TMA4170 Fourieranalyse

Exam, December 11, 2004, Time: 9:00-13:00

Contact during exam: Helge Holden, phone 92038625
Grades will be announced January 7, 2005
Aids: One A4-sized sheet of paper stamped by the Department of Mathematical Sciences. On this sheet the student can write whatever he or she wants. No other aids.

Problem 1

(a) Let $f(x)=\arctan (x)$. Does f define a regular distribution?
(b) Is f in the space $L^{p}(\mathbb{R})$ for any $1 \leq p \leq \infty$?
(c) Does f define a tempered distribution?
(d) Compute $\mathcal{F}\left(f^{\prime}\right)=\widehat{f^{\prime}}$, the Fourier transform of the derivative of f. You may use that

$$
\int \frac{e^{i p x}}{1+x^{2}} d x=\pi e^{-|p|}
$$

(e) Show that the distribution \hat{f} (or more formally $\mathcal{F}\left(T_{f}\right)$) satisfies

$$
\xi \hat{f}=\frac{1}{2 i} e^{-2 \pi|\xi|}
$$

(f) You may use the following facts without proof:

The distribution $\mathrm{pv}(1 / x)$ satisfies equation

$$
\xi \cdot \operatorname{pv}(1 / \xi)=1
$$

Furthermore, the distributional equation

$$
\xi S=g, \quad S \in \mathcal{D}^{\prime}
$$

where $g \in L_{\mathrm{loc}}^{1}(\mathbb{R})$ with $g(\xi) / \xi \in L_{\mathrm{loc}}^{1}(\mathbb{R})$ has as general solution

$$
S=\frac{g(\xi)}{\xi}+\alpha \delta
$$

where α is an arbitrary complex number, and δ denotes Dirac's delta distribution.
Use this to show that

$$
\hat{f}=\frac{1}{2 i \xi}\left(e^{-2 \pi|\xi|}-1\right)+\frac{1}{2 i} \operatorname{pv}(1 / \xi)+\alpha \delta
$$

for some complex number α.
(g) Show that $\alpha=0$.

Problem 2

(a) Consider the analog filter $g=A(f)$ where

$$
g^{\prime \prime}+3 g^{\prime}+2 g=f
$$

on the set \mathcal{S} of Schwartz functions. Determine the impulse response h such that we can write the filter as $g=h * f$.
(b) Is the filter realizable (causal) and stable?

Problem 3

(a) Consider the analog filter $g=A(f)$ where

$$
g=f^{\prime}
$$

on the set \mathcal{S}^{\prime} of tempered distributions. Determine the impulse response h such that we can write the filter as $g=h * f$.
(b) Is the filter realizable (causal)?

Some useful formulas

$$
\begin{aligned}
\hat{f}(t) & =\sum_{n \in \mathbb{Z}} c_{n} e^{2 \pi i n t / a}, \quad f(a+t)=f(t), \\
c_{n} & =\frac{1}{a} \int_{0}^{a} f(t) e^{-2 \pi i n t / a} d t, \quad n \in \mathbb{Z}, \\
\mathcal{F}(f)(\xi) & =\hat{f}(\xi)=\int_{\mathbb{R}} f(x) e^{-2 \pi i \xi x} d x, \\
\mathcal{F}^{-1}(f)(x) & =\int_{\mathbb{R}} f(\xi) e^{2 \pi i \xi x} d \xi, \\
\mathcal{F}\left(x^{k} e^{-a x} u(x) / k!\right) & =1 /(a+2 \pi i \xi)^{k+1}, \quad a \in \mathbb{C}, \operatorname{Re}(a)>0, k=0,1,2, \ldots, \\
\mathcal{F}\left(x^{k} e^{a x} u(-x) / k!\right) & =-1 /(-a+2 \pi i \xi)^{k+1}, \quad a \in \mathbb{C}, \operatorname{Re}(a)>0, k=0,1,2, \ldots, \\
\mathcal{F}\left(e^{-a x^{2}}\right) & =\sqrt{\pi / a} e^{-(\pi \xi)^{2} / a}, \quad a \in \mathbb{R}, a>0, \\
\mathcal{F}(u(x)) & =\frac{1}{2} \delta+\frac{1}{2 \pi i} \operatorname{pv}(1 / \xi), \\
\mathcal{F}(\operatorname{sign}(x)) & =\frac{1}{\pi i} \operatorname{pv}(1 / \xi) .
\end{aligned}
$$

