The derivative of a determinant

Harald Hanche-Olsen
hanche@math.ntnu.no

Abstract

No, not really. Surely, this is a classical result. But I have been unable to find a reference.

Background and a simple result

Let $\Phi(t)$ be an $n \times n$ matrix depending on a parameter t. If Φ is a differentiable function of t - that is, each of its components is differentiable with respect to t - then so is det $\Phi(t)$, since we know that the determinant is a polynomial in the components of Φ. To get from this to an actual computation of the derivative of $\operatorname{det} \Phi(t)$ is a different matter, though.

What we shall need is the fact that the determinant is a multilinear function of its rows: If we write the rows of Φ as $\varphi_{1}, \ldots, \varphi_{n}$ and think of the determinant as a function of the rows

$$
\operatorname{det} \Phi=d\left(\varphi_{1}, \ldots, \varphi_{n}\right)
$$

then d is a linear function of each of its arguments as long as we keep each of the remaining rows constant. We then get

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{det} \Phi(t)=d\left(\dot{\varphi}_{1}, \varphi_{2}, \ldots, \varphi_{n}\right)+d\left(\varphi_{1}, \dot{\varphi}_{2}, \ldots, \varphi_{n}\right) & +\cdots \\
& +d\left(\varphi_{1}, \varphi_{2}, \ldots, \dot{\varphi}_{n}\right) \tag{1}
\end{align*}
$$

I outline the proof of this only for $n=3$, to keep the notation simple. It should be clear how to generalize the proof to arbitrary n. If $h \neq 0$ then

$$
\begin{aligned}
h^{-1}(\Phi(t+h)-\Phi(t)) & =d\left(h^{-1}\left(\varphi_{1}(t+h)-\varphi_{1}(t)\right), \varphi_{2}(t+h), \varphi_{3}(t+h)\right) \\
& +d\left(\varphi_{1}(t), h^{-1}\left(\varphi_{2}(t+h)-\varphi_{2}(t)\right), \varphi_{3}(t+h)\right) \\
& +d\left(\varphi_{1}(t), \varphi_{2}(t), h^{-1}\left(\varphi_{3}(t+h)-\varphi_{3}(t)\right)\right)
\end{aligned}
$$

which has the stated limit as $h \rightarrow 0$. (We must use the continuity of d for this argument to work.)

A better result

Equation (1) requires the computation of n determinants for the computation of a single derivative. We can do much better than this! For example, if $\Phi(t)$ is the identity matrix then a moment's contemplation of the righthand side of (1) shows it is the trace of $\dot{\Phi}$. Indeed, the first term will be

$$
\left|\begin{array}{cccc}
\dot{\varphi}_{11} & \dot{\varphi}_{12} & \cdots & \dot{\varphi}_{1 n} \\
0 & 1 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right|=\dot{\varphi}_{11}
$$

and so forth, with the sum $\dot{\varphi}_{11}+\dot{\varphi}_{22}+\cdots+\dot{\varphi}_{n n}=\operatorname{tr} \dot{\Phi}$. The resulting formula

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{det} \Phi(t)=\operatorname{tr} \dot{\Phi}(t) \quad \text { when } \Phi(t)=I
$$

may seem like a rather useless special case, but appearances deceive! For, let A be a constant, invertible matrix and apply the above result to the function $\operatorname{det}(A \Phi(t))=\operatorname{det} A \operatorname{det} \Phi(t)$. Now, the above formula states that

$$
\operatorname{det} A \frac{\mathrm{~d}}{\mathrm{~d} t} \operatorname{det} \Phi(t)=\operatorname{tr}(A \dot{\Phi}(t)) \quad \text { when } A \Phi(t)=I
$$

Whenever $\Phi(t)$ is invertible we can apply this result with $A=\Phi(t)^{-1}$ and rearrange to get the result

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{det} \Phi(t)=\operatorname{det} \Phi(t) \operatorname{tr}\left(\Phi(t)^{-1} \dot{\Phi}(t)\right)
$$

This result can also be written in the following useful form:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \ln \operatorname{det} \Phi(t)=\operatorname{tr}\left(\Phi(t)^{-1} \dot{\Phi}(t)\right)
$$

Revision information: I wrote this little note in 1997, and it is substantially unchanged since then. The only reasons for the 2012 version are $T_{E X}$ Xical: I now typeset with pdfTEX, and use the Latin Modern fonts and the geometry package.

