0, so that T}*(J)<J for all ae M < M**. By
separate weak-#* continuity of multiplication in M** (4.4.3) and the fact
that J is weak-* closed, we conclude that T,(J)<J for all a e M**. Thus
J is an ideal in M™*, so by 4.4.4 there is a central projection f in M**
such that J = fM™*.

Let e =1—f. Then e is a central projection in M™*, so that by 2.5.6 U,
is a homomorphism of M** into itself. Since by 2.5.5 v=U, + U;, the
kernel of U, is J. Now the normal states separate M, so that MNJ =
M N V°={0}. Thus U, is one-to-one on M and so is an isometry of M
into eM** (3.4.3).

It remains to show U,(M)=eM**. For this we first show U, (M) is
monotone closed in M**. Suppose (U,a,) is a bounded increasing net in
U,(M). Since by 4.4.4 eM™* is a JBW algebra with identity e there is
a € M** such that U,a, /a. Since U, is an isomorphism of M onto
U, (M), it is an order isomorphism, so (a,) is a bounded increasing net in
M. Let b be its least upper bound. Then a, — b strongly. By 4.1.8 U,
is strongly continuous, so a=UbeU,(M), proving that U.(M) is
monotone closed.

Let M ={beM**: U,be U,(M)}. Then M'> M, and by the previous
paragraph M’ is monotone closed. Thus by 4.4.10 M'=M"**, and so
eM™ = U,(M**) = U,(M), proving that U, is an isomorphism of M onto
eM**,
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4.4.16. Theorem. Let M be a JB algebra. Then M is a JBW algebra if
and only if M is a Banach dual space. In this case the predual is unique
and consists of the normal linear functionals on M.

Proof. Suppose M is a JBW algebra and use the notation of 4.4.15. Let
W denote the norm closure of V. Then W°=V? so if f=1—e¢ then
fM** =J=W° and by 1.1.15 if a e M**, |la | W||=|la+ W|. Now U, is a
homomorphism on M** with kernel J; so by 3.4.4 |U,all=|la + J||. Com-
bining the two equalities we then have ||a | W||=|U.al| = ||a|| for a € eM**,
so that the restriction map a—a| W is an isometry from eM™* onto
W*. Since U, is an isometry of M onto eM** by 4.4.15, the composition
a-— U,a->U,a| W is an isometry of M onto W*. If pc W is identified
with its weak-* continuous extension to M** we have p(f)=0 since
fe V°. Since f is a central projection p = pU,, so that U¥*(p) = pU, = p for
p € W. But then using dual notation, (U,a, p)={(a, U¥p)={(a, p)=p(a) for
a € M. Therefore M is the dual of W in the natural pairing. This proves
that M is a Banach dual space and that one predual is the norm-closed
linear span of its normal states.

Conversely assume M is a Banach dual space and that X is a norm-
closed subspace of M* such that M =X¥ in the natural pairing. The
inclusion map X — M* defines by 1.1.20 a linear map E: M** — M =
X* of norm 1 such that if a € M** and p e X then p(E(a)) = a(p). Since
this holds for all pe X, E(a)=a for a € M, hence E is idempotent. It is
immediate from its definition or from 1.1.20 that E is continuous if M**
is given the weak-* topology and M the weak topology defined by X. In
particular the null space J of E is weak-* closed in M**. By 4.4.13 if
aeM*™, beM then E(acb)=E(a)°b, so if in particular aeJ, then
E(a°b)=0. Since M is weak-* dense in M** (1.1.19) it follows that
E(a~b)=0 for all acJ, be M**, hence J is an ideal in M**. By 4.4.4
there is a central projection f in M™** such that J = fM** Let e=1—f.
Then M** =J@®eM**, and E is a linear isomorphism of eM** onto M.

If aeM then a =E(a)= E(fa+ ea)= E(ea), hence the inverse to the
linear isomorphism E: eM** — M is the map U,, which is a homomorph-
ism (2.5.6), hence an isomorphism of M onto eM**, In particular M is a
JBW algebra by 4.4.4.

It remains to characterize the predual. We first note that in the notation
above J=X°. For, if aeJ and peX then p(a)=p(E(a))=0, while
conversely if a € X° then for all p e X p(E(a))=p(a) =0, hence E(a)=0
since X separates the points of M. By the bipolar theorem (1.1.10)
therefore peM™* belongs to X if and only if p|J=0. Since J=
(1—-e)M**, we conclude that pe X if and only if p(a)=p(ea) for all
ae M*,

If pe X then p, belonging to M¥*, is normal as a functional on M**
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(4.4.3), and hence on eM**. Since a — ea is an isomorphism from M
onto eM** and p(a)=p(ea) for all ac M, p is normal on M.

Conversely, if p e M* is normal on M, let p = pE on M™*. Since E is an
isomorphism from eM** onto M, j is normal on eM™*, and therefore on
all of M**, since it vanishes on e*M**, Since p| M =p, by 4.4.11 p=p as
functionals on M**. Thus p vanishes on J, and hence belongs to X.

We have proved that the predual of M is unique and consists of the
normal functionals. This finishes the proof. We note for future reference
that in the latter part of the proof, we showed the following result:

4.4.17. Corollary. Let M be a JBW ‘algebra. Then there is a central
projection e in M** such that the predual of M is T5(M*), and T, is an
isomorphism of M onto eM™*.

4.5. Normal functionals and homomorphisms

4.5.1. In this section we present some of the easy consequences of the
existence and uniqueness of preduals for JBW algebras (4.4.16). In
particular, the space V used in Section 4.4 turns out to be identical with
the predual of M (4.5.4). Then we shall investigate continuity of
homomorphisms of JBW algebras.

452, If M is a JBW algebra we denote by M, its predual, i.e. the set of
normal bounded linear functionals on M. We write M5 for the cone of
positive functionals in M. :

4.5.3. Proposition. Let M be a JBW algebra and let p e M,,. Then there
are o, 7€ M¥ such that p=o—7 and ||p|=|o|+|l.

Proof. Since M is an order unit space, by 1.2.6 there are oy, 7o€ MY such
that p = 04— 1, and ||p|| = |looll +|l7oll. Let e € M™ be the central projection
such that My = TXM*) (4.4.17). Let o = T(0y), 7= T} (7). Then o, 7€
M; and p =0 —1. Also, |la||+{rl|<lloll+ 7ol = loll <l + 7.

4.5.4. Corollary. Let M be a JBW algebra, and let pc M*. Then the
following are equivalent: "
(i) peM;.
(ii) p is weakly continuous.
(iii) p is strongly continuous.
In particular, the weak and o (M, M,.) topologies coincide on M.

Proof. If K is the set of normal states on M then Mx ={Ap: A =0, peK}.
Hence by 4.5.3 M, equals the linear span V of K. Thus the o(M, M)
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topology is the weak or o(M, V) topology (4.1.3). This proves the
equivalence of (i) and (ii). Trivially, (ii) implies (iii). Finally, if p is
strongly continuous and a, ”a then a, — a strongly by 4.1.3, so p(a,) —>
p(a), or p is normal. Thus (iii) implies (i).

4.5.5. Corollary. Let M be a TW algebra acting on a complex Hilbert
space. Then the weak topology on M (considered as a JBW algebra)
coincides with the ultraweak topology.

Proof. If M, denotes the set of ultraweakly continuous linear functionals
on M then by 1.4.4 M=(M,)*. By the uniqueness of the predual of M
(4.4.16) My = M... Since the ultraweak topology on M is the a(M, M)
topology, the proof is completed by an application of 4.5.4.

It might be added, in order to avoid confusion, that the topology we
have called the strong topology in JBW algebras coincides with what is
usually called the ultrastrong topology in the JW algebra case. The
interested reader can easily verify this by using 4.5.4.

4.5.6. Let M, N be JBW algebras and let ¢: M — N be a homomorphism.
We call ¢ normal if a, 7a in M implies ¢(a,) ”d(a). Note that this
definition is in terms of order structure alone, and does not involve
topology. Nevertheless, ¢ is normal if and only if it is weakly continuous.

Indeed, ¢ is weakly continuous if and only if ¢* maps Ny into My, i.e.
if and only if pe Ny, a,7a in M implies p(d{(a,)) — p(d(a)). But
p(d(a,)) — p(d(a)) for all pe N, if and only if ¢(a,)”¢(a) in N, so this
latter condition is just normality if ¢, and our claim is proved.

Clearly any isomorphism of JBW algebras, being an order isomorph-
ism, is normal and hence weakly continuous.

4.5.7. Proposition. Let A be a IJB algebra, M a JBW algebra and
¢: A — M a homomorphism. Then there is a unique normal homomorph-
ism ¢: A™ — M extending ¢.

Proof. Since A* is a predual for A™, by 4.4.16 and 4.5.4 the weak
topology on A** is the weak-* topology. Since A is weak-* dense in
A™* (1.1.19), the uniqueness of ¢ follows from 4.5.6. ,

To show existence, note that ¢**: A** — M™** is weakly continuous, so
by density of A in A** it is a homomorphism. By 4.5.6 ¢™* is normal. By
4.4.17, there is a central projection ee M™** such that a —>ea is an
isomorphism of M onto eM™**. Its inverse, being an isomorphism, is
normal (4.5.6), so its extension E to a homomorphism E: M** — M by
E|e*M** =0 (this is the E from the proof of 4.4.16) is normal.
¢ = E¢** is the desired normal extension of ¢.
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4.5.8. Corollary. Let A be a JB algebra and let J be a norm-closed ideal
in A. Then each homomorphism of J into a JBW algebra M can be
extended to a homomorphism of A into M.

Proof. The weak closure of J in A** is clearly an ideal, since A is weakly
dense in A** and multiplication is separately weakly continuous. By 4.3.6
there is a central projection e in A™* such that the weak closure of J
equals eA™*. The second dual J** of J can then be identified with eA**;
see 1.1.23. Then by 4.5.7, a homomorphism ¢:J— M can be extended

to a normal homomorphism ¢:eA**— M. We can then obtain the
desired extension A — M of ¢ by a — ¢{ea).

4.5.9. Let M be a JBW algebra and N a norm-closed subalgebra of M. If
N is monotone closed it is clearly monotone complete, and ‘every normal
state on M restricts to a normal state on N. Hence N is a JBW algebra.
We call a monotone closed and norm closed subalgebra of M a JBW
subalgebra. The following result is a natural analogue of the characteriza-
tion of JBW algebras as dual spaces.

4.5.10. Proposition. A norm-closed subalgebra of a JBW algebra M is a
JBW subalgebra if and only if it is weakly closed.

Proof. Assume A is a JBW subalgebra. Let ¢: A — M be the inclusion
map. By 1.1.23 **(A™*) is weakly closed in M™*. Therefore, in the
terminology of the proof of 4.5.7, since the isomorphism E: eM™** — M is
a homomorphism of weak topologies (4.5.6), i(A**)=E(et™(A**)) is
weakly closed in M.

Let B={ac A*:i(a)e A}. Since ¢ is normal and A is monotone
closed in M, B is monotone closed in A**. But B contains A, and A** is
the monotone completion of A (4.4.10), so B equals A**, Thus A =
t(A*™), and A is weakly closed.

The converse, that a weakly closed subalgebra is monotone closed, is
trivial, since monotone nets converge weakly (4.1.3).

4.5.11. Corollary. Let M and N be JBW algebras and ¢: M— N a
normal homomorphism. Then ¢(M) is a IBW subalgebra of N.

Proof. Let e be the support of ¢, i.e. the central projection in M such
that e*M is the kernel of ¢ (4.3.7). Then ¢(eM) = (M), and on eM ¢ is
injective, hence an isometry. Thus the unit ball of ¢ (M), being the image
of the unit ball of eM, is weakly compact by the weak continuity of ¢ and
the Alaoglu theorem (1.1.17). Now the reader who knows the Krein—
§mullyan theorem can conclude that ¢(M) is weakly closed. Since we do
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not want to assume this theorem, we prove instead that &(M) is
monotone closed. Let (a,) be a bounded increasing net in ¢(M). We may
assume ||a,||=<1. But then, since the unit ball of ¢(M) is weakly closed,
a =weak lim a, belongs to ¢(M), as desired.

4.5.12. The Kaplansky density theorem. Let A be a strongly dense
subalgebra of a JBW algebra M. Then the unit ball of A is strongly dense
in the unit ball of M.

Proof. We may assume A is norm closed. Let t: A — M be the inclusion
map. As in the proof of 4.5.11, ¢ maps the unit ball of A** onto that of
M. But the unit ball of A is weakly dense in that of A** (1.1.19) and i is
weakly continuous, so the unit ball of A is weakly dense in that of M.

By 4.5.4 the weak and strong topologies have the same continuous
linear functionals. Therefore a convex set has the same closure in the two
topologies, as follows from the Hahn-Banach theorem (1.1.2). Thus the
unit ball of A is strongly dense in that of M.

4.6. Factor representations of JB algebras

4.6.1. The centre Z of a JBW algebra M is clearly a JBW subalgebra of
M. If Z consists of scalar multiples of the identity alone, M is called a
JBW factor. Since Z is generated by its projections (4.2.3), M is a JBW
factor if and only if it has no central projections other than O and 1.

Let A be a JB algebra and ¢ a homomorphism of A into a JBW
algebra M. We call ¢ a factor representation if the weak closure ¢(A) of
d(A) in M is a IBW factor. Two factor representations ¢, and ¢, are
called equivalent if there is an isomorphism ¢ of ¢1(A) onto ¢,(A) such
that ¢, = ¢.

In this section we show that all factor representations of A can be
realized in A*™*, and that each pure state on A, in particular, leads to
a factor representation of A. This corresponds to the irreducible GNS
representation associated with a pure state of a C* algebra.

4.6.2. Proposition. Let A be a JB algebra. For each minimal central
projection e in A** there is a factor representation ¢,: A — eA*™ defined
by ¢.(a) = ea. Two such factor representations ¢, and ¢; are equivalent if
and only if e = f, and each factor representation of A is equivalent to ¢, for
some minimal central projection e in A,

Proof. Let e be a central projection in A**. Since A** =eA**De' A™,
a projection f in eA** is central in eA** if and only if it is central in A**,
Thus eA** is a JBW factor if and only if e is a minimal central projection.
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Since A is weakly dense in A**, ¢,(A) = eA is weakly dense in eA™™,
Therefore ¢, is a factor representation whenever e is a minimal central
projection in A**. Suppose ¢, and ¢ are equivalent. Then there is an
isomorphism : eA¥* — FA™* such that (ea) = fa for all a € A. But  is
normal (4.5.6) and A is weakly dense in A*, so y(ea)=7fa for all
ac A*™. In particular, a=e¢ and a=1 yield fe=ydee)=(er)=f By
symmetry fe=e, so e =Ff.

Finally, let ¢: A — M be a factor representation of A. Let ¢: A** —
M be its normal extension (4.5.7), and let e be the support of ¢ in A**
(4.3.7). Then the restriction ¢ of ¢ to eA** is an isomorphism of eA**
onto G(A*)=¢d(A), so eA** is a factor, and e is a minimal central
projection. If a € A then ¢(a) = Y(ea), so ¢ =d,, and ¢ is equivalent to
b,

4.6.3. Let M be a JBW algebra and p a normal state on M. Then there is
a smallest central projection e such that p(e) = 1. This projection is called
the central support of p and is denoted by e{p). If p is a state on a JB
algebra A then it is a normal state on A**, so by the above definition it
has a central support c(p) in A**. We write A, =c(p)A™, and let
¢,: A— A, be the homomorphism a — c(p)a.

4.6.4. Proposition. If A is a JB algebra and p is a pure state on A then
&, is a factor representation. For each a € A there is some pure state p such

that ||¢, ()| =llall

Proof. In order to show that ¢, is a factor representation we must by
4.6.2 prove that c(p) is a minimal central projection. Assume on the
contrary that e is a central projection in A**, 0 <e <c(p). By definition
of c(p) (4.6.3), p(e)<1 and p(c(p)—e)<1, i.e. 0<p(e)<1. Then we can
write p as a convex combination p = Ao+ (1—A)1, where X = p(e), o(a) =
A 'plea), (a)=(1—A)"p(e*a). Since p is pure, ¢ =71 =p, and in par-
ticular p(e) = o(e) =1, which is impossible. Thus ¢(p) is minimal, and ¢,
is a factor representation.

Next, let acA. By 3.6.8 there is a pure state p on A such that
lp(a)| =llall. Since p(c(p)™) =0, it follows from 3.6.3 that p(a)=p(c(p)a).
Thus ||, (a)]|=|p(a)| =|lall. The opposite inequality is obvious.

4.7. JC algebras

4.7.1. One of our main goals will be to describe how JC and JW algebras
can be sorted out among JB and JBW algebras. In this connection it is
important to know that certain JB and JBW algebras automatically are JC
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and JW algebras. In this section we prove some results to this effect. First,
however, we need to know about the second dual of a C* algebra.

4.7.2. Let o be a unital C* algebra. For each state p on &, let
(m,, H,, &) be the associated GNS representation (1.3.10-11). Let H be
the Hilbert space direct sum of all the H,, and let m= @ w,: & — B(H)
be the representation such that w(a)é=m,(a)¢ (ac A, £ H,). Since A,
is a unital JB algebra for each a € o, there is a state p on &, such that
lp(a)| =llal (3.6.8). Thus |[(m,(a)&, |&)=lal, so |m(a)=]al, and
|m(a)|=lal. By 3.4.3 then |w(a)l|=|lall. Using the C* identity ||x|?=
llx*x|| we conclude ||7(x)|| =|x|| for any x € &. 7 is known as the universal
representation of . We shall now identify & with w(sf) < B(H). The
crucial property of this representation is that any state on f by construc-
tion is a vector state, i.e. of the form a —(a§, &) for some unit vector
¢eH.

As in 1.4.2 any bounded linear functional on & is a linear combination
of two bounded linear functionals which are real on sf,. Then, since 4.,
is an order unit space, it follows from 1.2.6 that any bounded linear
functional on & is a linear combination of four states, hence by the
previous paragraph can be extended to an ultraweakly continuous linear
functional on B(H) (1.4.1).

We claim that the ultraweak closure o of &« in B(H) is a von Neumann
algebra which can be identified with &£**.

That o is a *-subalgebra of B(H) is easy since x — x* is ultraweakly
continuous and multiplication is separately ultraweakly continuous. Re-
call from 1.4.4 that o is a von Neumann algebra with predual s
consisting of all restrictions to & of ultraweakly continuous linear func-
tionals. Then the restriction map 4 — &£* is linear, injective, has norm
1, and is also surjective since any bounded linear functional on s has an
ultraweakly continuous extension to B(H).

The map a: f** — of = (sf4)* dual to the restriction map is therefore
easily seen to be linear, injective and a weak-* to ultraweak
homomorphism onto its image, and to extend the inclusion map o — <.

To show that « is onto &, note that as in 1.4.2 (f)** = (4*¥),,. Since
A, is a JB algebra and « is weak-* to ultraweak continuous, « is a
homomorphism of &{%* into &,,, which is then onto by 4.5.11 and 4.5.5.
Thus o maps & ** = of **+if** onto o = A, +idA,,.

We thus get a product on #** making a an algebra *-isomorphism.

4.7.3. Lemma. If A is a JC algebra then A** is a JW algebra.

Proof. We may assume A < 9, for some unital C* algebra of. By 4.7.2
A** is equipped with a separately weak-* continuous product extending
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that of & such that #£** (with the weak-* topology) is *-isomorphic and
homomorphic to an ultraweakly closed * subalgebra of B(H) (with the
ultraweak topology). Applying 1.1.22 to the inclusion map A — A, we
see that A** can be identified with a weak-* closed subalgebra of &f**,
hence with an ultraweakly closed subalgebra of &f < B(H). Thus A** is a
JW algebra.

4.7.4. Proposition. Let A be a JC algebra and J a norm-closed ideal in
A. Then A/T is a JC algebra, and in particular each homomorphic image of
A is a JC algebra.

Proof. By 3.4.2 A/J is a JB algebra, so contained in some JBW algebra
M. Let ¢: A — A/J be the quotient map, and let by 4.5.7 ¢: A** > M
be the weak-* to weak continuous extension of ¢. Then J=ker ¢ is a
weak-* closed ideal in A** hence J is by 4.4.4 of the form J=
(1—f)A™* with f a central projection in A**. Since the map ¢(a) — fa is
an isometry of ¢(A) into A** (cf. 3.4.4), $(A) is a JC algebra by 4.7.3.

4.7.5. Proposition. Suppose M is both a JBW algebra and a JC algebra.
Then M is a JTW algebra.

Proof. Let ¢ be an isomorphism of M into the self-adjoint part of a C*
algebra . By 1.1.22 ¢ extends to a weak-* to weak-* continuous
isometry ¢**: M** — of** which by separate weak-* continuity of
multiplication and weak-* density of M in M** is an isomorphism. By
4.4.17 there is a central projection e in M™* such that U,: M — eM** is
a surjective isomorphism, and by 4.1.6 and 4.5.4 U, is weak to weak-*
continuous. Thus ¢**U, is a weak to weak-#* continuous isomorphism of
M onto ¢**(e)d™ (M**). By 1.1.22 ¢**(M™*) is weak-* closed in o£**,
hence by 4.5.4 ¢**(e)d™ (M**) is a JBW subalgebra of the self-adjoint
part of #**. Since of** is a von Neumann algebra (4.7.2), $**U,(M) is a
JB algebra.

4.8. Comments

TW algebras were first studied by Topping [110] and Stgrmer [103], while
the study of JBW algebras was initiated by Alfsen, Shultz and Stgrmer
[19] even though preliminary work in this direction had been done by
Janssen [64-67]. In Alfsen et al. [19] only that part of the theory which
was needed to prove the structure theorem for JB algebras (7.2.3 below)
was developed. As a result many theorems appeared in a weaker form
than are presented here. The stronger results are mainly due to Shultz
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[91]. For example, Section 4.1 is a blend of the contents in Alfsen et al.
[19] and Shultz [91]. In the former [19] it was not shown that the second
dual of a JB algebra is a JBW algebra, only a weaker result was proved.
Shultz [91] succeeded in proving the general result. The proof we have
presented is due to Hanche-Olsen [55]. The assertion (4.4.10) that A** is
the monotone completion of A for A a JB algebra is a direct Jordanifica-
tion of the same theorem and proof for C* algebras due to Pedersen [82].

The characterization of JBW algebras as Banach dual spaces is due to
Shultz [91]. Our proof differs from his in our use of idempotent maps
(4.4.13). The results in Section 4.5 can be found in one form or other in
the literature, and some are ‘folklore’. Section 4.6 is mainly taken from
Alfsen et al. [19], while the first two results -of Section 4.7 are due to
Effros and Stgrmer [41]. '

Just as in Chapter 3 we have said much less about state spaces than
what is known. Jochum and Shultz [60] have characterized the norm-
closed convex set of normal states of both JBW and von Neumann
algebras among all convex sets. Closely related to the normal states is a
certain self-dual cone, which is the Jordan analogue of the natural cone
associated with a faithful normal state on a von Neumann algebra. This
cone has been studied by Bellisard and Iochum [27, and references
therein]. In von Neumann algebras the natural cone is closely related to
the so-called Tomita-Takesaki theory. The Jordan analogue of this
theory has been studied by Haagerup and Hanche-Olsen [53].
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Dimension theory

5.1. The projection lattice

5.1.1. In the theory of von Neumann algebras one of the basic techniques
is that of comparison of projections, usually called dimension theory. Two
projections p and q in a von Neumann algebra # are said to be
equivalent if there exists an element v in 4 such that v*v =p, vv*=q. A
partial ordering is introduced on the projection lattice, c.f. 4.2.7, by
saying p=<q if p is equivalent to a subprojection of q. In analogy with
cardinal numbers one then defines finite and infinite projections. If we
call an additive homogeneous function 7: #* —R" U{+w} a trace pro-
vided T(uxu™)=7(x) for all unitaries u in 4, then a trace is constant on
each equivalence class of projections. Thus projections, in the presence of
a trace, have a natural dimension, hence the name ‘dimension theory’.

We shall in the present chapter generalize this theory to JBW algebras.
Since we have no nonself-adjoint elements in a JBW algebra the defini-
tion of equivalence has to be modified, and the theory turns out to be
closer to lattice theory. than is the case for von Neumann algebras. In
particular, some of the proofs are quite different from the corresponding
ones in von Neumann algebra theory.

5.1.2. By a lattice we shall mean a partially ordered set L such that if
e,feL the set {gcL:g>e g=f} has a smallest element evf, and
similarly there is a largest element e Af smaller than or equal to both e
and f. We assume there is a smallest element O e L and a largest element
leL. A subset K of L is called a sublattice if e vf and e Af belong to K
whenever e and f do.

Let L be a lattice. We say L is modular if e<g implies

(evhing=ev(fnrg), fel.

If ecL we say an element e’ €L is a complement for e if it satisfies
ene’=0 and eve =1. Two elements e and f in L are said to be
perspective if they have a common complement.

120
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L is called orthocomplemented if there is given an order reversing map
e — e* on L satisfying e** = e such that e is a complement for e. L is
called orthomodular if in addition e=<f implies

f=ev({fareb).

Clearly a modular, orthocomplemented lattice is orthomodular. The
converse is false.

It is sometimes illustrative to draw pictures to describe lattices. If two
elements e and f are comparable then one draws a line from e to f such
that if e =<f then f is placed higher up than e. e and f are not comparable
if there is no connecting set of lines all going up or down from e to f.

5.1.3. Proposition. Let L be an orthomodular lattice. Then the following
are equivalent:
(1) L is modular.
(ii) If e and f are perspective elements in L with e <f then e ={.
(iii) L contains no sublattice containing 0 and 1 and isomorphic to the
lattice

Y
e\o/

Proof. In the lattice described in (ili) e and g are perspective with
common complement f. Moreover, this lattice is nonmodular. It is thus
immediate that (i))<>(iii) and () = (iii).

We show (ii)=> (i). Let e,f,g € L with ¢=<g. In order to show that L is
modular it suffices to show (evflrg=<ev(fag), since the opposite
inequality is always true.

If pe L we denote by [0, p] the sublattice consisting of q € L such that
q<p. With orthocomplementation q—>pAq" this sublattice is clearly
orthomodular. Hence we may assume that evf=1. We thus have g=
ev(fAg) and must show the opposite inequality. To do this we show g
and ev(fAg) are perspective with common complement fA(fAg)* and
then apply (ii). Now it is immediate that if p, q, reL then (pvq)vr=
pv(qvr) and similarly for A. Thus we have '

gA(fAfAR))=(@ANAFAL =0.

If we apply orthomodularity to fAg=<f we have

(evfr)vfrfrg)) =ev(fag)vfa(fag)N=evf=1,

which proves the assertion.
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5.1.4. Let M be a JBW algebra. We denote by Py, or simply P the lattice
of projections in M. Z,,, or simply Z, will denote the centre of M, and
P, =PNZ is the set of central projections in M. We write p*=1—p if
p € P, and note that P is then an orthocomplemented lattice, since clearly
p=q implies gAp~ =q—p and so q=pv(gap"). As before the range
projection of a € M will be denoted by r(a) and the central support of
peP by c(p).

If se M is a symmetry, i.e. s>=1, then U is an automorphism of M
since by Macdonald’s theorem (U,a)e(Ub)= U,({as*b})= Udacb}.
These automorphisms generate a group Int M, called the group of inner
automorphisms of M. Notice that by 4.3.2 Z is the fixed point set of this
group.

Two projections p and q in M are called equivalent if there is « € Int M
such that q = a(p). We then write p~q. If o can be written as a =
U, U, ... U, we write p3 q. If n=1 we say p and g are exchanged by a
symmetry. It should be noted that if p~q then p~~q* in contrast with
the equivalence of projections in a von Neumann algebra. Also we note
that {ge P: q~p} is Int M invariant, hence the same is true for the
supremum of this family, which must therefore be central. Since con-
versely central projections are not moved by inner automorphisms, we
conclude

c(p)=V{qeP:q~p}

A projection pe M is called Abelian if M,, cf. 4.1.13, is associative; p
is modular if the projection lattice [0, p] of M, is modular. If 1 is
modular, M itself is called modular. The set of Abelian and modular
projections are Int M invariant, so we can define central projections e;
and ey in M by

e;=V {peM:p is Abelian},
ety =V {p e P:p is modular}.

Clearly e;<efy. Let eg=1—e;—ey. M is said to be of type I (resp. II,
IID) if e;=1 (resp. eg=1, e;y=1). If we select a maximal family (p,) of
Abelian projections with pairwise orthogonal central supports we find
- Yac(p.)=e and so p =Y., p, is Abelian with c(p) = e;. Similarly we can
find a modular projection with central support e;;. We summarize these
results in the following theorem.

5.1.5. Theorem. Let M be a JBW algebra. Then M can be split uniquely
into a direct sum of parts of type 1, Il and 111, the different parts being
characterized as follows:
(i) M is of type 1 if and only if there is an Abelian projection p in M with
c(p)=1. ‘
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(i) M is of type 11 if and only if there is a modular projection p in M with
c(p) =1, and M contains no nonzero Abelian projection.

(iii) M is of type I if and only if it contains no nonzero modular
projection.

5.1.6. Just as for von Neumann algebras we can define a finer decomposi-
tion. Any JBW algebra has a largest central modular projection. If this is
0, M is called purely nonmodular; if it is 1, M is modular. We say M is of
type I, if it is modular and of type 1I, and it is of type IL, if it is purely
nonmodular and of type II. Type I algebras split in the same way, but we
shall obtain a finer decomposition for such algebras; see 5.3.5. Of course,
if M is of type III, it is purely nonmodular.

5.2. Equivalence of projections

5.2.1. Lemma. Let M be a JBW algebra with projection lattice P. If
p, q € P there is a symmetry s € M such that Ud{pqp} = {qpq}.

Proof. Let a =p+q—1. By the spectral theorem (3.2.4) and 4.2.6 there
is te M, indeed te W(a), such that t>=r(a) and a =te|a|, where |a|=
(a®Y? is the absolute value of a. Namely, let t=r(a*)—r(a”). Let
s=t+1—r(a). Then s is a symmetry. We find a®>=1—p—q+2p°q. By
the Shirshov—-Cohn theorem (2.4.14), the algebra A generated by p, q and
1 is special. In an associative algebra & containing A as a Jordan
subalgebra we can then write a>=1—p—q+ pq + qp, which implies pa® =
pap = a’p. Hence p and a® commute, so they generate a commutative
subalgebra of & and hence an associative subalgebra of A. By 2.5.5 p
operator commutes with a?, and hence by 4.2.5 with |a|. From the above
we also get {pgp}= p°a®. Furthermore, since p and |a| operator commute
we have peolal®>={|a| p |a[}. Just use the definition of the triple product to
see this. From these two equalities we have {pgp}={|a|p |al}. Since
s € W(a), s operator commutes with all elements of W(a). Note also that
then U, =2T?—: commutes with U, =2T;— T, for all be W(a). We
therefore get, using 2.4.21, 2.4.18 and the identity {{a|**s |a|"*} =+ o\al
a, which is true since s, |ale W(a):

Upap} = Udlal p lal} = U,Ufpep = U peUU g pop
= Upaprsiapap = Usp ={(@—pH)pla—pH)} ={apq}.

5.2.2. Lemma. Let M be a JBW algebra with projection lattice P. If
p, q € P then the range projection of {pqp} is given by r{pap}) =p—pArq*.

Proof. It is clear that r({pgp})<p, hence there is heP such that
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r({pap}) = p — h. By 2.4.18 it follows that 0 = Uy,,;h = U,U,U,h = U,U,h.
Since U, = U, U, it follows from the identity {aba}*= U,U,a> (2.4.17)
that 0= U,U,U,h = U,U,h ={hqh}’. Therefore by 4.2.2 h=<gq*, so that
h<pnaq*.

On the other hand by strong continuity of U, for ye M (4.1.8) and
construction of r(x), see proof of 4.2.6, if x=0 and Uyx =0 then
U,r(x) =0. (Note that 0< Ux"<||x||*"*U,x=0.) Since

Up/\q*{pqp} = []p/\q'L pq = Up/\q*q = 05
we therefore have U, .o-r{{pgqp}) =0, and so p Ag-=<r({pgp})*. But then

h=p-r(pap}) =prrpap})* =pAr(pAq)=pArq’,
showing that h=pAq*.

5.2.3. Proposition. Let M be a JBW algebra with projection lattice P. If
p, q € P we have:
() p-pAg-Ta—qArp™
@) If parqt=qAp =0 then p+yq.
(i) (pva)—qrp—(prQ).
(iv) If p and q are perspective then p 5 q.

Proof. By 5.2.1, there is a symmetry s such that U/ {pqp} = {qgpq}. Since U;
is an automorphism of M it preserves range projections, so U, (r({pgp})) =
r{gpq}). Thus (i) follows from 5.2.2. (ii) is immediate from (i), and so is
(iii) by applying (i) to p and q*, noticing that g* —q*Ap*=q* —(pvq) =
pvq—q. To show (iv) note that if r is a complement of p then pA(")* =
pAar=0, and p*Ar-=(pvr) =0, so that p and r" satisfy the conditions
of (ii), whence p v r*. If r is also a complement of q then r* + ¢, andso p 5 q.

5.2.4. It is not hard to prove a partial converse to 5.2.3(iv), namely if
p, q € P are exchanged by a symmetry then they are perspective.

We next arrive at the crucial lemma, which allows us to reduce many
questions about ~ to questions about + . We shall, however, first prove a
Jordan identity which will be needed in the proof.

5.2.5. Lemma. Let A be a Jordan algebra over R and a, b, c € A. Then the
following identity holds:

4{abcy? = 4{a{b(a-c)b}c}—2{aba}o{cbc}+{a{bc?b}a}+{c{ba’*b}c}.

Proof. From the identity {aba}* ={a{ba’b}a} (2.4.17) we have
{a+c)bla+ )P ={(a+cHbla+c)y*bHa+c)l.

All terms of degree 2 in both a and ¢ on both sides must coincide, as is
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easily seen by replacing a by Aa and ¢ by uc, A, p €R. If we let = denote
congruence modulo terms of degree #2 in both a and ¢ we have

{ta+c)b(a+ )y = ({aba}+2{abc}+{cbc})?
= 4{abc}*+2{aba}{cbc}.
{(a+c)b(a+c)*bHa+c)}
={(a+cHbla*+2a-c+c?b}a+c)}
={(a+c){ba’b}+2{b(a>c)b}+{bc*b})(a+c)}
=4{a{b(a-c)b}c}+{a{bc?*b}a}+{c{ba’b}c}.

If we compare the two congruences we obtain the desired identity.

5.2.6. Lemma. Let M be a JBW algebra with projection lattice P. Let
p. g € P and suppose plq and p5q. Then ptq.

Proof. The proof is quite simple in the case of JW algebras. In order to
illustrate the ideas we first prove the lemma in that case, hence we first
assume M < B(H),, is a JW algebra. By assumption there are symmetries
s, t€ M such that q ={s{ipt}s}. Let x =ptsc B(H). Then x*x =g, xx*=p
and x=xq=px, so that x*>=xgpx=0. Therefore (x+x*)?=2xo0x*=
p+gq, and we have

{(x+x*)p(x+x*)}=x*px =g,
{(x+x®)q(x +x*)} = xgx™ = p.
Since x+x*=2{pts;e M, p and q are exchanged by the symmetry
x+x*+1-p-—q in M, proving the lemma for JW algebras.
We now return to the case of general JBW algebras. The above proof

indicates what we shall do. As above we assume s and t are symmetries in
M such that q ={s{ipt}s}, and we let

r=2{pts}.
The proof is complete when we have shown

r*=p+q, {mrt=q, {rr}=p.

Let M =@;<;<j<3s M; be the Peirce decomposition corresponding to p, g
and 1—p—gq. The bulk of the proof consists of showing that r€ M;, and
r*=p-+gq. Indeed, if this is done then

{ror}=2ro(rop)—r*op=r’—r’op=r’-(1-p)=gq,

and similarly {rqr}=p.
We first show {p*rp*}=0. This will be a consequence of the following
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identity, which is a straightforward consequence of Macdonald’s theorem
(2.4.13)

{(1—a){abc}1—a)}={cb(a—a*}—{a{(1—a)bc}a}, a, b, ce M.

It follows that

{1 —ppts}(1—p)y=—{p{(1—p)ts}p}.

If M =M, DM, ,, M, is the Peirce decomposition of M with respect to p
we see that the left side belongs to M|, while the right side belongs to M;.
Thus both sides are zero. In particular {p*rp*}=0, as asserted. It follows
that re M, DM, B M.

We shall next show that

{pts} = {tws} = {1sq}, (5.1)
where w is the projection
w ={tpt} = {sgs}. ' (5.2)

It will then follow by the above argument applied to q instead of p that
re M, ®&M,,®M,,, so that r necessarily belongs to M.
By Macdonald’s theorem the following identity is easily verified for
a, b ceM.
{a{aba)}c}=2a?<{bac}—2{(a*°c)ab}+{ba’c}.
If we apply this identity we obtain
{tws} = {t{tpt}s}
= 2t%o{pts} — 2{(¢*>s)tp} +{pt’s}
- =2{pts}—2{stp}+{pts}
={pts}.
By (5.2) and symmetry {tws}={tsq} proving (5.1). Thus we have shown
r=2{pts}=2{tws} = 2{tsq} € M,.

In particular r*> = 4{tws}?, and 5.2.5 is applicable with a=s, b=w, c =t. If
we note that Uw =q, Uw =p we have

r* = 4{swt}*
= Hs{iw(sot)wit}—2{swsto{twt}+ UU,t*+ UU,s>
=HsU,(sot)t} -0+ Uw+ Uw
=4sU,,(set)t}+q+p.
Thus in order to show r*>=p+q it suffices to show U, (sot)=0.
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Since by Macdonald’s theorem {t(sct)t}={tst’}, we have U,(sot)=
{ts1} = sot. Therefore we have, using Uy = U, U, U, (2.4.18),

U, (sot) = {{tpt}(s-t){tpt}}
= UU,U(s°t)
= U,U,(s°t),

hence it suffices to show U, (s<t) = 0. For this we use yet another identity,
which is also an easy consequence of Macdonald’s theorem, namely if a,
b, c € M we have

{a(boc)atea = a*<{abc}+¥a{abcta}—3{a3bc}.
If we apply this and use {pts}=3re M, we find

U, (sot) ={p{sctip}={pi{sctip}ep
= p?o{pts} +3{p{pts}p} —3{p’ts}
=3{pts}+0—3{pts}
=0.

This completes the proof of the lemma.

5.2.7. Lemma. Let M be a JBW algebra with projection lattice P. Suppose
p and q in P are nonzero and equivalent. Then there are nonzero py, g, € P
such that p;<p,q.<q and p7q,.

Proof. Assume p+; q (see 5.1.4). If n=1 there is nothing to prove, so we
may by induction assume the lemma holds for n—1. We may assume
n>1. Furthermore we may assume p . g, since otherwise we could choose
Pi=P—PAQY, a=q—qAp* and then apply 5.2.3. By definition of +
there is re P such that p,~;r1 q. By the induction hypothesis there are
nonzero p; <p and r; <r in P such that p, 7 r,. If ¢ ={srs} let q, ={sr;s} <
g- Then p; 5 q, so by 5.2.6 p; 1 q,.

5.2.8. In order to simplify notation in the arguments to follow we
introduce the analogue of partial isometries, a concept which was im-
plicitly used in the proof of 5.2.6.

An element s € M is called a partial symmetry if s is a projection. If p,
qeP and s is a partial symmetry such that s*>=pvq and {sps}=gq then
pt4q. Indeed t =5 +1-pvq is a symmetry such that {tpt} = q. Conversely,
if ¢+ is a symmetry such that {ipt}=q then {t(pvq)t}=pvg, so s=
t—1+pwvq is a partial symmetry such that s*>=pvq and {sps}=gq.

Assume that p L q and that s is a partial symmetry such that {sps}=q
and s’=p+q. Then we find soq=so{sps}={s’ps}=s°p, and since
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so(p+q)=s, we conclude sop =soq=42s. Considering the Peirce decom-
position induced by p and q, we conclude that s e {pMq}. In other words,
p and q are strongly connected.

5.2.9. Lemma. Let M be a JBW algebra with projection lattice P, and let
J be an index set. Let p, q, Do Qo €P, ¢ &J, satisfy pLq, P=2uci P
qd=Yuecrqda and p, 7 q, for all a €J. Then py q.

Proof. Let s, be a partial symmetry such that s2=p,+q, and q, =
{SaPuSe}, €. Let s=Y, .55, Then s>=p+q and {sps}=q.

5.2.10. Lemma. Let M be a JBW algebra with projection lattice P. Let
p.q€P,i=1,2, satisfy pr+p,=peP, q:+q2=q€P, p; L q,, p, Lp; and
p.7 4. Then pyq.

Proof. Let s; be a partial symmetry such that s?=p; vq;, and {s;p;s;} =g,
i=1,2. Since p;v(qi L PV, §$=58,+85, is a partial symmetry such that
s?’=pvq. If we let M =,,;«3 M; be the Peirce decomposition of M
corresponding t0 p;Vvqy, P2V, 1=Pp1vVai—p2VQqs, then s, pi, g€ M,
i=1, 2. Hence we have

{sps}={s1p151} + {81281} +{52D152} +{82D282} + 2{81P182} + 2{s1 D252}
=q1tq42=q,

since {s;p:s;}=q;, i =1, 2, and the rest of the terms are zero.

5.2.11. Theorem. Let M be a JBW algebra with projection lattice P. Let
p,q<€P. Then we can write p=p;+ps, q=q1+q, with p,q,eP,i=1,2,
such that p, v q1 and c(p,) L c(qy).

Proof. We first assume p Lq. Let by Zorn’s lemma {(p., ¢,)}«cs be a
maximal family of pairs of projections in M satisfying p, <p, q. <gq,
Po T Go 2ll p, are pairwise orthogonal, and all q, are pairwise orthogonal.
Let
pi= ija, 4= quw P2=P-P1,  @=q-du.

By 5.2.9 p;vq:.- By 5.2.7 and maximality of {(p,, go)}acy NO nonzero
subprojection of p, is equivalent to a subprojection of g,. Since by
5.2.3(i) any two non-orthogonal projections contain nonzero equivalent
subprojections it follows that for all BcInt M (see 5.1.4), B(p.)Lqs.
Hence by 5.1.4 ¢(p2) = Vgemem B(P2) L g2, and so c(p,) L c(qo)-

In the general case we apply the above to pAq* and g Ap*. Then we
have

pPAGT=putp, AAp* =qn+aqs,
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where py1 1 q11 and ¢(py) Lc(qo). Let po=p—pAq™, diz=q—qnp". By
5.2.3 P21 Qi SO if we let p; = py;3 + D12, 1= 11+ dy2 an application of
5.2.10 shows that p; 17 q;. ’

5.2.12. If pqe P we write p=q if there exists go€ P, go<g, such that
P+ 4o-

5.2.13. The comparison theorem. Let M be a JBW algebra with projec-
tion lattice P. If p,q € P there exists a central projection e in M such that

ep < eq, e qsep.

Proof. Let p, and q; be as in 5.2.11. Let e=c(qy). Then we have
ep=ep; T eq<eq, and e*'q=e"q, Te'p1<e’p.

5.2.14. The halving lemma. Let M be a JBW algebra with projection
lattice P. Suppose M has no direct summand of type I (cf. 5.1.5). Then
there is pe P with py p™.

Proof. Let by Zorn’s lemma {(p,, go)}oer be @ maximal family of pairs of
projections in M such that all p,, q, are pairwise orthogonal and p, 7 qa,.
By 529 p=Y0ciPaT Yacsla =q- We assert that p+q=1. If not N=
{(p+q)*M(p+q)'} is nonzero. Since M has no type I part, N is not
Abelian. Let r be a noncentral projection in N. Then c(r)c(r*) #0, so
there exist by 5.2.11 nonzero projections p;<r, q;<r" in N such that
p17q:. Since p; and g, are orthogonal to p+gq this contradicts the
maximality of {(p., q.)}«cs> Proving that p+q =1, as asserted.

5.2.15. Proposition. Let M be a JBW algebra with projection lattice P.
Suppose M has no direct summand of type 1. Then there are p;cP,i=
1,2, 3,4, such that py+p,+ps+ps=1, and p;7p; for all i, ].

Proof. By the halving lemma there are p € P and a symmetry s in M such
that {sps} = p*. Since an Abelian projection in {pMp} is Abelian in M, the
JBW algebra {pMp} has no direct summand of type I, hence the halving
lemma shows the existence of p,,p,€P with p,vp, and pi+p.=p.
Let ps;={sp;s}, ps={sp.s}. Then clearly p;+p,+ps+p,=1 and
Ps T P11 P27 Pa- An application of 5.2.6 completes the proof.

5.2.16. If M is a von Neumann algebra with centre Z it is quite easy,
using the commutant, to show that if p is a projection in . then the
centre of pAlp is #p. To prove the same result for JBW algebras we have
to use 5.2.11.
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5.2.17. Proposition. Let M be a JBW algebra with centre Z. Let p be a
projection in M. Then the centre of {pMp} is Zp.

Proof. Let Z' denote the centre of {pMp}. Then clearly Z' = Zp. Let e be
a projection in Z', and let f=p—e. Then f is a projection in Z’, and by
5.2.11 there exist projections e, f;, i=1,2, in M such that e =¢,+e,,
f=Ffi+f, and e 7 fi, c(ey) Lc(f,). We assert that e, = f; =0. Indeed, let s
be a symmetry in M such that U,e,=f, and let t ={psp}. Since ey, f; €
{pMp} we have by 2.4.18 that Ue, = U,U.U,e; = U,U,e, = U,f, = f,, s0
that by the positivity of U; (3.3.6),

fi=Ufi=UUe; < UiUe.

Since f is central in {pMp}, f operator commutes with t, hence U,U;=
U;U.. Therefore f;<UUe =0, since f L e, and our assertion follows.

It follows that c(e) L c(f). Since c(e), c(f)<c(p) and e+ f=p, we have
c(e)+c(f)=c(p). But then e+f=p=c(e)p+c(f)p. Since c(e)p=e and
c(fi)p=f we therefore have e=c(e)peZp. Since e was an arbitrary
projection in Z', and a JBW algebra is linearly generated by its projections
(4.2.3), Z' = Zp, proving the proposition.

5.3. JBW algebras of type I

5.3.1. Among von Neumann algebras those of type I are the only ones
which are completely understood. We shall see later that JBW algebras
which are not of type I look very much like von Neumann algebras, hence
they will roughly be known modulo the theory of von Neumann algebras
of types II and II1. JBW algebras of type I may be quite different from
von Neumann algebras, cf. H3(0O) and spin factors. We shall, however,
succeed in the classification of JBW algebras of type I, the beginning of
which will be done presently.

5.3.2. Lemma. Let M be a JBW algebra with projection lattice P. Let
p,qe<P. '
(i) If p is Abelian and q<p, then q=c(q)p.
(i) If both p and q are Abelian and c(p)=c(q) then p¥ q.
(i) If M is of type I then q dominates an Abelian projection r with
c(r)=c(q).

Proof. (i) If p is Abelian then {pMp} equals its centre, which by 5.2.17 is
Zp, where Z is the centre of M. Thus if q <p there is a central projection
f in M such that q=fp. Since fq=q,c(q)=<f, so q=clq)q=c(qQ)fp=
c(q)p-
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(ii) By the comparison theorem (5.2.13) there is a central projection e
such that ep<eq and e'q <e p. If p and q are Abelian with the same
central supports then, since equlvalent projections have the same central
support, by (i) epy eq and e*pte*q. Hence pyq.

(iii) If M is of type I then there is by 5.1.4 an Abelian projection p with
¢(p) = 1. By the comparison theorem (5.2.13) we may replace p with an
equivalent projection and assume p <q or p =q. If p=<q we may set r =p,
while if p=q then q itself is Abelian, so we can use r=q.

5.3.3. Let M be a JBW algebra and n a cardinal number. We say M is of
type 1, if there is a family (py)eer Of Abelian projections such that
c(p) =1, YacrPu =1 and card J = n. We also say M is of type L. if M is a
direct sum of JBW algebras of type I,, with n infinite. 1t is clear that if M
is of type I, and e is a nonzero central projection in M then Me is of type
L.

5.3.4. Lemma. Let M be a JBW algebra of type 1,, n <o. Then n is the
maximal cardinality of an orthogonal family of nonzero projections in M
with the same central supporis.

Proof. We use induction on n. Since an algebra of type I, is associative,
any projection is its own central support in this case, and the lemma is
trivial. We assume it holds for JBW algebras of type I,_;. Suppose that
di, ..., 0ns+; are pairwise orthogonal projections in M with the same
central supports, denoted by e. By 5.3.2(iii) we may assume each g; is
Abelian. Since Me is of type I,, there are Abelian projections py, .. .; P
with central supports equal to e and sum e. By 5.3. 2(ii) qn+17pm say
Pp = {8Gn.18} With s a symmetry in Me. Then {sqs}, i ,n, are
Abelian projections with central supports e dommated by pn This
contradicts the inductive hypothesis and the fact that {p; Mp;} is of type
)

5.3.5. Theorem. Each JBW algebra of type 1 has a unique decomposition
M:M1®M2@ . .@Mw,
where each M, is either O or is a JBW algebra of type 1.

Proof. The uniqueness of the decomposition is immediate from 5.3.4. To
show the existence let n be a cardinal number, and let (e,),.y be a
maximal family of pairwise orthogonal central projections such that e, M
is of type I.. If (e,)acy is empty let M, = 0; otherwise let f, =Y eré, and
M, =f.M. Then clearly M, is of type I,, and by maximality of (e.)uacys
(1—£,)M has no direct summand of type I,.. Let f=f,+Y, n f.. We assert
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that f = 1. If not, 1~ f# 0, and by considering (1 —f)M we may assume M
has no direct summand of type I, for any neNU{}. Let (pg)ger be a
maximal orthogonal family of Abelian projections with central supports
1, and let p=1-3g5.;ps. By 5.3.2(i)) ps~p, for all B,yel Let n=
card I. It c¢(p)=1 there exists by 5.3.2(iii) an Abelian projection with
central support 1 dominated by p, contradicting the maximality of (ps)ger
Thus c(p)<1. But then (1—-c(p))M is of type I,, contradicting our
assumption on M. Thus f=1, and the proof is complete.

6.3.6. Recall from 4.6.1 that a JBW algebra is called a JBW factor if its
centre consists of real multiples of the identity. The reader should note
that many of the results obtained so far in this chapter take on a very
simple form for JBW factors. In particular we have the following conse-
quence of 5.3.5.

5.3.7. Corollary. Let M be a JBW factor of type 1. Then there exists
neNU{=} such that M is of type I,.

5.3.8. Theorem. Let M be a JBW factor of type 1,, 3<n <. Then M is
isomorphic to one of H,(R), H,(C), H,(H) or Hy(Q) in the case n=3.

Proof. By 5.3.2(1) each Abelian projection is minimal in M. Let
P1; ..., P, be pairwise orthogonal Abelian projections in M with sum 1.
By 5.3.2(ii) and 5.2.8 they are strongly connected. Therefore by the
coordinatization theorem (2.8.9) M is a Jordan matrix algebra H, (R)with
R a = algebra. Since each p; is minimal R, =R. If we knew that R was
finite-dimensional we could refer to 2.9.6. To avoid this approach we
imitate the proof of 2.9.6. Let {e;: 1=<i,j<n} be the standard matrix
units in M, (R) Suppose 0#xeR and leta= xe12+x e,,-. Then a e M, so
0# a®=xx*ey; +x*xe,,. Since x*x=A1, xx *=ul, A\, weR not both
zero, and since R is alternative by 2.7.6 Ax = x(x*x) = (xx*)x = ux, so
A =u#0, and x*x# 0. Thus the proof is completed by an application of
2.7.8.

5.3.9. Theorem. Let M be a JBW algebra without direct summands of
types 1, and 1. Then M is a YW algebra.

Proof. By 5.1.5 and 5.3.5 M has a decomposition

M:MI1®M14®' . .@MIQ@MIIQMIH’

where each summand is of the type indicated. It suffices to show the
theorem for each summand, and by 4.7.5 it suffices to show each
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summand is a JC algebra. Since My, is associative this is immediate from
3.2.2 for that summand. We show that all the other summands contain at
least four orthogonal projections with sum 1 which are exchanged by
symmetries, hence are strongly connected (5.2.8), where we let 1 denote
the identity in each summand. Indeed, in M; there are n orthogonal
Abelian projections with central supports 1 and sum 1. By 5.3.2(ii) they
are all exchanged by symmetries in M . If (p,)acy is an infinite orthogonal
family of Abelian projections with central supports 1 and sum 1 we can
write J as a disjoint union of four subsets Jy, ..., J, of equal cardinality.
Let ¢ = Yaes, Po- BY 5.2.9 ;7 g; for all i, j. Thus the assertion follows for
M, . Finally in My and My the assertion follows from 5.2.15. By the
coordinatization theorem (2.8.9) each summand is a Jordan matrix
algebra of the form H, (R) with n=4. An application of 3.7.2 completes
the proof.

5.3.10. Theorem. Let M be a von Neumann algebra and let M be a JW
subalgebra of M, with no type 1, part. Then M is reversible.

Proof. Decomposing M as in 5.3.9 but with a I; part added, we see that it
is sufficient to show that each summand is reversible. This is obvious for My,
since it is associative, while any other summand contains n =3 pairwise
orthogonal and strongly connected projections with sum 1 (see the proof
of 5.3.9). The proof is completed by the ‘special coordinatization
theorem’ 2.8.3, since H,(R)is clearly reversible in M, (R).

5.3.11. Let A be a JB algebra, N a JBW algebra and 7: A — N a factor
representation. We say w is of type I, (resp. IL, III) if w(A)™ is of type I,
(resp. 11, I1I).

5.3.12. Proposition. Let M be a JBW algebra of type 1,, n<co. Then we

have:

(i) Each factor representation of M is of type L.

(ii) If n=3 and = a factor representation of M then w(M) is a JBW
algebra.

Proof. (i) Let 7 be a factor representation of M. Let py,...,p. be
orthogonal Abelian projections with central supports 1 and sum 1 in M.
By 5.3.2 p,vp; for all i, j, and hence w(p;)~+ w(p;) for all i, j. Since
yr  w(p)=1, and each w(p,) obviously is Abelian in 7(M) so in the
weak closure w(M)~, which is a JBW factor, w(M)™ is of type I,,.

(i) If n=3 then by 5.3.8 w(M)™ is finite-dimensional hence equal to
7(M). The proof is complete.
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5.4. Comments

The main results in dimension theory in Section 5.2 were first proved for
JW algebras by Topping [110]. They were then extended to JBW algebras
in Alfsen et al. [19]. The decomposition results in Section 5.3 were also
first proved for JW algebras by Topping [110], while 5.3.10 is due to
Stgrmer [103].
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Spin factors

6.1. Definition of spin factors

6.1.1. The canonical commutation and anticommutation relations play an
important role in mathematical physics. For us the anticommutation
relations will be of interest, because they give rise to a class of JC
algebras of which we have only seen a glimpse, namely the spin factors
encountered in Sections 2.9.7 and 2.9.8.

Let H be a real Hilbert space, and suppose a: H— o is a linear map
of H into a C* algebra o satisfying the canonical anticommutation
relations:

2a(f)ea(g) = a(fa(g)+a(g)a(f)=0,
2a(f)ea(g)* = a(fal(g)*+a(g)*a(f) = (f, &)1,

for all f,ge H (we use the notation f, g for elements in H since H is
usually an L2 space). If we let b(f) = a(f)+a(f)* then

b(f)ob(g)=(f, &)1, f.geH,

in particular [|b(f)|=|Ifl, and b is an isometry of H into «, such that
b(H)+R1 is a JC algebra A. If (f,), s is an orthonormal basis for H then
the set {1, b(f,)}.cs is a set of symmetries with the properties b(f,)°
b(f,,) = 8,m 1, which generate A linearly. The JC algebra A and the set
{b(f)}n oy are what we shall call a spin factor and a spin system respec-
tively. Instead of pursuing the study of the anticommutation relations we
shall rather study spin factors from the axiomatic point of view, and we
refer the reader to Bratteli and Robinson [3, Ch. V] for the theory of the
canonical anticommutation relations.

6.1.2. Let B be a real unital Jordan algebra. A spin system in B is a
collection P of at least two symmetries different from +1 such that
sot =0 whenever s#t in ?. Given a spin system %, let H, denote the

135
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linear span of ? in B. Then any two elements a, b of H, can be written
a=%" s, b=Y, Bs, where s, ...,s, are distinct symmetries in .
From this we get

aeb = (Z aiBi>1;
i=1 )
from which it follows that H, is a pre-Hilbert space with inner product
defined by

{a,b)l=a-b.

It is clear that H,+R1 is a subalgebra of B. Wé shall be interested in the
algebra obtained from this by completing H,,.

6.1.3. Lemma. Let H be a real Hilbert space of dimension at least 2. Let
A =H®R1 have the norm |la+A1|=|al|+|A|, acH, AeR. Define a
product in A by

(a+Al)e(b+ul)=(uwa+Ab)+({a, b)+Ap)l, 6.1)
where a,bc H, A, p €R. Then A is a JB algebra.

Proof. To check the Jordan axiom xo(yex?) =(xoy)ox? note that x,y
are contained in a subalgebra H,®R1 of A, where H, is a two-
dimensional subspace of H. However, as was noticed in 2.9.8, the
symmetric matrix algebra H,(R) is a spin factor; indeed, a basis for H,{R)

0 ! 0 2 0

where o2 = 0} = 1, oy 20, = 0. Thus, mapping an orthonormal basis of H, to
04, 0, we obtain an isomorphism of H,®R1 onto H,(R). Since H,(R) is a
Jordan algebra, the Jordan axiom xe(yox?) =(xey)ox? holds in H,®R1,
and therefore in A. Pick an arbitrary element of H,(R), say x =
AL+ py01+ pp0s. Then (wi+ p3) *(ni0q + p,0) is a symmetry in H,(R)
with both +1 and —1 in its spectrum, so by spectral theory

lell = (3 -+ w22+ AL

Therefore, the above isomorphism of H,@®R1 onto H,(R) is an isometry,
and the JB algebra axioms |acbl|=<1, ||a®|=|al? |la®>+ b?|=]la?| follow
because H,(R) is a JB algebra. This completes the proof.

Of course, all of the defining properties of a JB algebra could have
been verified by direct calculation. An alternative approach would be to
use the characterization of JB algebras as order unit spaces (3.1.6); see
6.1.6 below.
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6.1.4. A unital JB algebra generated as a JB algebra by a spin system will
be called a spin factor.

6.1.5. Proposition. For each cardinal number n=2 there is, up to
isomorphism, a unique spin factor generated by a spin system of cardinality
n.

Proof. Given n =2, the construction of 6.1.3 with dim H = n yields a spin
factor generated by a spin system of cardinality n. Since H may be
characterized as a subspace of A as the set of ae A for which a¢R1
while a’€R1, H, and therefore n, is uniquely determined by A.

Let A be a spin factor generated by a spin system ? of cardinality n.
By 6.1.2 the linear span H,, of 2 is a pre-Hilbert space with inner product
( , ) defined by acb={a, b)1. Note that if Y .. a,s € Hy, o, €R, then
I aes|> =¥, @2, so the Hilbert space norm on H, coincides with the
norm inherited from A. Thus if H denotes the Hilbert space completion
of H, then H® R1 is a JB subalgebra of A, isomorphic to the spin factor
defined in 6.1.3. Since P generates A, A =H®R1, and the proof is
complete.

6.1.6. We call a symmetry in a JB algebra nontrivial if it is not +1, i.e. if
its spectrum equals {—1,1}. It is trivial to check that the nontrivial
symmetries in a spin factor A = HOR1 are the unit vectors in H. In
particular, if aeH then Sp(a)={—|al,|lal}, and if A eR, acH then
Sp(a+A1)={r—|al, A +|la|}. Therefore

AT={a+Al:acH reR, A=]al}.

This may be visualized as a circular cone.

6.1.7. Proposition. Let A be a spin factor, and let H be the Hilbert space
spanned by the nontrivial symmetries of A, so that A =H®RI1. Then we
have: '
(i) There is a unique state T on A annihilating H.
(i) 7(x) =1{sxs}) for all symmetries sc A and all x € A.
(iii) The uniforin and strong topologies coincide on A.
(iv) A is its own second dual, i.e. A = A**,
(v) Every homomorphism of A into a JBW algebra M is either 0 or an
isomorphism onto a JBW subalgebra of M.

Proof. Define 7 by 7(a+A1)=\ for acH, A €R. Then 7 is a state by
6.1.6. Since uniqueness is clear (i) follows.

. If seA is a nontrivial symmetry se€H, so if aeH then Ua=
2so(sea)—s?ca=2(s,a)s—acH Thus U, maps H into itself so 7=
vU; by uniqueness of 7, and (ii) follows.
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One of the (semi-)norms that define the strong topology on A is the
norm | |l defined by T,

la+A1B =71((a+r1)?=|alP+|r]% acH, \eR.

This norm is clearly equivalent to the usual norm on A, indeed it satisfies
the inequality

2777 =l =<l 1.

Thus the strong topology on A is at least as strong as the uniform
topology, so they are equal, and (iii) is proved. The above inequality
shows in particular that A is isomorphic to a Hilbert space, proving (iv).

Let M be a JBW algebra and let ¢: A — M be a nonzero homomorph-
ism. Since A =A** ¢ is normal by 4.5.7. By 4.5.11 ¢(A) is a JBW
subalgebra of M. To show that ¢ is injective, assume ¢(a+A1)=0,
ac H, A eR. Pick a nonzero vector b€ H orthogonal to a. Then

0=d(a+Ar1)d(b)=d((a+Arl)°b)=Ad(b),

so if A#0, then ¢(b)=0, and so ||b|?¢(1) = ¢(b?) = 0. But then ¢(1)=0,
so ¢ = 0. Similarly, if A =0 then ||a|P¢(1) =0, so if $#0 then a =0. This
proves that ¢ is injective.

6.1.8. Theorem. Let M be a JBW algebra. Then M is a JBW factor of
type L, if and only if M is a spin factor.

Proof. Suppose M is a spin factor, M = HOR]1. If e is a central projec-
tion in M then the map T, is a normal homomorphism of M into a JBW
algebra (2.5.6), hence it is 0 or injective by 6.1.7. Thus M is a JBW
factor. If M is not of type I, there are three nonzero pairwise orthogonal
projections p,, ps, p3 in M, cf. 5.2.15 and 5.3.3. But then the element
p1+2p, has spectrum equal to {0, 1,2}, contradicting the conclusion in
6.1.6 that the spectrum of an element in M has cardinality at most 2.
Thus M is of type L. ' ‘

Conversely let M be a JBW factor of type I,. Let H denote the linear
span of all symmetries in M different from +1. Then M = H +R1. Indeed,
since M is of type L,, if a € M then by the spectral theorem (3.2.4) there
are minimal projections p, q in M with sum 1 and «, B €R such that

a=ap+pq=>%a+p)l+3a—B)p—q), (6.2)

hence a ¢ H+RI1, as asserted.

Let s, t € H be symmetries different from 1. Then sot €R1. Indeed, let
p,geM be minimal projections such that- s=p—q. Let M=
M BM,,®M, be the Peirce decomposition of M corresponding to p.
Then t=ap+r+Bq with re M,,, and «, B €R. Since per=qeor =3ir we
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have 1=t*=a’p+B*q+r*+(a+B)r. By 2.63 r*e M,®M, so that
(a+B)r=0.1If r=0 then a®*=B%*=1, so that a =—p since t# +1. If r#0
then a+pB=0. Thus in either case t=a(p—q)+r, so that sot=
(p—q)e(a(p—q)+r)=aleRl, proving the assertion.

Ifa=% as, b=3 Bt c H, o, B R, s,, t; symmetries different from +1,
then it follows from the above that acbeR1. Since a*=0, a®=al with
a=0. Therefore (a, b)l =acb defines an inner product ( , ) on H
making H into a real pre-Hilbert space such that the Jordan product in M
is given by (6.1). We shall complete the proof by first showing that M is
the direct sum of R1 and H, and then that H is complete.

Suppose 1=3Y1; a;8; € H, ; €R, s; symmetries different from =1. Then
for 1<j=n we have

§;=s;01= Z a;s;08; €R1,
i=1
contrary to assumption. Thus the sum H+R1 is direct.

Finally let T be the linear functional on M defined by 7(1)=1 and 7
vanishes on H. By (6.2) r is positive, hence a state. Therefore by the
definition of the order norm in an order umit space (1.2.1) and the fact
that this norm coincides with the norm | || on M (3.3.10), 7 is continu-
ous. Thus its null space H is closed, so H is a Hilbert space. Since M is
nonassociative the dimension of H is at least 2, hence M is a spin factor.

6.2. Representations of spin factors

6.2.1. We shall show that each spin factor has a faithful representation as
a JW factor, i.e. a JW algebra which is also a JBW factor. By 6.1.6 it
suffices to construct for each cardinal number « a spin system of cardinal-
ity a consisting of symmetries in a C* algebra. We shall first do this for
finite and countably infinite spin systems.

Let 1,, denote the identity in M, (C). We define the tensor product
M, (C)QM,,(C) to be M, (C) identified with M,,(M,(C)), in which the
imbeddings of M,(C) and M,,(C) are as follows: if a € M, (C) then

a®1l,, = (a'

0
o0 )e M (M,(©)),

is the mxXm matrix with a repeated down the diagonal and zero
otherwise. If b = (b;) e M,,,(C) then
1n ® b = (bij 1n) € Mm (Mn (C))’

is the m X m matrix with entries b;1,. The tensor product a®b is then
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the matrix
a®b=(a®1,)1,8b)=(b;a)c M,, (M, (C)).

With the imbedding M, (C) — M,,,.(C) by a — a®1,, we write M, (C) —
M,,.(€) and consider M, (C) as contained in M, (C). If we apply this to
tensor products of M,(C) with itself we obtain an inductive system

M,(C)—> M2 (C)—>My(C)—. . ..

The inductive limit &, of this inductive system is a * algebra. By
uniqueness of the C* norm in each M,.(C) we obtain a C* norm || |l on
oA, by taking ||x| to be the norm of y in M,(C) whenever x has a
representative y in M,-(C). The completion of &, in this norm is a C*
algebra, usually called the CAR algebra (CAR being shorthand for
canonical anticommutation relations). & is clearly a separable C*
algebra. It is simple, for if o is a * representation of s¢ then, since each
M.,.(C) is simple, 7 restricted to each M,«(C) is an isometry. Thus = is an
isometry on &, and therefore on .

For each neN and for the countably infinite cardinal X, we shall
construct a spin factor'which generates M,(C), M,«(C)DM,(C), or o
respectively. Let

o b =G o) =5 )
70 -1 2T\ oo T\ o

be the Pauli spin matrices in M,(C). (This is why we denote our spin
systems by P.) Denote by o4 the n-fold tensor product 03:®. . . Qo of o5
with itself n times in My(C). Define

$1 =0
S2, =0y
s3=0380,

S4:0'3®0'2

Son+1 =030

Sons2 = 030,
With the imbeddings M,-(C) <> M,.(C) defined previously we have
si € M(C) if k <2n. Since o;°0; = §;1, it follows that Py ={sy, ..., s} is

a spin system for each keN. The linear span V, of 1 and &, is then a
(k +1)-dimensional spin factor contained in M,-(C) if k<2n. Since the
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C* algebra generated by o, is the diagonal matrices in M,(C), and the C*
algebra generated by o and o, is M,(C), it follows that the C* algebra
C*(Vi) generated by V, equals My(C)®M,.(C) if k=2n—1 and
equals M,.(C) if k =2n.

Since each s, belongs to the CAR algebra & the spin system {sy, s», .. .}
generates an infinite-dimensional spin factor V., inside <. Since
Sy, - - -5 Sop, generate M,.(C) as a C* algebra it follows that C*(V,) = 4.

We summarize our result$ in the following theorem.

6.2.2. Theorem. For each k€{2,3, ..., %} there exists a spin factor V of
dimension k+1 contained in M,.(C) if ke{2n—1, 2n} and contained in
the CAR algebra o if k =o. The C* algebra C*(V,) generated by V, is
described as follows:

My(C)BMp(C) - ifk=2n—1,

C*(Vi) = { M,(C) if k=2n,
A if k=00,

6.2.3. Theorem. Ler A be a JB algebra of real dimension at least 3. Then
A is a spin factor if and only if A is a JW factor of type L.

Proof. By 6.1.8 it remains to show the necessity, so assume A is a spin
factor. We show that A is a JC algebra, because then an application of
4.7.5 completes the proof. If the dimension of A is finite or countably
infinite this follows from 6.2.2. Let A be obtained from a spin system %
of arbitrary infinite cardinality. L.et % denote the family of all finite
subsets of ? ordered by inclusion. For each Fe % denote by A(F) the
spin factor obtained from the spin system F. By 6.2.2 A(F) is a JC
algebra generating a C* algebra C*(F), and there is a natural imbedding
of C*(F) into C*(F') carrying A (F) into A(F") whenever F< F'. We thus
have an inductive system of C* algebras {C*(F)}z.4 whose inductive limit
is as for the M,-(C) a normed * algebra whose completion is a C* algebra
C*(%). Since C*(%) contains A(F) for all Fe % we obtain a representa-
tion of A as a JC algebra, completing the proof.

6.2.4. By 5.3.10 every JW factor which is not of type I, is reversible,
hence the only possibility for nonreversible JW factors is spin factors. The
next result is a solution to this problem.,

6.2.5. Theorem. Let A be a spin factor. If A has a representation as a
reversible JC algebra then A is isomorphic to one of the spin factors V,, V;
or Vs. Conversely V, and V are reversible in every representation in a C*
algebra, while Vs has both reversible and nonreversible representations.
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Proof. Suppose A is a reversible spin factor inside a C* algebra. Write
A=H®R1 as in 6.1.3 and assume first dim H=4. Choose a set
Sy, ...,8, of symmetries in H such that 3(sss; +8;8) = s;08, =0, and let
S5 = 81528584 Since s;8; = —s;8; fOr i # ], 85= 38158384+ $4835,83), 80 S5 € A,
since A is reversible. Furthermore sseos; =0 if i <4, as is easy to check.
Thus {s,, ..., Ss} is a spin system in H, which is impossible if dim H =4,
i.e. if A =V,. Therefore V, is never reversible.

If dim H=6 choose a new symmetry sq in H such that s¢os;, =0, i<5.
Then we have

8586 = —S¢Ss5 = 8651825354 = — 81582838486 = 35856,

which is impossible. Thus the only possibilities for A with reversible
representations are V,, V; and Vs,

Suppose V; is contained in a C* algebra. Let {sy, s,, 5} be a spin
system of symmetries defining V. In order to show Vj is reversible it
suffices by multilinearity to prove that x=a;...a,+a,...4,€V;
whenever g; belongs to the basis {1, sy, s,, s3} for V5. Using the cancella-
tions s? =1, s;5; = —s;8;, i # j, we may permute the a;’s (possibly reversing a
sign in the expression for x) and cancel terms, until we find x=
by...b,+b,...b,becA, where m=<3. If m=2, x=2bsob,€ A, and if
m=3, x=2{b;b,bs}e A. Thus xeV;, and V; is reversible in every
representation. Similarly V, is reversible in every representation.

Vs can be both reversible and nonreversible in concrete representa-
tions. Indeed, H,(H) having real dimension 6 is a reversible representa-
tion of V. From the first paragraph of the proof H,(H) is obtained from a
spin system {sy, ..., S5} where s5= 5,5,8384. Since two spin factors of the
same dimension are isomorphic (6.1.5) there is a representation 7 of
H,(H) such that 7(s;))=s; if i=1,...,4, and w(ss) =—ss. Then y=1Dm,
with ¢ the identity map, is a representation of Vs in Mg(C) satisfying

Wla)= ((0)1 'n'(()a))’

We have
w(sy) ... P(ss)+ d(ss) ... w(sy)]

:%<sl...ssgs5...s1 _(s1u.850+s5 - Sl))
(0 _Dtwv,

proving that ¢(Vs) is not reversible.
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6.3. JBW algebras of type I,

6.3.1. By 6.1.8 each JBW factor of type I, is a spin factor and so by 6.2.3
in particular a JW algebra. We shall in the present section characterize
general JBW algebras of type I, and obtain direct global generalizations
of our previous results.

6.3.2. Lemma. Let M be a JBW algebra of type 1, and p a projection in
M. Then p is Abelian if and only if c(p™)=1.

Proof. Since c(p*)=p*, c(p")*=<p. Thus if p is Abelian then by 5.3.2 so
is c¢(p™)*. But M is of type I,, so no nonzero central projection can be
Abelian. Therefore c(p)*=0. Conversely, if c(p*)=1 and p is not
Abelian we can by 5.3.2 choose nonzero projections g, r < p with g L r and
q ~r. Then p*, g, r are orthogonal projections with c(p)c(q)c(r) # 0, which
is impossible by 5.3.4.

6.3.3. If M is a JBW algebra of type I, with centre Z we may by 3.2.2
assume Z = C(X) with X a compact Hausdorff space. Then an element a
in M can be considered as a function on X with values in JBW factors of
type I,. (We shall make this more precise in 6.3.13 below, but it helps the
intuition to look at elements in M this way.) Therefore, for each te X,
a(t)=x(O)p®) +y(t)q(t), where x(t), y()eR, and p(t) and q(t) are
Abelian projections in a I, factor with sum 1. We should thus expect that
there exist x, y € Z and Abelian projections p and q in M with sum 1 such
that a = xp + yq. The next result is a formal proof of this fact.

6.3.4. Lemma. Let M be a JBW algebra of type I, with centre Z. If ac M
there exist x,y € Z and a projection p € M with c(p)=c(p*)=1 such that
a=xp+yp*. In particular, if s is the symmetry s =2p—1 then a =z + ws
with zwe Z.

Proof. Define z,, z,€ Z by
z;=max{izeZ:z<a}, z,=min{z€ Z: z=a}. 6.3)

Then z, <a < z,. By spectral theory (3.2.2) and the fact that Z is a JBW
algebra we can find central projections e, e, e,, . . . with sum 1 such that
€9z = eyZ,, and real numbers s, <t, for n=1, such that z.e, <s,e, <
t.e, <e,z,. As in 4.1.10 let W(a) be the JBW algebra generated by a. By
4.1.11 we can identify W(a) with C(Y) for some compact Hausdorff
space Y. Let 5, <A, <t, and Y, ={ye Y:a(y)<A,}, and let p, be the
projection in W(a) corresponding to the characteristic function for Y,
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We assert that
e, <c(p.)c(py). (6.4

Let f=ec(p,)" and put z=A\f+z,f". Since fp,=0 we have A f=
A Jpx <fpia by definition of p,, so that z=<a. By (6.3) z=2z;, and in
particular A.f = zf=<z.f. But A, f=s,f=z,f since f<e,, so we must have
A S =s,f. Since s, <A, this implies f=0, hence e, <c(p,).

In order to show e, <c(p;) we use a symmetric argument; just replace
z, by z, and s, by t, in the above paragraph and use inequalities in the
opposite direction. :

By 4.3.5 c(e,p,) = e.c(p,) = e,, and similarly c(e,p;.) = e,. Thus by 6.3.2
e.p, and e,py are Abelian projections in e, M. Since by 5.2.17 the centre
of {p.Mp,} is Zp, we find e, {p.Mp,}=1{e.p.Me,p,}=e,p,Z. Since
cle.,p.)=e, the map e, Z—e,p,Z is by 4.3.4 an isomorphism. Since
p. € W(a) it operator commutes with a, hence there is x,€Z with
lIx.|=<|lall such that e,(p,°a) = e, {p.ap.}= x,.e.p,. Similarly there is y, € Z
with |ly.l=<llal] such that e,(pica)=7y.e.,pr. Adding we get e¢,a=
X€nDp + Yn€nDr-

Let p, be any Abelian projection in M with c(p,) =1, and let x, =y, =
eoz,. Then xo=7vy,=ega. Therefore, if p=Dr—0 €Pp> X = 20 Xn€ns ¥ =
%o Ynn, then by (6.4) c(p) =Y c(e.p,) =Y e, =1 and similarly c(p*) = 1.
Furthermore we have

a=1) e,a=7 (X.e.Pn+ VoeuDi) = xp +yp~,

proving the first assertion of the lemma.
Finally, if s=2p—1, z=3(x+y), w=3(x—vy), then s is a symmetry,
z,weZ, and a = z +ws. The proof is complete.

6.35. If s=2p—1 is a symmetry then s+1=2p and s—1=2p*. We
write c(s+1) and c(s—1) for the central supports of p and p* respec-
tively. Thus the symmetry s of 6.3.4 has the property that c(s+1)=1.

6.3.6. Lemma. Let M be a JBW algebra of type 1, with centre Z. Let
N={ws: weZ, s a symmetry in M with c(s +1)=1}. If s, t are symmetries
in N then sote Z.

Proof. We have s=p—p* for an Abelian projection p with c(p)=
c(pH=1. Let M=M®OM,,BM, be the Peirce decomposition of M
corresponding to p. Since p and p* are Abelian, by 5.2.17 M, = {pMp} =
Zp and M,={p"Mp*}=Zp™". It follows that the Peirce decomposition of
t is of the form

t=up+uopt+r, uve”Z, reM,,. 6.5)
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Then we have
1=t>*=up+v2p +r*+2(up +vp*)or. (6.6)

Hence the first three terms belong to M;@®M,, while the last term
belongs to M;,, and thus is 0. Since uper=3ur and vptor=1or, the last
term is (u +v)r, so that if ec Z denotes the support projection of u+uv,
we have er=0. If we multiply (6.6) by e we therefore obtain e=
eu’p+ev’p’, and so eu’p=ep. Since c(p)=1 the map Z— Zp is an
isomorphism (4.3.4), hence eu”= e. Similarly ev? = e. Therefore there is a
central projection f such that efu = efv and ef u =—ef'v, and it follows
from (6.5) that

eft = efup +efop =efoc Z.

Now (eft)>*=ef, so that eft is a central partial symmetry. Since te N,
c(t+1)=1, so that by 4.3.5 c(ef(t+1)) = ef. But this is impossible unless
ef =0, since eft is a central partial symmetry. We therefore conclude that
ef =0, and so eu=—ev.

By definition of e as the support projection of u-+v we have
(u+v)et=0, so that ue*=—ve*. But then it follows that u=-—v, and
therefore

set=pot—pret=up+per—uvp-—prer
=u(p+ph)+ir—sr=uecZ

The proof is complete.

6.3.7. Proposition. Let M be a JBW algebra of type I, with centre Z. Let
N be as in 6.3.6. Then N is a vector subspace of M, and M=Z®N.

Proof. Let ze Z and s be a symmetry in N. Suppose zs€ NN Z. Then
zs =0. Indeed, if z# 0 there is by the spectral theorem (3.2.4) a projec-
tion ecZ such that ez is invertible in eZ. But then ese Z, which
contradicts the assumption that s € N, so that ¢(s+1)=1. Thus z =0, and
in particular NN Z ={0}.

Let next s, and s, be symmetries in N and wy, w, € Z. By 6.3.4 there
are z, wy€ Z and a symmetry s;€ N such that w8, +w,s, =z +wss;. If
we multiply this equation with any symmetry se N and use 6.3.6 we
obtain zse NN Z, so z =0 by the preceding paragraph. But then w;s; +
w,s, =wsss€N, and N is a vector subspace of M. Since by 6.3.4 M=
Z + N, the proof is complete.

6.3.8. Let M be a JBWAalgebra of type I,. A spin system (s, ),y in M is
called locally maximal if for every nonzero central projection e in M the
family (es, ),y IS a maximal spin system in eM.



146 JORDAN OPERATOR ALGEBRAS

Note that since card J=2 then c¢(s, +1)=1 for all e J. Indeed if
ss =p—p~ and c(p") <1 (resp. c(p)<1) then there is a nonzero central
projection e such that es; =e (resp.=-—e), hence (es,),; is not a spin
system, a contradiction.

6.3.9. Lemma. Let M be a JBW algebra of type 1, with centre Z. Suppose
(s1,...,8), keN, is a locally maximal spin system in M. Then every
operator a € M can be written uniquely in the form

k
a=zo+Zzisi, 2oy ..., 2k €EZ.
i=1

Proof. Let ac M. By 6.3.7 there are unique zo€Z and wse N with
we Z, s a symmetry in N, such that a = z,+ ws. By 6.3.6 sos; € Z for all
s;. Let b=s—Y*_,(ses;)s;. By 6.37 beN, so b=vt with veZ and t a
symmetry in N. Since beos; =0 for all i, 0= (vt)os; = v{tes;). Let e denote
the support projection of v. Then ecZ and e(tes;)=0 for all i. Thus
(et, esy, . . ., es,) is a spin system in eM, contradicting the local maximality
of (sy,...,s). Therefore e =0, so v =0, and therefore s =Y*_; (s°s;)s;,
proving that a can be written in the desired form.

To show uniqueness assume a = 0. Since by 6.3.7 z, is unique, z,=0,
and Y¥_; z;s; =0. But then we have z; = (¥}, z;5)°s; =0.

6.3.10. Let M be a JBW algebra of type I,. Let ke{2,3,.. }U{x}. We
say M is of type I, if there is a locally maximal spin system (S, )qcy in M
with card J=k if k<o, and card J is infinite if k=00,

The number k is uniquely defined. This will follow from our next
result. Note that by 4.6.4 and 5.3.12 each JBW algebra of type I, has a
separating family of factor representations of type I,. Since each JBW
factor of type I, is a spin factor (6.1.8), and each spin factor is a JC
algebra (6.2.3), it follows from 4.7.5 that each JBW algebra of type L, is a
JW algebra.

6.3.11. Proposition. Let M be a JBW algebra of type 1, ,, k <. Then
each factor representation of M is onto the spin factor V.

Proof. Let 7 be a factor representation of M. Since by 5.3.12 «(M)" is of
type I, it is a spin factor (6.1.8), hence by 6.1.7 w(M)= «(M)~ since
(M) is norm-closed by 3.4.3. Let {s,, ..., 5.} be a locally maximal spin
system in M. Then the symmetries m(sy), . .., w(s;) all anticommute, i.e.
m(s)em(s;)=0 if i#]j, hence they form a spin system in 7(M). Since
w(Z)=R1, where Z denotes the centre of M, it follows by 6.3.9 that each
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element in w(M) can be written in the form og+Y¥ , ayrr(s;), which
proves that w(M)=V,.

6.3.12. If N is a JBW algebra and X a compact Hausdorff space then
C(X, N) denotes the set of continuous functions on X with values in N. If
C(X, N) is given pointwise addition and multiplication it is clearly a
Jordan algebra. If the norm is the sup-norm it is a JB algebra. We then
have the following variation of 6.3.11, which answers the comments in
6.3.3.

6.3.13. Proposition. Let M be a JBW algebra of type 1,,, k <. Let Z
denote the centre of M, and by 3.2.2 let X be a compact Hausdorff space
such that Z = C(X)f Then M=C(X, V,).

Proof. Let (sq,...,s) be a locally maximal spin system in M. Let
(t1,. .., t) be a spin system generating V. Then (1,¢;,..., %) is a basis
for V,, so if ae C(X, Vi) then a(t) = zo(t)1+ Y5, z(1)t; for t e X, where
Zo, - - ., 2 are continuous real functions on X. Thus z, ..., 2, € C(X) =
Z, and the map a — zo+ Yr—, z;s; is by 6.3.9 an isomorphism of C(X, V,)
onto M.

6.3.14. Theorem. Any JBW algebra of type L, is a direct sum of IBW
algebras of type 1, ;.

Proof. Let M be a JBW algebra of type I,, and let p be an Abelian
projection in M with c(p)=1. Let s=2p—1. If t is a symmetry in M
which interchanges p and p*, cf. 5.3.2, then s and ¢ anticommute. Let
(S, )wey be a maximal spin system containing s and t.

Let (eg)ger be a maximal orthogonal family of central projections in M
such that the family (egS,)acr IS not a maximal spin system in egM. For
each Bel choose a symmetry t; in egM which anticommutes with all
egs €t Let e=Yg €5 If e=1 then t=)4 1tz is a symmetry in M
which anticommutes with all s,, contradicting the maximality of (S, )acr.
Therefore e#1,. and by maximality of (€g)gcr (€ Sy)acs 1S @ locally
maximal spin system in e*M. Thus M admits a nonzero summand of type
I,,., where n =card J or n = if card J=X,. The proof is completed by
the usual Zorn’s lemma argument.

6.4. JBW algebras of type |,,3<sn<x

8.4.1. Theorem. Let M be a JBW algebra of type 1,,, 3<n <. Then M
is a direct sum M =M, DM, BM,;DM,, where M,=0 if n# 3, such that
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all factor representations of M; are onto JIBW factors isomorphic to H,(R,),
where R, =R, R,=C, R;=H and R,=0.

Proof. Let m be a factor representation of M. By 5.3.12 «w(M) is a JBW
factor of type I,,, hence is isomorphic to one of the H,(R;) by 5.3.8, and
i#4 if n#3. Let py,...,p. be Abelian projections in M with central
supports 1 and sum 1. Let p = p; + p,. Then {pMp} is a JBW algebra of
type I,, and so by 5.2.17 {w(p)w(M)x(p)} is a IBW factor of type I,
isomorphic to H,(R,)). In particular, w({pMp})=V, where k+1=
dim V, =2+dim R, hence ke{1+2':1=0,1,2,3}. By 6.3.11 and 6.3.14
“{pMp} is a direct sum N;D...@DN,, where N, is the summand of type I, ;
with k =1+2'". Hence each factor representation of Nj is onto H,(R,).
Since ¢(p) =1 the map Z —> Zp is an isomorphism (4.3.4), where Z is the
centre of M. Therefore, if ¢ is the central projection in {pMp} such that
N, = ¢{pMp}, then there is by 5.2.17 a unique projection f, € Z such that
e=fp, and Y1fi=1. Let M{=fM. Then M=M;D...®M,, and each
factor representation of M, is such that w({eMe}) = 7(N,)=H,(R)).
Since any factor representation of M, is onto some H,(R;), counting
dimensions shows that i =[. Thus =(M;)=H, (R)).

6.4.2. Corollary. Let M be a JBW algebra with no nonzero representa-
tions as a JC algebra. Then M is of type 1, and all its factor representations
are onto H;(O).

Proof. By 5.3.9 and 6.3.10 M is of type I, so by 6.4.1 M=M;D...HM,
with all factor representations of M; onto H3(R,), i=1,...,4 and R, as
in the theorem. Since Hi(R,) is a JC algebra for i=<3 (3.1.2), M= M,,
proving the result.

6.4.3. Remark. By similar techniques as in 6.3.13 we can write the
summands M, ..., M, in 6.4.1 as continuous functions with values in
H,(R)). Then we find M, =C(X;, H,(R,))), i=1,...,4, where X, is a
compact Hausdorff space, and R; as in 6.4.1.

6.5. Comments

Infinite-dimensional spin factors were first studied as JC and JW algebras
by Topping [110] and then Stgrmer [103, 105]. Topping [111] then
introduced the abstract definition from which he deduced 6.1.5. Theorem
6.1.8 is due to Stgrmer [103].

The results in Section 6.2 are of ‘folklore’ character, except 6.2.5 on
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spin factors of low dimensions, which is due to Hanche-Olsen [57],
Robertson [84] and partly by Stgrmer [103].

The decomposition result 6.3.14 for JBW algebras of type I, is due to
Stacey [97]. His proof is different from ours in that, instead of using
global techniques as we did, he worked with L* functions in a way related
to what we indicated in 6.3.13. Theorem 6.4.1 is also due to Stacey [99],
again formulated in terms of L* functions.



7

Structure theory

7.1. The universal algebras

7.1.1. In the present chapter we shall prove the main structure theorems
for JB and JBW algebras and then show some applications. It turns out
that they are as close to finite-dimensional formally real Jordan algebras
as one could hope for. In the applications special emphasis will be given
to type I algebras, because they include the essential differences from the
self-adjoint part of von Neumann algebras. We shall, however, conclude
with a section on JBW algebras with modular projection lattice, just to
indicate their relationship to finite von Neumann algebras.

The quickest way to prove our results will be through the use of
universal associative algebras corresponding to real Jordan algebras. But
first recall our convention that if A and B are abstractly defined algebras
then a homomorphism ¢: A — B is a linear map which preserves the
relevant multiplicative structure.

7.1.2. Let A be a real Jordan algebra. A universal specialization of A is
a pair (AU, u), where % is an associative real algebra and u a homomorph-
ism of A into 4’ such that:
(i) u(A) generates U as an algebra.
(ii) If B is a real associative algebra and ¢: A — B' is a homomorphism
then there exists a homomorphism d;: 9 —> B such that ¢ = dA)u.

We shall often write % without mentioning u, and will call % the

universal associative algebra for A.

7.1.3. Theorem. Let A be a real Jordan algebra. Then there exists up to
isomorphism a unique universal specialization of A.

Proof. We first show uniqueness. Suppose (U, u) and (¥, v) are universal
specializations of A. Then there exist by (ii) homomorphisms 6: U — ¥V
and @: V' — L such that v = 0u and u = fiv. Thus u = ddu and v = diiv. By

150
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(i) ud is the identity of U and 64 is the identity on V. It follows that
="', proving uniqueness.
To show existence denote by ® A the tensor product of A with itself n

times considered as a real vector space. Let T(A) be the direct sum
TA)= & ®A.
n=1

Then T(A) is a real associative algebra with @ as multiplication. Let I
denote the ideal generated by expressions a®@b+b®a—2acbh, a,bc A,
let U=T(A)/I, and let u:A—u by u(a)=a+I1 Then u is a
homomorphism into U, and u{A) generates  as an algebra. We show the
universal property (ii).

Suppose B is an associative real algebra and ¢: A — B’ a homomorph-
ism. Define ¢,: T(A) — B by linearity and the formula

61(a:®...®a,)=d(ay) ... d(a,).

Then ¢, is a homomorphism, and since
¢ (a®@b+b®a—2a°b) = d(a)d(b)+d(b)d(a)—2d(a°b) =0,

d)l arAmihilates I Thus gbl induces a homomorphism <f>: % — B such that
¢ =dou

7.1.4. If o is an associative algebra its opposite algebra «£° is defined to

be equal to & as a vector space, but its multiplication is given by
(a, b) — ba. We write a— a° for the identity map & — «° so that
a®b® = (ba)° holds.

7.1.5. Lemma. Let A be a real Jordan algebra and let (AU, u) be its
universal specialization. Then there exists an involution * on U such that
u(a)*=u(a) for a € A. Furthermore, if A is unital then so is U.

Proof. The homomorphism u: A — %' defines a homomorphlsm u®: A —
(°) of A into the opposite algebra of U by u%a) = u(a)0 for ac A. By
the universal property of % there is a homomorphism @°: U —>° such
that % = u®. Define x* by (x*)° = 2i°(x) for x €. Then * is the desired
involution. Indeed, if x,ye® then ((xy)*)°= ﬁo(xy) ={4%x)a%y) =
(x™)°(y*)° = (y*x*)°. For ac A we get (u(a)*)° = a°u(a) = 0(a) u(a)®,
so u(a)*=u(a). Then x — x™ is an automorphlsm of AU Wthh is the
identity on u(A). Since A generates U, x™* =x follows. Noqlce that we
could have defined the involution from the construction of % from T(A),
and defining involution in T(A) by (0,;®...®a,)*=a,®...Qa,.

If A is unital with identity 1 then e = u(1) is an idempotent in U such
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that u(a) =u({lal})=eu(a)e for all a € A. Since u(A) generates U as an
algebra e is the identity in AU.

7.1.6. Let UC =udiu be the complexification of U. Define (x-+iy)*=
x*—iy*. Then * is an involution on A" which extends that of %. The map

O(x +iy) = x*+iy*

is a complex linear * antiautomorphism of U* of order 2. If ac A then
u(a)=ul(a)*=dula)).

7.1.7. Proposition. Let A be a real Jordan algebra and let B be a complex
associative algebra with involution *. Suppose ¢: A — By, (the self-adjoint
elements in B) is a homomorphism. Then there exists a unique
* homomorphism ¢: UC — B such that ¢ = du.

Proof. This is immediate from the preceding discussion.

7.1.8. Theorem. Let A be a IJB algebra. Then there exist up to isomorph-

ism a unique C* algebra C¥(A) and a homomorphism ¢4 : A — C(A)g,

such that:

(1) YA(A) generates CE(A) as a C* algebra.

(ii) If o is a C* algebra and ¢: A — s, is a homomorphism then there
exists a * homomorphism &: C¥(A) — o such that ¢ = Piss.

(iii) There is a * antiautomorphism ® of C¥(A) of order 2 such that
D(P4(a)) = ¥a(a) for all ac A.

Proof. Let (U, u) denote the complexified universal specialization of A.
If xeuU® let

lIx|| = sup{]|lmw(x)|l: # a * representation of U}.

Then ||x|| <. Indeed, x is an algebraic combination of elements in
u(A), hence it suffices to show |u(a)||<e« for all ae A. But if 7 is a
* representation of U® on a Hilbert space H, then 7u is a homomorphism
of A into B(H),,, hence is norm decreasing by 3.4.3. Thus |7 (u(a))l|<|a||
for all r, and so ||u(a)||=<|lal]j<e. Clearly | || has all the other properties
of a seminorm on ®, and moreover it is a C* seminorm on U°, viz.
llx*x||=lx|I* (1.3.2). Let N={xe€:|lx||=0}. Then N is a two-sided ideal
in U° such that x € N implies x*e N. Let C¥(A) be the completion of
U°/N in the quotient norm. Then CZXA) is a C* algebra, and if
Uala)=ul(a)+ N for ac A then (i) is immediate.

To show (ii) let ¢: A — o4, be a homomorphism. Let by 7.1.7 ¢, be
the * homomorphism of A" into o such that ¢,u = ¢. Then in particular
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e, is a * representation of A€ for all * representations w of & so
if xeN then [md.(x)|=0, hence |p,(x)||=0. Thus ¢, induces a
+ homomorphism é: C¥(A) — o such that ¢y, = .

To show (iii) let @ be the * antiautomorphism of %€ defined by 7.1.6.
Suppose x € N and let 7 be a * representation of U" on a Hilbert space
H. Let a be any * antiautomorphism of B(H) (« exists by 7.5.6 below).
Then anwd® is a * representation of U on H, hence ||7(®'(x))||=
lle®'(x)|| = 0, and @'(x) € N. Thus @’ induces a * antiautomorphism ® of
order 2 of U®/N, hence of C*(A). Clearly ®(,(a)) = 4(a) for all ac A,

The proof of uniqueness is a trivial modification of the uniqueness
proof in 7.1.3 and is omitted.

7.1.9. Theorem. Let M be a IJBW algebra. Then there exist up to

isomorphism a unique von Neumann algebra W*(M) and a normal

homomorphism ¢r: M — W*(M) such that: _

i) (M) generates W*(M) as a von Neumann algebra.

Gi) If ¥ is a von Neumann algebra and ¢: M-—>Ng, lS a normal
homomorphzsm then there is a normal * homomorphism ¢: W*(M) —
N such that ¥ = ¢.

(iii) There is a * antiautomorphism ® of order 2 of W*(M) such that
O(Y(a)) =y (a) for all ae M.

Proof. Let «: CHM)— C¥M)** denote the inclusion map, and let
ne: M — CHM) be the homomorphism found in 7.1.8. Let (e,) be a
maximal orthogonal family of central projections in C¥(M)™* such that
the map M — e CHM)** defined by a— e,(upy(a)) is normal. Let
e=Y,e,. Then e is the maximal central projection with this property. We
let  WH*(M)=eC*(M)** and ¢:A— WHM) be the map ¢(a)=
e(un(a)). By 2.5.6 ¢ is a homomorphism, hence (i) follows.

Let & be a von Neumann algebra and ¢: M — N, be a normal
homomorphism. Let ¢, denote the extension of ¢ to Ci(M) such that
b1y = ¢ Let ¢: CHM)X* — N, be the normal extension of ¢; to
CHM)®* found in 4.5.7, and extend ¢ by linearity to all of CHM)**. We
thus have the following commutative diagram.

CHM)**

CHM) 25 W
lllMT Ul
M 2 K,
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Let f be the support of ¢ in CHM)** ie. f is by 4.3.7 the central
projection such that ¢(1—f)=0 and ¢ | fCHM)** is injective. By com-
mutativity of the diagram the map M — fCE(M)** by a — f(wh,(a))
decomposes as

a—¢(a)— (¢ | fC*(M)**) Yp(a)),

which is a composition of normal maps, hence is normal. Thus f=<e by
maximality of e, so that ¢ = ¢ | W*(M) satisfies (ii).

To show (iii) let by 7.1.8 @' denote the * antiautomorphism of order 2
of CHM) such that @ (y(a)) = yns(a) for all ac M. Then &' has an
extension @ to C¥*M)**, which by 1.1.21 and 4.5.7 is a normal
* antiautomorphism of order 2. If e is as above then the map M —
@"(e) CHM)™ = @"(eCHM)*¥) is a normal map, hence by maximality of
e, d'(e)se. Since @ is of order 2 we have equahty, and &=
@" | eCHM)™™ is the desired * antiautomorphism.

As in 7.1.8 uniqueness is trivial.

7.1.10. The * antiautomorphism ® of 7.1.8 (resp. 7.1.9) is called the
canonical antiautomorphism of Ci(A) (resp. W*(M)).

7.1.11. Proposition. For any JB algebra A we have a natural isomorph-
ism WH(A**) = CHA)**.

Proof. We must show that CXA)** with the homomorphism
PEF: A¥* - CHA)™™ satisfies the defining properties of W*(A**). Since
P4 (A) generates CX(A) as a C* algebra, it generates C*(A)** as a von
Neumann algebra. But ¢5*(A**) contains 4 (A), hence it too generates

Let ¢:A**.~—> N be a normal homomorphism, where & is a von
Neumann algebra. Let ¢, be the restriction of ¢ to A, and consider the
* homomorphism ¢o: C*(A) — N such that ¢y = dotha (7.1.8). By 4.5.7,
¢, admits a normal extension &: Cu(A)**— N. Since the product in
CHA)** is separately weakly continuous, ¢ is actually a * homomorph-
ism. On A we have

i* lA :‘{)O(I/A =¢o=¢ lA:
and since ¢yYi* and ¢ are both normal, $y**=¢ follows. Thus

YR A¥* > CHA)E® satisfies the conditions of 7.1.9, so C*A)** =

7.1.12. Remark. We can now see that the universal C* algebras of the
finite-dimensional and separately infinite-dimensional spin factors are the
algebras exhibited in 6.2.2. Indeed, if 2 <k <o then C¥(V,) is generated
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by k anticommuting symmetries sy, ..., S,. It is then easy to see that the
2% elements of the form s, ...s; where 1<i;<i,<...<j<k and 0<
j<k generate C¥(V,) linearly. Indeed, the product of any two such
elements is a third such modulo sign. For example, ($15385)(5:84)=
—838,8s. Thus dim C¥(V,)<2*. However, the algebra C*(V;) defined in
6.2.2 is generated by V,, and by 7.1.8 there is a homomorphism of
C*(V,) onto C*(V,). But dim C*(V,) = 2%, so this homomorphism must
be an isomorphism. The corresponding statement for k =, that Cj(V.,)
is the CAR algebra, follows since it is easy to show that C; is a functor
preserving inductive limits.

7.2. Structure of JB and JBW algebras

7.2.1. Let A be a JB algebra. We shall call A purely exceptional if there is
no nonzero homomorphism of A into a JC algebra. Since every JBW
factor other than H,(0) is a JW algebra (5.3.8, 5.3.9, 6.2.3), it follows
that every factor representation of A is onto H;(0).

7.2.2. Lemma. A JB algebra A is purely exceptional if and only if every
factor representation of A is onto Hs(0).

Proof. It remains to prove the ‘if’ part. Assume that A is not purely
exceptional. Then there is a nonzero homomorphism ¢ of A onto a JC
algebra B. By 4.6.4 there is a factor representation ¢ of B. By 4.7.4 ¢(B)
is a JC algebra, so, since H5(Q) is exceptional (2.8.5), ¥(B) is not
(isomorphic to) H5(0). Hence ¢ is a factor representation of A not onto
H(0).

7.2.3. Theorem. Any JB algebra A contains a unique purely exceptional
ideal J such that A/J is a JC algebra.

Proof. Let by 7.1.8 C%(A) be the universal C* algebra for A, and let s
denote the canonical homomorphism of A into CX(A). Let J be the
kernel of 5. Then A/J is, by 3.4.2 and 3.4.3, isometrically isomorphic to
a norm-closed Jordan subalgebra of C¥(A),,, and hence is a JC algebra.
If J is not purely exceptional there is a nonzero homomorphism of J into
a JC algebra, and hence into B(H),,. By 4.5.8 this extends to a
homomorphism w: A — B(H),,. But then by 7.1.8 there is a =*
homomorphism 7 of C}(A) into B(H),, such that 7 = 7ij4. In particular 7
vanishes on J, which is a contradiction. Thus J is purely exceptional.
To prove uniqueness let K be another purely exceptional ideal. Then
4 must vanish on K, so that K < J. If A/K is a JC algebra then there is a
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homomorphism #: A — B(H),, with kernel K. Then as above ar vanishes
on J, so J< K. The proof is complete.

7.2.4. Recall that the Shirshov—Cohn theorem (2.4.14) states that a
Jordan algebra, unital or not, with two generators is special. As a
consequence of 7.2.3 we are now able to prove the JB version of this
theorem.

7.2.5. The Shirshov—Cohn theorem for JB algebras. A JB algebra
generated by two elements is a JC algebra.

Proof. Let A be a JB algebra with two generators a and b, and possibly
an identity 1. If A is not a JC algebra A has by 7.2.2, 7.2.3 and 4.5.8 a
representation 7 on H5(0). Then w(A) is finite-dimensional, so is gener-
ated algebraically by m(a) and w(b), and possibly the identity 7(1). But
then by the Shirshov—Cohn theorem (2.4.14) 7(A) is special, contradict-
ing the fact that H;(0) is exceptional (2.8.5).

7.2.6. Remark. It might be expected that 7.2.3 could be improved in the
sense that A is the direct sum of A/J and J. This is not true, as the
following example shows.

For neN let A, =H;©), and let Ac®;_, A, consist of all con-
vergent sequences (a,) where a, =(x});;-1,3€H3(0), and xj— 0 for
i#j. Then it is easy to show that with pointwise operations A is a JB
algebra, J ={(a,): a, — 0}, and A/J is three-dimensional and associative.

If A is a JBW algebra, however, we next prove that A is indeed the
direct sum of A/J and J.

7.2.7. Theorem. Let M be a JBW algebra. Then M can be uniquely
decomposed as a direct sum M= M_ D M,,, where M, is a JW algebra
and M., is a purely exceptional JBW algebra.

Proof. By 5.1.5 and 5.3.5 M has a unique decomposition
M:Mll@Mlze. - '®MI«.€BMII®MIII’

where each summand is of the type indicated. By 5.3.9 and 6.3.10 each
summand other than My is a JW algebra. By 6.4.1 My =M,;®D.. . DM,
where all factor representations of M, are onto H3(R;), where R, =R,
R,=C, R;=H, R,=0. Let M., =M, and M, be the direct sum of the
rest of the summands. Then M, is a JW algebra, and M,, is purely
exceptional by 7.2.2.

7.2.8. Remark. Let by 7.1.9 ¢ be the canonical homomorphism of M
into W*(M). If M =M, DM, as in 7.2.7 then M., =ker ¢. Indeed, let
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J=ker . Then J is a weakly closed ideal in M, so by 4.3.6 there is a
central projection e in M such that J=eM. Let p and q be the central
projections in M such that M., = pM, M,,=qgM. If JNM,,# {0} then the
homomorphism a — gea is a normal representation of M as a JW algebra
not annihilating the kernel of . This contradicts 7.1.9(ii), so that eq =0.
Thus e<p. If e# p then a — (1—e)pa is a representation of M annihilat-
ing J, hence it induces a representation of (1—e)M,, into ¢(M). Since
M_, has no representation as a JC algebra while (M) is a JC algebra,
this is impossible. Thus e = p, proving the assertion.

7.3. Antiautomorphisms

7.3.1. The theory of * antiautomorphisms of von Neumann algebras, and
especially those of order 2, is intimately related to the theory of reversible
JW algebras. Indeed, if & is a * antiautomorphism of order 2 of the von
Neumann algebra ., the reader should have no difficulty in showing that
the self-adjoint part of the set #* of fixed points under « is a reversible
JW algebra. We shall in the present section develop some of this theory
with particular emphasis on the canonical antiautomorphism ® of W*(M)
(7.1.10). Note that if M is a JW algebra then M., =0, cf. 7.2.7, so if ¢ is
the canonical homomorphism of M into W*(M) exhibited in 7.1.9, then
¢ is injective by 7.2.8. We may therefore consider M as a JW subalgebra
of W*(M),, in this case. By 7.1.9 ®(a)=a for all ac M, hence M <
W*(M)E. We shall shortly show that the converse inclusion holds in most
cases.

7.3.2. Lemma. Let M be a von Neumann algebra and o a * anti-
automorphism of M of order 2. Let R={zeM: a(z)=z*}. Then R is an
ultraweakly closed real * algebra; M is the direct sum M= RDIR, and
a(x+iy)=x*+iy*, x, yeR.

Proof. Since the * operation is ultraweakly continuous, multiplication is
separately ultraweakly continuous (cf. 1.4.1) and « is normal (4.5.6), it is
straightforward to show that R is an ultraweakly closed real * subalgebra
of M. If zec M then z =Hz+a(zF)+i(12)(z -a(z¥) e R+iR. If x=iye
RNiR then x*=a(x) =ia(y)=iy*, hence x =—iy, so x =y =0. There-
fore the sum is direct. The last statement follows by definition of R.

7.3.3. Proposition. Let M be a JW algebra with no type I, part. Then
M= W*(M)E, where ® is the canonical antiautomorphism of W*(M).

Proof. By 7.3.2 W*(M)=R+iR is a direct sum, where R is an ultra-
weakly closed real * algebra, and ®(x+iy)= x*+iy*, x,yeR. We
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show W*(M)E <M, which by 7.3.1 will prove the proposition. Let
ze WH(M)E. By 7.3.2 zeR,,. Since M generates W*(M) as a von
Neumann algebra, cf. 7.3.1, z is the ultraweak limit of self-adjoint
operators x +iy with x, y in the real algebra generated by M. In particular
x,y€ R, since M < W*(M)E by 7.3.1. Furthermore since x +iy is self-
adjoint, x=x%*, y=—y* Since z=®(z), we may assume P(x+iy)=
x+iy, i.e. x*+iy*=x+1iy, so y=0. Now x is a finite sum of finite
products, x=Ya,...a, with a,,...,a M. Since x=3(x+x*) =
1S(a;...actag...a), xeM, since by 5.3.10 M is reversible.
Thus z, being an ultraweak limit of elements in M belongs to M, and so
W*(M)Z < M, proving the proposition.

7.3.4. Lemma. Let Z be an Abelian von Neumann algebra and ® a
* automorphism of order 2 of %. Then there exist projections e and f in &
such that e + f+®(f) = 1, and P(g) = g for all projections g=<e.

Proof. Let by Zorn’s lemma (f,) be a maximal family of projections in ¥
such that Y, (f, +®(f,))<1. Then all f, and P(fy) are pairwise or-
thogonal, so if f=3_f, and e =1—f—®(f), then e and f are projections
in #. Suppose g is a nonzero projection majorized by e. Let f' =
g(1—-@(g)). Then f'<g, and O(f)=P(g)(1-g)<=P(e)(1-g)=e—g, 50
that f L ®(f") and f + ®(f) = e, contradicting the maximality of (f,) unless
f =0. Therefore 0=f = g—g®(g), which shows g=&(g). Since ® is of
order 2, ®(g)=g.

7.3.5. Theorem. Let M be a YW algebra with no direct summand of type
I,. Then there exists a central projection e in M such that the centre of
eW*(M)e (=W*(eM)) is pointwise ®-invariant for the canonical anti-
automorphism ®, and such that (1—e)M is tsomorphzc to the self-adjoint
part of a von Neumann algebra.

Proof. Let EZ’ denote the centre of W*(M). From 7.3.4 there are projec-
tions e and f in & such that e+ f+®(f)=1, and d(g) = g for all projec-
tions ge %, g=<e. In particular e is pointwise ®-invariant.

Let & =fW*(M). Then & is a von Neumann algebra, and ® is an
anti-isomorphism of & onto ®(f)W*(M). In particular ®(f) W*(M) is
isomorphic to the opposite algebra #° of ¥. Therefore we have

W*(e*M) = e* WH(M) = fW*(M) + P(F) W*(M) = ¥ O N°.

With this identification of ®(N) and N°, @ corresponds to the anti-
automorphism of NDN° defined by aDb’— bDa’, a,beN, where
a — a® is the identity map of & onto #°. By 7.3.3 we have

M =(NDON)E={aPa’ ac N},

which is isomorphic to N, via the map a®a’— a.
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7.3.6. Remark. We showed above that there exist central projections e
and f in W*(M) such that e+f+®(f)=1, and ®(g)=g for all central
projections g majorized by e. We used that M has no type I, part in order
to apply 7.3.3, or rather to conclude that M is reversible. Thus the
theorem is true if M has a reversible I, part. It follows that if M is
reversible in W*(M) then W*(e* M) =N D N°.

7.3.7. Let # be a von Neumann algebra with centre #. A linear map
E: M— % is called a centre-valued trace if x =0 implies E(x)=0, E(1) =
1, E?=E and E(xy)=E(yx) for all x,ye.. If moreover x=0 and
E(x)=0 imply x =0, then E is said to be faithful.

M is said to be of type I, IT or III if M, is of the same type as a JBW
algebra. Thus by 5.1.5 and 5.3.5 # is a direct sum of von Neumann
algebras of different types.

7.3.8. Lemma. Let M be a von Neumann algebra with centre %. Suppose
® is a * antiautomorphism of order 2 of M such that M*<%. Then M
decomposes as M= M, DM, with M; of type ]..

Proof. Let E =3(.+®), where ¢ denotes the identity map. Then E is a
faithful idempotent positive map of .# onto M*<=%. We show E is a
centre-valued trace. For this let x, y e.#. Then E(xy)=4[xy +®(y)®(x)],
so that

2[E(xy)— E(yx)]=xy — yx + ®(y)P(x) = P(x)P(y)
=[xy +x®(y)]— [xD(y) + D(x)D(y)]
—[yx +@(y)x]+[D(y)x + P(y)P(x)]
=2[xE(y) — E(x)®(y) — E{y)x + ®(y) E(x)]
=0,

since E(x) and E(y) belong to %.

Since @ is an antiautomorphism, ® leaves all parts of different types of
M invariant. We shall assume # has no parts of types I; and I, and shall
obtain a contradiction. '

Since .# has no parts of types I; and I, there are (by definition if # is of
type I and by 5.2.15 otherwise) projections p and q in .4 with 0# p<gq
such that their central supports satisfy ¢{p) = c¢(q—p) = c(1—q) = 1. Clearly
qv®(q) is ®-invariant, so belongs to Z. Since ¢(q)=1 and qvP(q)=gq,
qv®(g)=1. Similarly pv®(p)=1, so pv®(q)=pv®(p)=1. Similarly
g v ®(q)*- e %, and is greater than 1—q = q*, which has central support 1.
Thus we have (qA®(q) ' =q*v®(@)* =1, and so gAad(q)=0. Since
p =gq it follows that p A®(q) =0. Thus ®(q) is a common complement for
p and q, so that p and q are perspective (see 5.1.2). By 5.2.3 p»q in the
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JBW algebra M, Since E is a centre-valued trace E(sxs)=E((sx)s)=
E(ssx) = E(x) for all symmetries s in M, and x € #. Thus E(p) = E(q), or
E(g—p)=0. Since E is faithful and p=<gq, p =q contrary to assumption.
Thus M= M, DM, as asserted.

7.4. Connections with von Neumann algebras

7.4.1. The interplay between JW algebras and the von Neumann algebras
they generate is very important both in applications of JW algebras and in
their intrinsic theory. We shall in the present section see some of this
interplay, and then use it to obtain some applications to Jordan
homomorphisms of C* algebras.

7.4.2. Theorem. Let M be a JW algebra with no direct summand of type
1,. Then we have:

(i) If M is of type I then so is W*(M).

(i) If M has no direct summand of type 1 neither does W*(M).

Proof. By 7.3.3 M = W*(M)Z, where ® is the canonical antiautomorph-
ism of W*(M). Let Z denote the centre of M and % that of W*(M). If ¥
is a von Neumann algebra or a JW algebra we use the notation c{(p) to
denote the central support in & of a projection p in .

Suppose M is of type I, and let p be an Abelian projection in M with
cu(p)=1. Let ¥ =pW*(M)p. Then N is ®-invariant since ®(p)=p.
Suppose a € . Then a € W¥(M)E =M, so a € {pMp}. By 5.2.17, a € Zp.
Since M generates W*(M) (7.1.9) Z = % (4.3.8), so that a belongs to the
centre of ¥. Thus & is of type I by 7.3.8. Let q be an Abelian projection
in & with c,{q)=p. Then q is Abelian in W*(M), and in order to finish
the proof of (i) it remains to show cw+ap(q) = 1. For this let e Z be a
projection such that e =q. Then ep =q. Now by 5.2.17 the centre of & is
Zp, so ep belongs to the centre of X. Therefore ep=p, and so ep =p. It
follows that e=p and therefore cw+nn(q)=cwan(p). Since peM,
®(p) =p, hence P(cw=nn(pP)) = cw+an(p). Therefore cw+an(p)e MNZ =
Z, and cwHan(P) = cpm(p) = 1. Thus cw+ap(q) = 1 completing the proof of
Q).

In order to show (if) suppose W*(M) contains a nonzero Abelian
projection p. Let q=pv®(p). Since by 7.3.3 M=W*(M)E and q is
®-invariant, q € M. By 5.2.3 we have

qa-p=pve®@p)—p1P(p)-pArd(p)

in W*(M). Since ®(p) is an Abelian projection in W*(M) so is each
subprojection (5.3.2), and hence q—p is Abelian. Therefore q is the
orthogonal sum of two Abelian projections, and so gW*(M)q is decom-
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posed into a direct sum of a type I, and a type I, part. In particular gMq
can at most contain two orthogonal equivalent projections. By 5.2.15
qMgq is of type I, so M has a type I part, proving (ii).

7.4.3. Theorem. Let M be a JW algebra with no direct summand of type
L. Suppose M acts on a Hilbert space H, and let M denote the von
Neumann algebra generated by M. Then M is of type 1 if and only if M is
of type 1.

Proof. By 7.1.9 there is a normal * homomorphism of W*(M) onto M.
Therefore, if M is of type I then by 7.4.2 4 is of type I

‘Conversely, assume . is of type I. Let by 5.1.5 e be the central
projection in M such that (1—e)M is of type I and eM has no type I
portion. Suppose e#0. Since eM generates et as a von Neumann
algebra there is by 7.1.9 applied to eM a normal * homomorphism ¢ of
W*(eM) onto e. Since M is of type I so is e, and therefore W*(eM)
has a type I portion. By 7.4.2 so has eM contrary to assumption. Thus
e =0, proving the theorem.

7.4.4. Remark. The conclusion of the theorem is definitely false if M is
of type I,. Indeed, by 6.2.2 if M is the infinite-dimensional spin factor of
countable dimension then the C* algebra generated by M is the CAR
algebra. This C* algebra is known to have factor representations of types
I, IT and III. Thus a JW factor of type I, can generate von Neumann
algebras of all types.

7.45. Lemma. Let M be a von Neumann algebra of type 1, n <o, with
centre %. Then M=M, (%).

Proof. Let py, . . ., p, be orthogonal Abelian projections in . with sum 1
and central supports 1. By 5.3.2 there exist symmetries s;,...,s, in #
such that s;p;s; =p;. Let e; = es;sie.. Then {e;: 1<<i,j<n}isaset of nXn
matrix units in . whose linear span is isomorphic to M, (C). By 5.2.17
e, Me; =Ze, so it follows as in the proof of 2.8.3 that M= M, (&).

7.4.6. Lemma. Let M be a von Neumann algebra and M = M,. Then M
is reversible in every normal representation.

Proof. By 5.3.10 it remains to consider the case when M is of type I,. Let Z
denote the centre of M. By 7.4.5 M=M,(%), which we by tensor
notation identify with ¥ ®M,(C) under the map (z;) — Y71 z; ey,
where z; €%, and ¢; are the standard matrix units in M,(C). Under this
identification we identify ¥ with Z ® 1.
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Let 7 be a normal representation of M on a complex Hilbert space.
Then 7 extends by linearity to a Jordan * homomorphism of #, i.e. 7
preserves the special Jordan product. In order to prove the lemma we
must show () is closed under symmetric products

{xl...M}:xl...xm+%...x1.

By 6.2.5 the lemma is true for M,(C), hence m(1® M,(C)) is closed under
symmetric products. Let a,...,a,€ My(C) and z,, ..., z,€%. Then

7(z;®a;) =w(z, @D 7(1Ra)),

and m(z;®1) belongs to the centre of (/). Since 7 is a homomorphism
on ZQ®1 we have

{m(z,®a,) ... w(2,Qa,)}
={r(z: QD)7 (1Ray) ... 7(z, @D (1R a,)}
=m(z1... 2,9 DN{7(1Qa,) ... 7(1Qa,)},

which belongs to w(u#). Since all operators in «r(M) can be written
w(}, z,®aqa;), and symmetric products of such operators are sums of
symmetric products of elementary tensors w(z; ®a;), 7w () is closed under
symmetric products. In particular w(M) is reversible.

7.4.7. Theorem. Let M be a von Neumann algebra without direct sum-
mands of type 1,. Let M = M,. Then W*(M) =MD M°, and the inclusion
map of M into W*(M) is given by a — a®a°.

Proof. By 7.4.6 M is reversible in every normal representation. There-
fore by 7.3.4 and 7.3.5 there are projections e and f in the centres Z of
M and Z of W*(M) respectively such that e+f+®(f)=1, ®(g) =g for
each projection geZe, and the theorem is true for e*M. We shall
complete the proof by showing e = 0. Suppose not, then by considering eM
we may assume e = 1, hence that ® leaves & pointwise invariant. By 7.3.3
we therefore have Z=%,,.

Let ©: M— . be the identity map. By 7.1.9 there is a normal
* homomorphism ¢: W*(M) — J such that {{s = ¢, where i is the canonical
imbedding of M into W*(M). Since the support projection of i is a
central projection in W*(M) (4.3.7), it belongs to Z, hence is the identity.
Therefore { is an isomorphism; in particular ¢ is an isomorphism of
M=M+iM onto W*(M).

Apply the preceding paragraph to the identity map ¢y: a —> a® of M
into #(°. This map then induces an isomorphism i, of 4 onto .#°, via the
identification of . with W*(M). But i, extends the identity map, so it is
thus also an anti-isomorphism of # onto #°. Therefore . is Abelian,
contrary to assumption. Thus contradiction proves the theorem.
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7.4.8. If # and N are C* algebras a linear map ¢: .U — N is a Jordan
homomorphism if it preserves the special Jordan product and the
* operation. The next two results are applications of the previous results to
the characterization of such maps.

7.4.9. Corollary. Let # and N be von Neumann algebras and ¢: M— N
a normal Jordan homomorphism. Then ¢ is the sum of a * homomorphism
and a * antihomomorphism.

Proof. We may assume . has no type I, part. Let M=ul,. By 7.4.7
WH(M) =MD M°, and by 7.1.9 ¢ extends to a * homomorphism é of
W*(M) into . Composing ¢ with the maps a — a®0 and a — 0D a’
we get a * homomorphism and a * antihomomorphism with sum .

7.4.10. A von Neumann algebra is called a factor if its centre is the
scalars, or equivalently, its self-adjoint part is a JBW factor.

7.4.11. Corollary. A Jordan automorphism of a factor is either an auto-
morphism or an antiautomorphism.

Proof. Let ¢ be a Jordan automorphism of a factor .#. By 4.5.6 ¢ is
normal, and by 7.4.9 ¢ = ¢+ @, with ¢; a homomorphism and ¢, an
antihomomorphism of . into itself. Since ¢;(1) (i =1, 2) are projections
and ¢,(1)+¢,(1)=1, they are orthogonal. Since ¢(M) =M, ¢;(1) is a
central projection for each i, hence ¢;(1) is 0 or 1, proving the corollary.

7.4.12. Remark. If o is a C* algebra and ¢:— M is a Jordan
homomorphism of & into a von Neumann algebra ( then ¢ is the sum of
a homomorphism and an antihomomorphism. Indeed, by 4.5.7 ¢ has an
extension to a normal Jordan homomorphism from ¢** into 4, hence the
assertion is immediate from 7.4.9. '

' We shall be interested in extending this result to Jordan homomorph-
isms into a second C* algebra 8. However, we need more conditions for
the result in this case, as can be seen from the following example. Let &
be the subalgebra of C([—1, 1], M,(C)) consisting of all f such that f(0) is a
diagonal matrix. Let ¢: o — o be the Jordan homomorphism

f(s), s=0.
f(s), s=<0

where the t denotes the transpose. Then, if ¢ is a sum of a
* homomorphism ¢, and a * antihomomorphism ¢,, we must have

f(s), s=0

mm@{o o

¢m®:{
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but then ¢4(f) may be discontinuous, i.e. ¢, does not map & into <. The
problem in this example is seen to arise from the presence of one-
dimensional representations.

7.4.13. We define the commutator ideal [, #] of o to be the closed
two-sided ideal generated by all commutators [a, b]=ab—ba, a, bc «A.
This is easily seen to be the smallest ideal J in « with the property that
o/J is Abelian. Moreover, since any Abelian C* algebra has a faithful
family of one-dimensional representations, i.e. homomorphisms onto C
(alias multiplicative states), [+, of] is the intersection of the kernels of all
one-dimensional representations of .

Similarly, we could consider the weakly closed ideal in a von Neumann
algebra J generated by all commutators. But again this is seen to be the
smallest weakly closed ideal J such that .#/J is Abelian, so that if we
decompose A according to types as

M= My DM D . . Dty D MyDB My,

then this ideal is just the non-Abelian or non-type I, part, i.e. the sum of
all components in the above direct sum except ;.

It is almost obvious from the above discussion that if ¢ is a C* algebra
then the weak closure of [, o] in o#** is the non-Abelian part of &**.

7.4.14. Theorem. Let o be a C* algebra with no one-dimensional rep-
resentations. Let B be another C* algebra. Then any Jordan homomorphism
of o into B is a sum of a * homomorphism and a * antihomomorphism.

Proof. Since o has no one-dimensional representations, it follows from
7.4.13 that [, of]= o and hence that &** has no Abelian part. By 7.4.7,
WH(AER) = A D o£**°, and the inclusion ¢ : 5% — W*(4%*) is given by
U(a)=aPa’.

If :4—>%RB is a Jordan homomorphism, so is ¢*™*: of** — R** By
7.1.9 and the above, ¢** defines a * homomorphism ¢ : o ** @ f**0 —
AB** such that ¢y = d**. Let

$:(a) = d(aD0), acs,
d.(a)=HO0Da), acd.

Then ¢;: of — B* and ¢ = ¢, D ,. It remains to prove that ¢; maps sf
into 9. For this it is sufficient to show that @0 is contained in the C*
algebra generated by ¢(sf), because ¢ maps (sf) into 9.

Let J be the set of all a € # such that a0 belongs to the C* algebra
generated by (). Then J is an ideal, because ab@®0 = (a DO)bPBbO). Tt
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contains all commutators, because [a, b]B0=(a®a’)(bHb®)—
(ba) P (ba)°. Hence J2[HA, A], or J=. Thus £ DO is contained in the
C* algebra generated by ().

7.4.15. Remark. Using 7.1.11, 7.4.7 and the above technique of proof it
is not difficult to show that if o has no one-dimensional representations
then C¥(oA,,) = ADo°. More generally,

CH*(A,)={a®b’c AD A% b—ac[d, o]}

Indeed, from 7.4.7 we get the analogous formula for a von Neumann
algebra J, where (,, denotes the non-Abelian part of .4:

W) ={aDb°c MDM°: b—acM,,}.

(Indeed, splitting 4 as M = My DM, the above formula is just a difficult
way of writing ., @M, P M3,.) From this, using 7.1.11 the proof is easy.

7.5. JBW factors of type L.

7.5.1. We have shown that JBW factors of type I, are spin factors, and
were thus classified in 6.2.2. The JBW factors of type I,,, 3=n <o, were
classified in 5.3.8. Therefore, in order to obtain a complete classification
of all JBW factors of type I it remains to classify all JBW factors of type
L.. Furthermore, by 5.3.10 such JBW factors are isomorphic to reversible
JW factors of type L.. We shall in the present section study these algebras
in more detail. In order to do this we shall need to know that von
Neumann algebras that are factors of type I are isomorphic to some
B(H), and then that their * automorphisms are all inner.

7.5.2. Proposition. Let . be a von Neumann algebra which is a factor of
type 1. Then there is a complex Hilbert space H such that M= B(H).

Proof. By Zorn’s lemma and 5.3.2 there is an orthogonal family (p.)aes
of minimal projections in the JBW algebra ., with sum 1. Fix age J and
let for each a €J, s, be a symmetry in M, such that s,p,S, = Pe,. Let M
act on a Hilbert space K, let K= p,(K), and let H be a complex Hilbert
space of dimension equal to card J. Let (n,),<; be an orthonormal basis
for H. Define u: K — K,®H by

u§ - Z paosa§®na'

Then a straightforward computation shows that u is a unitary operator. If
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xeM and €€ K|, then
uxu” (E®N,) = UXSE = ). P, SpXSaE D .
B

Let w,g be the partial isometry w,gé = (£ ng)mn, in B(H). Then it follows
that

UXU T =) Do SaX8uDar @ Woo = 2. @ap(X)D o, @ W gas
a,pB . o,

where w,g(x)€C is defined in the obvious way since Po, 1S @ minimal
projection. Thus uxu™" € Cx,® B(H) where Ck, is the scalar operators on
Ko,. The map ¢: M — B(H) defined by

B(x) = ), wop(X)Wga,
B

is then an isomorphism such that uxu™'=1x ®¢(x). Note that Wog =
& (DoSaSepe) € (M). Therefore if ep - denotes the projection ep=
Yeer Wh gWa. e for each finite subset F<J, e is the projection on the
subspace spanned by {ng: B € F}, and exB(H)ep < ¢ (). Since u is unitary
the map x —uxu™' is a homomorphism of .# onto uflu™' in the
ultraweak topology, hence ¢(#) is ultraweakly closed. Let & denote the
directed set of finite subsets of J ordered by inclusion. Then the net
(ep)peg is increasing in @(#) with least upper bound 1. Thus ep— 1
strongly in the sense of JBW algebras (4.1.3), hence epxer — x strongly
for each xe B(H) (4.1.9). This shows ¢(#)=B(H), and the proof is
complete.

7.5.3. Lemma. Let H be a complex Hilbert space and o a * automorph-
ism of B(H). Then there exists a unitary operator u such that a(x) = uxu™"
for all x ¢ B(H).

Proof. If p is a minimal projection in B(H) then so is a(p). Therefore p is
one-dimensional if and only if a(p) is one-dimensional. Fix such a p and
choose unit vectors & 1 in H such that p¢ =¢ and a(p)n =n. Define a
linear operator on H by ux¢=a(x)n. Since H=B(H)¢=B(H)n, u is
everywhere defined and surjective. We show u is unitary by showing that
it is an isometry. Since « is isometric and «(p) one-dimensional this
follows from the following computation.

lluxél” =llaG)nl = (a(x)n, a(x)n)
= (a(p)a(x*x)a(p)n, n)
= |lee(px*xp)l = llpx*xp]|
= (x*x¢, &) =||x&|P.
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Finally, if x, y € B(H) then
uxu*a(y)n = uxyé = a(xy)n = a(x)a(y)n,

proving that uxu® = a(x).

7.5.4. Let H be a complex Hilbert space with inner product (£ |n), & ne
H. We make H into a real Hilbert space by defining a real inner product
by

& my=Re (£ ).

A straightforward computation then shows that

(&, m) =(& n)—Kig m). (7.1)

Let a be a bounded real linear operator on H. We define an adjoint
a* of a with respect to the real Hilbert space structure by

(ag,m)=(& a"n).

If i denotes multiplication on H by the scalar i then

<§7 i+"l> = <1‘§a "l> =Re (ig’ 77) =—Re (g’ 1"]) = —<€, i”ﬂ>’

hence i* = —i=1i*, where * denotes the usual adjoint. If a is a complex
linear operator on H then ia = ai, so that ia* =—i*a™ = —(ai)" = —(ia)" =
—a*i*=a"i, so that a* is complex linear. Since clearly (& a*n)=
(& a*m) it therefore follows from (7.1) that a*=a™. Thus we may write
a* rather than a’ in the general case without fear of confusion.
Suppose a is a conjugate linear operator on H, i.e. a is real linear and
aré = ha&, A €C. Then similarly a* is conjugate linear and from (7.1)

(ag, m) =(a*n, &). (7.2)

7.56.5. An antiunitary operator on H is a conjugate linear isometry v of
H onto itself. A conjugation on H is an antiunitary operator J on H such
that J>=1. A unit quaternion is an antiunitary operator j such that
jF=-1

Note that with v,J,j as above then v*v=v*=1,J*=J, j*=—j.
Let H’ denote the fixed point set of J in H. Then H’ is a real Hilbert
space in the inner product (7.1) on H. Indeed, H’ is clearly a real
subspace of H, and if & e H’ then by (7.2)

Em=Ug&n)=Un &=, ¢

is real. Tt follows that H = H'@iH’ is the complexification of H’, and
J(¢ +in)=&—in when & ne H'.

If j is a unit quaternion and i is multiplication by the scalar i then
{1,1, j, k =ij} is a basis for the quaternions (cf. proof of 2.2.6). Indeed we
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have ij =k =—ji, jk =i= —kj, ki=j=—ik, and i*=j>=k*>=—1. We can
define a quaternionian inner product on H by

Then we have after trivial but rather tedious computations

(& M =(n, s
()\g’ n)IHI = )\(‘f: n)[HI: (ga )\’n)IH] = (ga ’Y])X, )\ eH-

7.5.6. Lemma. If J and J' (resp. j and j') are two conjugations (resp. unit
quaternions) on H then there exists a unitary operator u on H such that
J' =uJu* (resp. j' = uju™). Furthermore, there always exists a conjugation
on H, and there exists a unit quaternion on H if and only if dim H is either
an even number or infinite.

Proof. If J and J' are two conjugations let (£,) and (n,) be orthonormal
bases for H' and H” respectively. Then they are both orthonormal bases
for H, so u defined by u&, =m, is the desired unitary operator. The
existence of a conjugation is proved by choosing an orthonormal basis
(&) for H and defining J(3 A &)=Y A £,

Suppose j is a unit quaternion. If écH then by (7.2) (j& &)=
(%&£ &=~ €) =0, so jé L & Let (£,) be a maximal orthonormal family
of vectors in H such that &, Lj& for all «, 8. Then {£,j&} is an
orthonormal basis for H. Indeed, if not then there is a unit vector n
orthogonal to all &, j&,. But then (jn, £)=(G*&, n)=—(&, n) =0, and
(im, j&,) = (n, &) =0 for all a, so that both n and jn are orthogonal to all
&, 1€, contradicting the maximality of (£,). This proves the assertion. In
particular dim H is an even number or infinite.

Let j' be another unit quaternion and choose a corresponding family
(n,) for j'. Define a unitary operator u on H by ué&, =n., ujé, =jn,.
Then uju*=j’

Finally, suppose dim H is an even number or infinite. Let {£,, 0.} be an
orthonormal basis for H. Define j£, =n, and jn, =—£,, and extend j to
be a conjugate linear operator. Then j becomes a unit quaternion. The
proof is complete.

7.5.7. In general if v is an antiunitary operator on H then we can define
a * antiautomorphism on B(H) by

B(a)=va*v* (7.3)

Then 87 is the * automorphism implemented by v2. In particular %= ¢ if
and only if v>=A1 for a complex number A of modulus 1. Since v
commutes with v?, v commutes with A, and thus A is real since v is
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conjugate linear.iTherefore A = +1, and we have shown 8= if and only
if v2==1, or rather v is either a conjugation or a unit quaternion.

7.5.8. An antiautomorphism 8 of B(H) of the form (7.3) is called a real
flip if v>=+1 and a quaternionian flip if v>=—1.

Let J be a conjugation on H, and let a denote the real flip a(a) = Ja*J.
If B is any * antiautomorphism of B(H) then Ba is a * automorphism,
hence is the form Ba = Ad u, where u is the unitary operator and Ad u(a) =
uau® (7.5.3). In particular B(a)=va*v* where v =ul.

7.5.9. Lemma. Let a and B be * antiautomorphisms of order 2 of B(H).
Then there exists a * automorphism vy of B(H) such that B = yay™" if and
only if either both a and B are real flips or both are quaternionian flips.

Proof. 1f for example «(a)=Ja*J and B(a)=Ja*J with J and J' con-
jugations let by 7.5.6 u be a unitary operator such that J' = uJu®. Then
B=Ad ua(Ad u)™*, and similarly if « and 8 are quaternionian flips.

Conversely suppose a is a real flip and 8 = yay'. Then +, being an
automorphism of B(H), is of the form v =Ad u (7.5.3). Let J = ulu*.
Then B(a)=J'a*J', so is a real flip. The proof in the quaternionian case
is similar.

7.5.10. Let o be a real flip on B(H) for the Hilbert space H, say
a(x)=Jx*J, where J is a conjugation of H. If x € B(H)Z, then x = JxJ, or
Jx = xJ. This means that x leaves H' invariant, and since H = H'®iH’, x
is the complexification of its restriction to H'. Therefore restriction to H*
is an isomorphism of B(H)3 onto the Jordan algebra of all symmetric
bounded linear operators on the real Hilbert space H”.

Similarly, let 8 be a quaternionian flip on B (H), say B(x) = —jx*j, where
j is a unit quaternion. As noted in 7.5.5 j induces a structure of
quaternionic Hilbert space on H. We write Hy for H with this added
structure. If x e B(H)E, then x =—jxj or jx=xj. From this we also get
kx = xk where k =ij, so this means that x is MH-linear. In other words,
B(H)E is the Jordan algebra of H-linear self-adjoint bounded operators
on the quaternionic Hilbert space Hy,.

7.5.11. Theorem. Let M be a JBW factor of type 1,, 4<n=<ow, Then
there exists a complex Hilbert space H such that M is isomorphic to one of
the following three JW factors:

() M=B(H)..

(i) M=B(H)2, with a a real flip on B(H).
(i) M=B(H)®, with B a quaternionian flip on B(H).
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Proof. As remarked in 7.5.1 we may assume M is a JW algebra acting on
a complex Hilbert space. If M is isomorphic to the self-adjoint part of a
von Neumann algebra we have (i) (7.5.2). Let ® be the canonical
antiautomorphism of W*(M) (7.1.9). f M is not isomorphic to the
self-adjoint part of a von Neumann algebra then by 7.3.5 the centre Z of
W*(M) is pointwise ®-invariant, hence & equals the centre of M by
7.3.3. Thus W*(M) is a factor. By 7.4.2 W*(M) is of type I, hence is by
7.5.2 isomorphic to B(H) for some complex Hilbert space H. Let vy be
the antiautomorphism of B(H) corresponding to @ under this isomorph-
ism. By 7.3.3 M corresponds to B(H)% under this isomorphism. An
application of 7.5.9 completes the proof.

7.5.12. Remark. Let M be an irreducible JW algebra acting on a Hilbert
space H, i.e. the identity is the only nonzero projection in B(H) commut-
ing with all elements in M. Then M is a JW factor of type I, hence is
either a spin factor or a factor of the types described in 7.5.11. Indeed, it
is an easy consequence of the double commutant theorem for von
Neumann algebras [6, Ch. 1, §3, Thm 2] that the only irreducible von
‘Neumann algebra on H is B(H). Thus B(H) is the von Neumann algebra
generated by M. Since B(H) is of type I, so is M by 7.4.3.

7.5.13. Lemma. Let M be a von Neumann algebra. Suppose there is a
normal state which is pure on M. Then M has a direct summand of type 1.

Proof. Let p be a pure normal state on #, and let e be the central
support of p, i.e. the smallest central projection in  such that p(e)=1.
Then e is minimal in the centre. Indeed, suppose O0<<f=e is a central
projection, and let o ¢y be defined by o(x) = p(fx). Then 0<o=<p, so
by 1.2.1 o=p(f)p. In particular, p(f)=p(f?) =p(f)? so p(f)=0 or 1.
Therefore f=e by definition of e.

By the above we may assume A is a factor. Otherwise replace 4 by el
Let p(x) = (w(x)&, &) be the GNS representation of p (1.3.10), where
is a representation of 4 on a Hilbert space H,. Let (a,) be a bounded
decreasing net in " such that a, 0. Then for all y e, y*a,y\0, so
that

(m(a.)yE, y&,) = (m(y*a. )&, £) = p(y*a,y)N0.

Since vectors of the form y&, are dense in H,, and the net (a,) is
bounded, (m(a,)& £)NO for all £ H,. It is then easy to see w(mw(a,)) 0
for all w e B(H); (see 1.4.1), hence that 7(a,)\0. Thus = is normal,
since if b, /b then b—b,\0. By 4.5.11 w(A#L,) is a TW algebra, hence
(M) is a von Neumann algebra by 1.4.6 and 4.5.10. Furthermore, by
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normality of w the kernel of = is of the form e#( with e a central
projection (4.3.7). Since A is a factor e =0, so  is an isomorphism.
Finally by 1.4.8 «(#) =C1, hence as pointed out in 7.5.12, (M) =
B(H,), which is of type I. Thus ., being isomorphic to 7 (40), is of type 1.

7.5.14. Proposition. Let M be a JBW factor. Then M is of type 1 if and
only if there exists a normal state which is pure on M.

Proof. If M is of type I let e be a minimal projection-in M. By 4.1.13
there is a normal state @ on M with support e. Since M, =Re and each
state p on M majorized by a multiple of w has support e, p = w, and w is
pure by 1.2.1. ‘ ,

Conversely suppose o is 4 pure normal state on M. In order to show M
is of type I we may by 7.3.3 assume M= W*(M)Z, where ® is the
canonical antiautomorphism of the universal von Neumann algebra
W*(M). Let by 1.2.4 p be a pure state extension of w to W*(M) (i.e.
p | W*(M),, is pure). We show p is normal. By 7.3.2 W*(M)= R +iR,
where R ={xe W*(M): ®(x) = x*}. Suppose a=b+ice WHM)*, b,ce
R. Then b=b*eM, and c=-c* Since P(a)=b*+ic*=b-ice
WHM)*, b=3(a+®(a))eM" and ic=%ia—®(a)). In particular
~b+ic=—-P(a)<2ic<a=b+ic,s0—-b=<ic=<b.Letnow(a, = b, +ic,) be
a monotone decreasing net in W*(M)* such that a, \0. Since ® is in
particular an order automorphism of W*(M),, ®:is normal. Thus
®(a,) 0, whence b, N0, and so p(b,)=w(b,) 0. But then |p(ic,)|=<
p(b,) converges to 0, and so p(a,) 0. Thus p is normal as asserted. By
7.5.13 W*(M) has a direct summand of type I. Since M is a JBW factor it
is then of type I by 7.4.2.

7.6. Modularity in JBW algebras

7.6.1. As was indicated in Section 5.1 modularity in JBW algebras is
closely related to finiteness in von Neumann algebras. Recall that in von
Neumann algebras equivalence of projections is defined differently from
equivalence in JBW algebras. In a von Neumann algebra two projections
p and q are equivalent if there is a partial isometry v in the algebra such
that v*v=p and vv*=gq. Thus it is possible that the identity 1 is
equivalent to a proper subprojection. This is impossible in JBW algebras.
Therefore we cannot as in von Neumann algebras say a JBW algebra is
finite if the identity is never equivalent to a proper subprojection. It turns
out, however, that modularity is the correct concept, and it is possible to
extend most of the theory of finite von Neumann algebras to modular
JBW algebras. We shall in the present section show two such results.
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7.6.2. Lemma. Let H be a separable infinite-dimensional real Hilbert

space. Then we have:

(1) There exists a bounded symmetric operator a on H such that a(H) is
dense in H but is not a closed subspace.

(ii)y There exist two closed subspaces P and Q of H such that P+ Q=
{€+m:€eP,meQ} is dense in H but not closed, and PN Q ={0}.

Proof. (i) Let (£,), «n be an orthonormal basis for H. Let a be the unique
symmetric operator of norm 1 on H such that a&,=(1/n)é,. Since
¢.ca(H) for all n,a(H) is dense in H. Let £=Y7_, (1/n)€, € H. Then
£¢a(H), for if é=an with n=) A&, € H, then £=Y (1/n)\,&, which
implies A, =1 for all n, contradicting the fact that ¥ A2 <<,

(i) We can choose a subspace K of H such that H is identified with
K®K. Let P=K®0, and let by (i) a be a bounded symmetric operator
on K such that a(K) is dense in K but not closed. Since a is continuous
its graph Q={¢@aé: £cK} is a closed subspace of H. Then P+ Q=
K®a(K) is dense but not closed. Clearly PN Q ={0}.

7.6.3. Theorem. Let M be a JBW algebra with projection lattice P. If
p € P the following four conditions are equivalent:
(i) p is modular.

(ii) If r,qe P, r<q=<p, and r and q are perspective in {pMp}, thenr=q.

(1ii) There is no infinite sequence (p,),<n Of pairwise orthogonal projections
in M such that p, <p, p.7 P for all m, n.

(iv) {pMp} contains no copy of B(H)Y for H a separable infinite-
dimensional complex Hilbert space and « a real flip.

Proof. The equivalence (1)< (i) holds in any orthomodular lattice, see
5.1.3. We shall show (ii) = (iv) = (iif) = (ii). '

(ii)=> (iv) Let H be a separable infinite-dimensional complex Hilbert
space and « a real flip. We shall prove that the identity in B(H)3, does
not satisfy (ii). By 7.5.10 and 7.5.11 B(H)Z, is isomorphic to the JBW
algebra B(K), of bounded symmetric operators on a separable infinite-
dimensional real Hilbert space K. By 7.6.2 there exist two projections r
and ¥ in B(K), such that rA¥' =0 and rvi' =1, but r(K)+r'(K) is not
closed. Pick any vector £ K not lying in the sum, and let q be the
projection on the closed subspace generated by r(K) and & Then r<g,
and r, q have a common complement ', contradicting (ii).

(iv)=> (iii) Assume (p,).<n iS a sequence as described in (iii). We shall
construct a copy of B(H)S, in {pMp}, and thus contradict (iv). For each
neN let s, be a partial symmetry such that s2=p;+p,, {s.P15.} = pn, and
let s;=p,. Define s; =p;, s;=2{s;p15} if i#j. We have the following
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multiplication table for the s;:

Si°8 =0 if {i, 1Nk, I} =,
S&= S

808 = %sij if i#7],
S5 = 8+ 85 if i#],

83 © S = Sic if i; j, k distinct.

Let A be the linear span of all the s;. Then from the above multiplication
table A is a Jordan subalgebra of M, hence the weak closure N of A is a
JBW subalgebra. Since }',,_; p, is the identity in N and all p, are minimal
equivalent projections in N, N is a JBW factor of type I.. Since
{(p; + p;)N(p; + py)} is the linear span of s;, s; and s; for all pairs i+# j, and
so is of real dimension 3, it follows from 7.5.11 that N=B(H)2, with a a
real flip. Otherwise the dimension would have been 4 (in the complex case)
or 6 (in the quaternionian case).

(iii) = (ii) Suppose r<q are perspective projections in {pMp}. By 5.2.3
r q in {pMp}, say a = U,U, is an inner automorphism of {pMp} mapping
qtor Let py=q-r, p,=a""(p,) for n=2. Since p, =a""(q)—a"(q),
ImiPe=q—a™(q) is a projection for each m eN. Thus all the p, are
pairwise orthogonal projections such that p; > p, > ps> .... A repeated
application of 5.2.6 yields p, 7 p,. for all n, m. Since p, <p for all n, we
have thus violated (iti).

7.6.4. Theorem. Let M be a JBW algebra with projection lattice P. If p
and q in P are modular then so is pvq.

Proof. By 52.3 pvg—pvq—pAq=<gq, so pvq—p is modular. We may
thus replace q by pvq—p and assume p 1 q. Considering {pvqMp v q}
instead of M we may also assume pvq =p+q = 1. If 1 is not modular we
can by 7.6.3 find an orthogonal sequence (p,) in P such that p,, 1 p, for
all m,neN. Let p'=37 ;pxn, q =Yk-iPa+1- By the comparison
theorem (5.2.13) there is a central projection e in M such that ep’?ep
and e'p = e*p’. Therefore ep’ is modular, whence by 7.6.3 ep,, = 0 for all
k, and so ep’=0. If s is a symmetry such that Ue*p<<e'p’ then
Use*(1—p)=e*(1—p’), hence we have '

e*q'se*(1-p") = e*(1-p)=e'q.

By the above argument e*q’' =0, so that ep,=p, 1 p,=e'p,, which is
impossible unless p, =p,=0.
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7.7. Comments

Universal C* algebras were first introduced by Alfsen, Hanche-Olsen and
Shultz [15] and then studied by Hanche-Olsen [57], who realized that
they could be used to simplify many arguments in the theory. The main
results of Section 7.2 are due to Alfsen, Shultz and Stgrmer; 7.2.3 was
proved in Alfsen et al. [19] and 7.2.7 in Shultz [91], but the proofs were
somewhat different. For further information on the exceptional ideal the
reader is referred to the paper of Behncke and Bos [22].

Theorem 7.4.3 is due to Stgrmer [103, 105]. This result has recently
been extended to types II,, IL., III by Ajupov [13].

The results on Jordan homomorphisms in Section 7.4 were first proved
for matrix algebras by Jacobson and Rickart [63]. Then they were
extended to C* algebras by Kadison [70] and Stgrmer [102]. The version
presented in 7.4.14 first appeared in Hanche-Olsen [57] together with
7.4.15.

The early results in Section 7.5 are quite standard. The main results
7.5.11 and 7.5.14 are due to Stgrmer [103, 105].

Section 7.6 is inspired by the work of Topping [110] and the analogous
results in von Neumann algebras. By modifying the proof for von
Neumann algebras the reader should have no difficulty in showing that a
JBW algebra with modular projection lattice has a normal trace, i.e. a
normal state T such that 7({sxs}) = 7(x) for all x and all symmetries in the
JBW algebra. For a discussion of the many possible other definitions of
trace the reader is referred to Pedersen and Stgrmer [83].



Bibliography

Books

E. M. Alfsen: Compact Convex Sets and Boundary Integrals, Ergebnisse der
Math. 57, Springer-Verlag, Berlin, 1971.

L. Asimov and A. J. Ellis: Convexity Theory and its Applications in
Functional Analysis, Academic Press, London, 1980. ‘

O. Bratteli and D. W. Robinson: Operator Algebras and Quantum Statisti-
cal Mechanics, Springer-Verlag, New York, 1979.

H. Braun and M. Koecher: Jordan-algebren. Grundlehren der Math., Wis-
senschaften 128, Springer-Verlag, Berlin, Heidelberg and New York, 1966.
J. Dixmier: Les C*-Algebres et leurs Representations, Gauthier-Villars,
Paris, 1969.

J. Dixmier: Les Algebres d’Operateurs dans I’Espace Hilbertien, Gauthier-
Villars, Paris, 1969.

7 N. Dunford and J. T. Schwartz: Linear Operators, Interscience, New York,
1958.
8 G. G. Emch: Algebraic Methods in Statistical Mechanics and Quantum Field
Theory, Wiley-Interscience, New York, 1972.
9 N. Jacobson: Structure and Representations of Jordan Algebras, Am. Math.
Soc. Collog. Publ. 39, Providence, RI, 1968.
10 O. Loos: Bounded Symmetric Domains and Jordan Pairs, Math. Lectures,
Univ. of California, Irvine, 1977.
11 R.D. Schafer: An Introduction to Nonassociative Algebras, Academic Press, -
New York, 1966. .
12 S, Stritila and L. Zsidd: Lectures on von Neumann Algebras, Abacus Press,
Tunbridge Wells, Kent, 1979.
Papers
13 S. A. Ajupov: Extension of traces and type criterions for Jordan algebras of
self-adjoint operators, Math. Z., 181 (1982), 253-68.
14 A. A. Albert: On a certain algebra of quantum mechanics, Annals Math.,

35 (1934), 65-73.

175



176

JORDAN OPERATOR ALGEBRAS

15
16
17
18
19
20
21
22
23
24

25

26
27
28
29
30
31
32
33
34
35

36

E. M. Alfsen, H. Hanche-Olsen and F. W. Shultz: State spaces of C*-
algebras, Acta Math., 144 (1980), 267-305.

E. M. Alfsen and F. W. Shultz: Non-commutative spectral theory for affine
function spaces on convex sets, Mem. Am. Math. Soc., 172 (1976).

E. M. Alfsen and F. W. Shultz: On non-commutative spectral theory and
Jordan algebras, Proc. Lond. Math. Soc. (3), 38 (1979), 497-516.

E. M. Alfsen and F. W. Shultz: State spaces of Jordan algebras, Acta
Math., 140 (1978), 155-90.

E. M. Alfsen, F. W. Shultz and E. Stgrmer: A Gelfand—Neumark
theorem for Jordan algebras, Adv. Math., 28 (1978), 11-56.

K. Alvermann: Real and complex noncommutative Jordan Banach factors,
Preprint, 1982.

H. Behncke: Hermitian Jordan Banach algebras, J. Lond. Math. Soc. (2), 20
(1979), 327-33.

H. Behncke and W. Bos: JB algebras with an exceptional ideal, Math.
Scand., 42 (1978), 306-12. v

J. Bellissard and B. Iochum: Homogeneous self-dual cones, versus Jordan
algebras. The theory revisited, Ann. Inst. Fourier, 28, 1 (1978), 27-67.

J. Bellissard and B. Iochum: I’algebre de Jordan d’un cone autopolaire
facialement homogene, C. R. Acad. Sci. Paris A, 288 (1979), 229-32.

J. Bellissard and B. Iochum: Homogeneous self-dual cones and Jordan
algebras, in L. Streit (ed.), Quantum Fields—Algebras, Processes, Springer-
Verlag, Wien and New York, 1980, pp. 152-65.

J. Bellissard and B. Iochum: Spectral theory for facially homogeneous
symmetric self-dual cones, Math. Scand., 45 (1979), 118-26.

J. Bellissard and B. Iochum: Order structure and Jordan Banach algebras,
Proc. Symp. Pure Math., 38, 2 (1982), 297-9.

F. F. Bonsall: Jordan algebras spanned by hermitian elements of a Banach
algebra, Math. Proc. Camb. Phil. Soc., 81 (1977), 3-13.

F. F. Bonsall: Jordan subalgebras of Banach algebras, Proc. Edinb. Math.
Soc., 21 (1978), 103-10.

F. F. Bonsall and P. Rosenthal: Certain Jordan operator algebras and
double commutant theorems, J. Funct. Anal., 21 (1976), 155-86.

H. N. Boyadjiev and M. A. Youngson: Alternators on Banach Jordan
algebras, C. R. Acad. Bulg. Sci., 33 (1980), 1589-90.

R. Braun, W. Kaup and H. Upmeier: A holomorphic characterization of
Jordan C*-algebras, Math. Z., 161 (1978), 277-90.

R. Braun, W. Kaup and H. Upmeier: On the automorphisms of circular and
Reinhardt domains in complex Banach spaces, Man. Math., 25 (1978),97-133.
Cho-Ho Chu: On the Radon-Nikodym property in Jordan algebras,
Operator Algebras and Group Representations, Monographs and Studies in
Mathematics, 17, Pitman (1984), 65-70.

P. Civin and B. Yood: Lie and Jordan structures in Banach algebras, Pacific
J. Math., 18 (1965), 775-97.

C. M. Edwards: Ideal theory in JB-algebras, J. Lond. Math. Soc. (2), 16
(1977), 507-13.



BIBLIOGRAPHY 177

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

C. M. Edwards: On the facial structure of a JB-algebra, J. Lond. Math. Soc.
(2), 19 (1979), 335-44.

C. M. Edwards: Multipliers of JB-algebras, Math. Ann., 249 (1980),
265-72.

C. M. Edwards: On the centres of hereditary JBW-subalgebras of a
JBW-algebra, Math. Proc. Camb. Phil. Soc., 85 (1979), 317-24.

C. M. Edwards: On Jordan W%*-algebras, Bull. Soc. Math., 104 (1980),
393-403.

E. Effros and E. Stgrmer: Jordan algebras of self-adjoint operators, Trans.
Am. Math. Soc., 127 (1967), 313-16.

E. Effros and E. Stgrmer: Positive projections and Jordan structure in
operator algebras, Math. Scand., 45 (1979), 127-38.

G. G. Emch and W. P. C. King: Faithful normal states on JBW-algebras,
Proc. Symp. Pure Math., 38, 2 (1982), 305-7. ]

Y. Friedman and B. Russo: Contractive projections on operator triple
systems, Math. Scand., 52 (1983), 279-311.

Y. Friedman and B. Russo: Solution of the contractive projection problem,
Preprint, 1983.

Y. Friedman and B. Russo: Operator algebras without order: Complete
solution to the contractive projection problem, Preprint, 1983.

Y. Friedman and R. Russo: Conditional expectation without order, Pre-
print, 1983.

T. Giordano: Antiautomorphismes involutifs des facteurs injectifs, C. R.
Acad. Sci. Paris A, 291 (1980), 583-5.

T. Giordano: Antiautomorphismes involutifs des facteurs injectifs II, Pre-
print, 1982.

T. Giordano: Antiautomorphismes involutifs des facteurs de von Neumann
injectifs, These, Neuchatel, 1981.

T. Giordano and V. Jones: Antiautomorphismes involutifs du facteur
hyperfini de type II;, C. R. Acad. Sci. Paris A, 290 (1980), 29-31.

C. M. Glennie: Some identities valid in special Jordan algebras but not valid
in all Jordan algebras, Pacific J. Math., 16 (1966), 47-59.

U. Haagerup and H. Hanche-Olsen: Tomita-Takesaki theory for Jordan
algebras, J. Operator Theory (to appear).

H. Hanche-Olsen: Split faces and ideal structure of operator algebras,
Math. Scand., 48 (1981), 137-44.

H. Hanche-Olsen: A note on the bidual of a JB-algebra, Math. Z., 175
(1980), 29-31.

H. Hanche-Olsen: A Tomita-Takesaki theory for JBW-algebras, Proc.
Symp. Pure Math., 38, 2 (1982), 301--3.

H. Hanche-Olsen: On the structure and tensor products of JC-algebras,
Can. J. Math., to appear.

L. Harris; A generalization of C*-algebras, Proc. Lond. Math. Soc. (3), 42
(1981), 331-61.

B. Iochum: Cones autopolaires et algebres de Jordan, These, Provence,
1982.



178

JORDAN OPERATOR ALGEBRAS

60

61
62

63

64

65
66
67
68
69
70
71
72
73
74
75
76

77
78

79
80
81
82

83

B. Jochum and F. W. Shultz: Normal state spaces of Jordan and von
Neumann algebras, J. Funct. Anal., 50 (1983), 317-28.

R. Jordanescu: Jordan algebras with applications, Preprint, 1979.

N. Jacobson: Macdonald’s theorem on Jordan algebras, Arch. Math., 13
(1962), 241-50.

N. Jacobson and C. E. Rickart: Jordan homomorphisms of rings, Trans.
Am. Math. Soc., 69 (1950), 479-502.

G. Janssen: Formal-reelle Jordanalgebren unendlicher Dimension und
verallgemeinerte positivititsbereiche, J. Reine Angew. Math., 249 (1971),
173-200.

G. Janssen: Reelle Jordanalgebren mit endlicher Spuhr, Man. Math., 13
(1974), 237-73.

G. Janssen: Die Struktur endlicher schwach abgeschlossener Jordan-
algebren. Teil 1. Stetige Jordanalgebren, Man. math., 16 (1975), 277-305.
G. Janssen: Die Struktur endlicher schwach abgeschlossener Jordan-
algebren. Teil II. Diskrete Jordanalgebren, Man. Math., 16 (1975), 307-32.
G. Janssen: Factor representations of type I for noncommutative JB- .and
JB*-algebras, Preprint, 1982.

P. Jordan, J. von Neumann and E. Wigner: On an algebraic generalization
of the quantum mechanical formalism, Annals Math., 35 (1934), 29-64.
R. V. Kadison: Isometries of operator algebras, Annals Math., 54 (1951),
325-38.

R. V. Kadison: A representation theory for commutative topological
algebra, Mem. Am. Math. Soc., 7 (1951).

R. V. Kadison: A generalized Schwarz inequality and algebraic invariants
for operator algebras, Annals Math., 56 (1952), 494-503.

W. Kaup: Algebraic characterization of symmetric complex Banach mani-
folds, Math. Ann., 228 (1977), 39-64.

W. Kaup: Jordan algebras and holomorphy, Lectures at Univ. Fed. de Rio
de Janeiro.

W. Kaup: Contractive projections on Jordan C*-algebras and generaliza-
tions, Math. Scand., to appear.

W. Kaup and H. Upmeier: Jordan algebras and symmetric Siegel domains
in Banach spaces, Math. Z., 157 (1977), 179-200.

M. Koecher: Positivitiatsbereichen in R™, Am. J. Math., 79 (1957), 595-6.

I. G. Macdonald: Jordan algebras with three generators, Proc. Lond. Math.
Soc. (3), 10 (1960), 395-408.

K. McCrimmon: Jordan algebras and their applications, Bull. Am. Math.
Soc., 84 (1978), 612-27.

K. McCrimmon: Macdonald’s theorem with inverses, Pacific J. Math., 21
(1967), 315-25.

J. von Neumann: On an algebraic generalization of the quantum mechanical
formalism, I, Math. Sbornic, 1 (1936), 415-84.

G. K. Pedersen: Monotone closures in operator algebras, Am. J. Math., 94
(1972), 955-61.

G. K. Pedersen and E. Stgrmer: Traces on Jordan algebras, Can. J. Math.,
34 (1982), 370-3.



BIBLIOGRAPHY 179

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103
104

105

106

A. G. Robertson: Automorphisms of spin factors and the decomposition of
positive maps, Q. J. Math. Oxford (2), 34 (1983), 87-96.

A. G. Robertson: Positive extensions of automorphisms of spin factors,
Proc. R. Soc. Edin., 94A (1983), 71-77.

A. G. Robertson and M. A. Youngson: Positive projections with contrac-
tive complements on Jordan algebras, J. Lond. Math. Soc. (2), 25 (1982),
365-74.

D. W. Robinson and E. Stgrmer: Lie and Jordan structure in operator
algebras, J. Austr. Math. Soc. A, 29 (1980), 129-42.

I. E. Segal: Postulates for general quantum mechanics, Annals Math., 48
(1947), 930-48.

S. Sherman: On Segal’s postulates for general quantum mechanics, Annals
Math., 64 (1956), 593-601.

S. Shirali: On the Jordan structure of complex Banach *algebras, Paciﬁc T
Math., 27 (1968), 397-404.

F. W. Shultz: On normed Jordan algebras which are Banach dual spaces, J.
Funct. Anal., 31 (1979), 360-76.

F. W. Shultzz Dual maps of Jordan homomorphisms and *-
homomorphisms between C*-algebras, Pacific J. Math., 93 (1981), 435-41.
A. M. Sinclair: Jordan homomorphisms and derivations of semisimple
Banach algebras, Proc. Am. Math. Soc., 24 (1970), 209-14.

A. M. Sinclair: Jordan automorphisms on a semisimple Banach algebra, Proc.
Am. Math. Soc., 25 (1970), 526-35.

R. R. Smith: On non-unital Jordan-Banach algebras Math. Proc. Camb.
Phil. Soc., 82 (1977), 375-80.

P. J. Stacey: Real structure in the approximately finite dimensional IL,
factor, Preprint, Melbourne, 1981.

P. J. Stacey: Type I, JBW-algebras, Q. J. Math. Oxford (2), 33 (1982),
115-27.

P. J. Stacey: Locally orientable JBW-algebras of complex type, Q. J. Math.
Oxford (2), 33 (1982), 247-51.

P. J. Stacey: The structure of type I JBW-algebras, Math. Proc. Camb. Phil.
Soc., 90 (1981), 477-82.

P. J. Stacey: Local and global splittings in the state space of a JB-algebra,
Math. Annalen, to appear.

P. I. Stacey: Real structure in sigma-finite factors of type III, (0<A<1),
Proc. Lond. Math. Soc. (3), 47 (1983), 275-84.

E. Stgrmer: On the Jordan structure of C*-algebras, Trans. Am. Math.
Soc., 120 (1965), 438-47.

E. Stgrmer: Jordan algebras of type I, Acta Math., 115 (1966), 165-84.
E. Stgrmer: On antiautomorphisms of von Neumann algebras, Pacific J.
Math., 21 (1967), 349-70.

E. Stgrmer: Irreducible Jordan algebras of self-adjoint operators, Trans.
Am. Math. Soc., 130 (1968), 153-66.

E. Stgrmer: On partially ordered. vector spaces and their duals, with
applications to simplexes and C*-algebras, Proc. Lond. Math. Soc., 18
(1968), 245-65.



180

JORDAN OPERATOR ALGEBRAS

107
108
109
110
111
112
| 113
114
115

116
117

118
119
120
121
122
123

124

125.

126

127

128

129

130

E. Stgrmer: Real structure in the hyperfinite factor, Duke Math. J., 47
(1980), 145-53.

E. Stgrmer: Decomposition of positive projections on C*-algebras, Math.
Ann., 247 (1980), 21-41.

E. Stgrmer: Positive projeétions with contractive complements on C*-
algebras, J. Lond. Math. Soc. (2), 26 (1982), 132-42.

D. M. Topping: Jordan algebras of self-adjoint operators, Mem. Am. Math.
Soc., 83 (1965).

D. M. Topping: An isomorphism invariant for spin factors, J. Math. Mech.,
15 (1966), 1055-63.

H. Upmeier: Derivation algebras of JB-algebras, Man. Math., 30 (1979),
199-214.

H. Upmeier: Derivations of Jordan C*-algebras, Math. Scand., 45 (1980),
251-64.

H. Upmeier: Automorphism groups of Jordan C*-algebras, Math. Z., 176
(1981), 21-34.

H. Upmeier: Derivations and automorphisms of Jordan C*-algebras, Proc.
Symp. Pure Math., 38, 2 (1982), 291-6.

J. D. M. Wright: Jordan C*-algebras, Mich. Math. J., 24 (1977), 291-302.
J. D. M. Wright and M. A. Youngson: A Russo Dye theorem for Jordan
C*-algebras, in K.-D. Bierstedt and F. Fuchssteiner (eds), Functional
Analysis: Surveys and Recent Results, Proc. Conf. Paderborn, 1977,
Pp. 279-82.

J. D. M. Wright and M. A. Youngson: On isometries of Jordan algebras, J.
Lond. Math. Soc. (2), 17 (1978), 339-44.

A. Wulfsohn: Tensor products of Jordan algebras, Can. J. Math., 27 (1975),
60-74.

M. A. Youngson: A Vidav theorem for Banach Jordan algebras, Math.
Proc. Camb. Phil. Soc., 84 (1978), 263-72.

M. A. Youngson: Equivalent norms in Banach Jordan algebras Math. Proc.
Camb. Phil. Soc., 86 (1979), 261-9.

M. A. Youngson: Hermitian operators on Banach Jordan algebras, Proc.
Edinb. Math. Soc. II, 22 (1979), 169-80.

M. A. Youngson: Non-unital Banach Jordan algebras and C*-triple sys-
tems, Proc. Edinb. Math. Soc. II, 24 (1981), 19-29.

M. A. Youngson: Completely contractive projections on C*-algebras, Q. J.
Math., to appear.

H. Behncke: Finite dimensional representations of JB-algebras, Proc. Amer.
Math. Soc., 88 (1983), 426-28.

L. J. Bunce: The ordered vector space structure of JC-algebras, Proc. Lond.
Math. Soc. (3), 22 (1971), 359-68.

L. J. Bunce: The theory and structure of dual JB-algebras, Math. Zeit., 180
(1982), 514-25.

L. J. Bunce: Type I JB-algebras, Quart. J. Math. Oxford (2), 34 (1983),
7-19.

L. J. Bunce: A Glim—Sakai theorem for Jordan algebras, Quart. J. Math.
Oxford (2), 34 (1983), 399-405.

B. Iochum: Non-associative L® spaces, Preprint, 1983.



Index

Abelian projection 5.1.4
adjoint map 1.1.20

Alaoglu theorem 1.1.17
algebra 2.1.1

alternative algebra 2.2.1
antiautomorphism, canonical 7.1.10
anticommutation relations 6.1.1
anticommute 6.3.11
antihomomorphism 2.1.2
antiunitary 7.5.5

approximate identity 3.5.1
Archimedean 1.2.1

associator 2.2.1

Banach algebra 1.3.2
Banach dual space 4.4.14
Banach * algebra 1.3.2
bipolar theorem 1.1.10

C* algebra 1.3.2
canonical anticommutation relations
6.1.1
Cauchy—Schwarz inequality ~ 1.3.10,
3.6.2
CAR algebra 6.2.1
Cayley numbers, see octonions
central support
of projection 4.3.3
of state 4.6.3
centre 2.5.1, 4.3.1
commutant 1.4.7
comparison theorem 5.2.13
complement (in lattice) 5.1.2
cone 1.1.3

conjugation

on a field 2.1.1

on a Hilbert space 7.5.5
coordinatization theorem 2.8.9
cyclic vector 1.4.7

division algebra 2.2.5
dual space 1.1.1

equivalent
factor representations 4.6.1
projections 5.1.4
exceptional ideal 2.4.10
exceptional Jordan algebra 2.4.1,
2.8.5
exchanged by a symmetry 5.1.4
extreme point 1.1.5

factor (von Neumann) 7.4.10
factor representation 4.6.1
faithful (representation) 1.3.9
formally real 2.9.1
free algebras
associative 2.3.3
Jordan 2.4.8
nonassociative 2.4.6
special Jordan 2.3.3

Gelfand transform 1.3.3
GNS construction 1.3.11

Hahn-Banach theorem
analytic form 1.1.12
geometric form 1.1.2

181



182 JORDAN OPERATOR ALGEBRAS

halving lemma 5.2.14
Hermitian 2.1.1
homomorphism 2.1.2

ideal 2.1.2
idempotent 2.5.4
minimal 2.9.1

imaginary unit 2.2.6

inner automorphism 5.1.4
inverses in JB algebras 3.2.9
involution 2.1.1

JB algebra 3.1.4

JB* algebra 3.8.1

JBW algebra 4.1.1

JBW factor 4.6.1

JBW subalgebra 4.5.9

JC algebra 3.1.2

Jordan algebra (abstract) 2.4.1

Jordan axiom 2.4.2

Jordan Banach algebra 3.1.3

Jordan C* algebra 3.8.1

Jordan homomorphism 7.4.8

Jordan matrix algebra 2.7.1

Jordan polynomial 2.4.11

Jordan subalgebra 2.3.1

Jordan triple product, see triple
product

JW algebra 4.1.2

JW factor 6.2.1

Kaplansky density theorem 4.5.12

lattice 5.1.2

left ideal 1.3.9

linearized Jordan axiom 2.4.3
locally convex 1.1.1

Macdonald’s theorem 2.4.13
matrix units 2.7.2

symmetrized 2.8.1, 2.8.11
modular 5.1.2, 5.1.4
monotone closed 4.4.9
monotone complete 4.1.1
monotone completion 4.4.10
Moufang identities 2.2.2
multiplication operator 2.4.2, 2.4.12

normal homomorphism 4.5.6
normal linear functional, state 4.1.1

octonions 2.2.6
operator commute 2.5.1
opposite algebra 2.8.4, 7.1.4
order isomorphism 1.2.9
order nporm 1.2.1
order unit 1.2.1
order unit space 1.2.1
orthocomplemented 5.1.2
orthogonality
of idempotents 2.6.4
of projections 4.2.1
of states 4.4.5
orthomodular 5.1.2

partial symmetry 5.2.8

Pauli spin matrices 6.2.1

Peirce decomposition 2.6.2, 2.6.4
perspective 5.1.2

polar 1.1.9
positivity
in C* algebras 1.3.2
in JB algebras 3.3.3
of functionals 1.2.1 P

power associative 2.4.4
predual 1.1.24, 4.4.14
projection 4.1.12

pure state 1.2.1, 3.6.7

~ purely exceptional 7.2.2

purely nonmodular 5.1.6

quadratic algebra 2.2.5
quaternionian flip 7.5.8
quaternions 2.2.6

quotient norm 1.1.14

range projection 4.2.6
real flip 7.5.8
reversible
algebras 2.3.2
elements 2.3.5

second dual 1.1.18
self-adjoint  1.3.2, 2.1.1
separating set of functionals 4.1.1



INDEX 183

separating vector 1.4.7
Shirshov—Cohn theorem . 2.4.14
for JB algebras 7.2.5

special Jordan algebra 2.3.1
special Jordan product 2.3.1
spectral radius norm  3.3.2
spectral theorem 3.2.4
spectrum
in C* algebras 1.3.2
in JB algebras 3.2.3
of an algebra 1.3.2
spin factor 6.1.4
finite-dimensional 2.9.7
spin system 6.1.2
* algebra 2.1.1
* representation 1.3.9
state, state space, pure state 1.2.1
on JB algebra 3.6.1,3.6.4
normal 4.1.1
strict duality® 1.1.7
strong topology 4.1.3
strongly connected 2.8.1
sublattice 5.1.2
support (of a homomorphism) 4.3.7

symmetry 2.8.6
nontrivial 6.1.6

tetrad 2.3.5
topological vector space 1.1.1
trace 5.1.1
triple product 2.3.2, 2.4.16
type I, I, TIT 5.1.4
I,L. 533
I, 1. 5.1.6
of factor representation 5.3.11

ultraweak topology 1.4.1

unit, unital 2.1.2

unit, adjunction of 2.4.2

unit ball 1.1.11

unit quaternion 7.5.5

universal associative algebra 7.1.2
universal specialization 7.1.2

von Neumann algebra 1.4.5

w* topology 1.1.16
weak topology 4.1.3
weak-* topology 1.1.16



	Errata
	Title page
	Preface
	Contents
	1. Preliminaries in functional analysis
	2. Jordan algebras
	3. JB-algebras
	4. JBW-algebras
	5. Dimension theory
	6. Spin factors
	7. Structure theory
	Bibliography
	Index

