TMA4170 Fourieranalyse

Exam, November 29, 2007, Time: 9:00-13:00

Contact during exam: Helge Holden, phone 92038625
Grades will be announced December 20, 2007
Aids: One A4-sized sheet of paper stamped by the Department of Mathematical Sciences. On this sheet the student can write whatever he or she wants. No other aids.

Problem 1 Let $f_{n}: \mathbb{R} \rightarrow[0, \infty], n \in \mathbb{N}$, be a sequence of measurable functions such that $f_{n} \geq f_{n+1}$ for $n \in \mathbb{N}$. Assume that $\int_{\mathbb{R}} f_{n} d x \rightarrow 0$ when $n \rightarrow \infty$. Show that $f_{n} \rightarrow 0$ almost everywhere as $n \rightarrow \infty$.

Problem 2

a) Consider the filter $A: \mathcal{S} \rightarrow \mathcal{S}$ (where \mathcal{S} is the Schwartz space) given by $A(f)=g$ where

$$
g^{\prime \prime}+2 \alpha g^{\prime}+g=f
$$

where $\alpha \in(0, \infty)$ is a parameter. Show that one can write

$$
\hat{g}(\lambda)=H(\lambda) \hat{f}(\lambda),
$$

and determine H.
b) Compute the partial fractions of H for all values of α.
c) Determine the impulse response $h=\mathcal{F}^{-1} H$ for all values of α.
d) Show that

$$
\|g\|_{\infty} \leq\|h\|_{1}\|f\|_{\infty} .
$$

e) Is the filter realizable and stable for all values of α ? Explain your answer.

Problem 3

a) Given the function

$$
f(x)=\frac{e^{2 \pi i a x}}{b+i x}
$$

where $a \in \mathbb{R}, \operatorname{Re} b>0$. Determine if $f \in L^{1}(\mathbb{R})$ or $f \in L^{2}(\mathbb{R})$.
b) Determine the Fourier transform of f. Explain your answer.

Problem 4

a) Let T_{f} be the distribution defined by $f(x)=x^{2} u(x)$ where u is the Heaviside funksjon (or the unit step function) given by $u(x)=1$ for x positive og zero otherwise. Determine

$$
\left(T_{f}\right)^{(n)}
$$

for all $n \in \mathbb{N}$.
b) Let $g \in C^{\infty}$ and $T \in \mathcal{D}^{\prime}$. Show that

$$
(g T)^{\prime}=g^{\prime} T+g T^{\prime} .
$$

