TMA4170 Fourieranalyse December 11, 2004

Solutions

Problem 1

(a) Since $f(x)=\arctan (x) \in L_{\mathrm{loc}}^{1}$ (it is even continuous), f defines a regular distribution in \mathcal{D}^{\prime}.
(b) Since f does not decay at infinity, it cannot be in any $L^{p}(\mathbb{R})$ for $1 \leq p<\infty$. However, since f is bounded, it is in $L^{\infty}(\mathbb{R})$.
(c) f is in \mathcal{S}^{\prime} since it is in $L^{\infty}(\mathbb{R})$ (Prop. 31.1.8).
(d) We find first that $f^{\prime}(x)=1 /\left(1+x^{2}\right) \in L^{1}(\mathbb{R})$, and hence

$$
\widehat{f}^{\prime}(\xi)=\int \frac{e^{-2 \pi i x \xi}}{1+x^{2}} d x=\int \frac{e^{i(-2 \pi \xi) x}}{1+x^{2}} d x=\pi e^{-|-2 \pi \xi|}=\pi e^{-2 \pi|\xi|}
$$

(e) We have

$$
\begin{aligned}
T_{\pi e^{-2 \pi|\xi|}} & =T_{\mathcal{F}\left(1 /\left(1+x^{2}\right)\right)} \stackrel{\text { Prop. 31.2.2 }}{=} \widehat{T}_{1 /\left(1+x^{2}\right)} \\
& =\mathcal{F}\left(T_{f^{\prime}}\right) \stackrel{\text { Sect. } 28.4 .3}{=} \mathcal{F}\left(\left(T_{f}\right)^{\prime}\right)^{\text {Prop. }} \stackrel{31.2 .4}{=} 2 \pi i \xi \mathcal{F}\left(T_{f}\right)
\end{aligned}
$$

which implies

$$
\xi \mathcal{F}\left(T_{f}\right)=\frac{1}{2 i} e^{-2 \pi|\xi|}
$$

(f) Since

$$
\frac{1}{2 i \xi} e^{-2 \pi|\xi|}
$$

is not in $L_{\text {loc }}^{1}$, we have to rewrite the equation. If we subtract the equation

$$
\xi \cdot\left(\frac{1}{2 i} \mathrm{pv}(1 / \xi)\right)=\frac{1}{2 i}
$$

from

$$
\xi \mathcal{F}\left(T_{f}\right)=\frac{1}{2 i} e^{-2 \pi|\xi|}
$$

we find

$$
\xi\left[\mathcal{F}\left(T_{f}\right)-\frac{1}{2 i} \operatorname{pv}(1 / \xi)\right]=\frac{1}{2 i}\left(e^{-2 \pi|\xi|}-1\right)
$$

Using the information provided in the text, we conclude that

$$
\mathcal{F}\left(T_{f}\right)-\frac{1}{2 i} \operatorname{pv}(1 / \xi)=\frac{1}{2 i \xi}\left(e^{-2 \pi|\xi|}-1\right)+\alpha \delta
$$

for some complex number α. Thus

$$
\hat{f}=\mathcal{F}\left(T_{f}\right)=\frac{1}{2 i} \operatorname{pv}(1 / \xi)+\frac{1}{2 i \xi}\left(e^{-2 \pi|\xi|}-1\right)+\alpha \delta
$$

(g) Use that the left-hand side of

$$
\mathcal{F}\left(T_{f}\right)-\left[\frac{1}{2 i} \operatorname{pv}(1 / \xi)+\frac{1}{2 i \xi}\left(e^{-2 \pi|\xi|}-1\right)\right]=\alpha \delta
$$

is odd while the right-hand side is even to conclude that $\alpha=0$.
Alternatively, one can multiply both sides of the identity with the function $2 \pi i \xi$ (a smooth function). The we find that

$$
e^{-2 \pi|\xi|}=\xi \cdot \operatorname{pv}(1 / \xi)+\left(e^{-2 \pi|\xi|}-1\right)+\alpha \delta
$$

or

$$
\alpha \delta=0,
$$

which implies $\alpha=0$.

Problem 2

(a) The equation

$$
(2 \pi i \lambda)^{2}+3(2 \pi i \lambda)+2=0
$$

has roots

$$
2 \pi i \lambda=-2, \quad 2 \pi i \lambda=-1 .
$$

Using the notation in the book (p. 211ff) we find

$$
H(\lambda)=-\frac{1}{2 \pi i \lambda-(-2)}+\frac{1}{2 \pi i \lambda-(-1)}
$$

and hence the impulse response h equals

$$
h(t)=\left(-e^{-2 t}+e^{-t}\right) u(t) .
$$

(b) General theory (p. 217) gives that the filter is realizable and stable.

Problem 3

(a) See p. 331 in the textbook. The impulse response $h=\delta^{\prime}$.
(b) The filter is realizable but not stable.

