Solutions for TMA4170 Fourier Analysis

November 29, 2007

Problem 1

Since $f_n \geq f_{n+1} \geq 0$, we know that $\lim_{n\to\infty} f_n(x) = f(x) \geq 0$ exists almost everywhere (but it might be equal to ∞ for many x). Furthermore, since $\int_{\mathbb{R}} f_n dx \to 0$ as $n \to \infty$, we first conclude that there exists an N such that $\int_{\mathbb{R}} f_N dx < \infty$, and hence f_N , and thus also f, is finite almost everywhere. Using Lebesgue's dominated convergence theorem (using f_N to dominate) we find that

$$0 = \lim_{n \to \infty} \int_{\mathbb{R}} f_n \, dx = \int_{\mathbb{R}} \lim_{n \to \infty} f_n \, dx = \int_{\mathbb{R}} f \, dx,$$

from which we conclude that f = 0 almost everywhere.

Problem 2

a) Given

 $g'' + 2\alpha g' + g = f,$

we perform a Fourier-transform which yields

$$((2\pi i\lambda)^2 + 4\pi i\lambda\alpha + 1)\hat{g}(\lambda) = \hat{f}(\lambda).$$

Thus

$$H(\lambda) = \frac{1}{(2\pi i\lambda)^2 + 4\pi i\lambda\alpha + 1}.$$

b) We find that

$$H(\lambda) = \begin{cases} \frac{1}{2\sqrt{\alpha^2 - 1}} \left(\frac{1}{2\pi i\lambda - (-\alpha + \sqrt{\alpha^2 - 1})} - \frac{1}{2\pi i\lambda - (-\alpha - \sqrt{\alpha^2 - 1})} \right) & \text{for } \alpha \neq 1, \\ \frac{1}{(2\pi i\lambda + 1)^2} & \text{for } \alpha = 1. \end{cases}$$

c) There are three distinct cases:

(A) $\alpha > 1$. Here we find that the impulse response reads

$$h(t) = \frac{1}{2\sqrt{\alpha^2 - 1}} \left(e^{(-\alpha + \sqrt{\alpha^2 - 1})t} - e^{-(\alpha + \sqrt{\alpha^2 - 1})t} \right) u(t)$$
$$= \frac{e^{-\alpha t}}{\sqrt{\alpha^2 - 1}} \sinh(\sqrt{\alpha^2 - 1}t) u(t).$$

Note that $-\alpha \pm \sqrt{\alpha^2 - 1} < 0$ when $\alpha > 1$.

(B) $\alpha = 1$. The two roots are coinciding, and the impulse response reads

$$h(t) = te^{-t}u(t).$$

(C) $0 < \alpha < 1$. Here we get two complex conjugate roots with solution

$$h(t) = \frac{1}{2\sqrt{\alpha^2 - 1}} \left(e^{(-\alpha + \sqrt{\alpha^2 - 1})t} - e^{-(\alpha + \sqrt{\alpha^2 - 1})t} \right) u(t)$$

= $\frac{1}{2i\sqrt{1 - \alpha^2}} \left(e^{(-\alpha + i\sqrt{1 - \alpha^2})t} - e^{-(\alpha + i\sqrt{1 - \alpha^2})t} \right) u(t)$
= $\frac{1}{2i\sqrt{1 - \alpha^2}} \left(e^{i\sqrt{1 - \alpha^2}t} - e^{-i\sqrt{1 - \alpha^2}t} \right) e^{-\alpha t} u(t)$
= $\frac{1}{\sqrt{1 - \alpha^2}} \sin(\sqrt{1 - \alpha^2}t) e^{-\alpha t} u(t).$

Observe that $\operatorname{Re}(-\alpha \pm \sqrt{\alpha^2 - 1}) = -\alpha < 0$ if $0 < \alpha < 1$. d) In all cases we have that

$$g = h * f$$
,

and thus

$$|g(t)| \le \int |h(t-s)f(s)| \, ds \le ||f||_{\infty} \int |h(t-s)| \, ds = ||h||_1 \, ||f||_{\infty}$$

from which it follows

$$||g||_{\infty} \le ||h||_1 ||f||_{\infty}.$$

e) The filter is both stable and realizable in all cases, cf. Theorem 24.5.2, as the real parts of all poles are strictly negative.

Problem 3

a) Since $|f(x)| = 1/|b + ix| = 1/\sqrt{(\operatorname{Re} b)^2 + (\operatorname{Im} b + x)^2}$, we see that $f \notin L^1(\mathbb{R})$, but $f \in L^2(\mathbb{R})$. Thus some care is needed when computing \hat{f} .

b) Consider $g_{\beta}(x) = e^{-\beta x} u(x) \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ with $\operatorname{Re} \beta > 0$. Then we can use the ordinary definition of the Fourier transform, and we find, for $\alpha \in \mathbb{R}$, that

$$\mathcal{F}(g_{\beta}(x-\alpha))(\xi) = e^{-2\pi i\alpha\xi} \hat{g}_{\beta}(\xi) = e^{-2\pi i\alpha\xi} \frac{1}{\beta + 2\pi i\xi}.$$

Choose $\alpha = -a$ and $\beta = 2\pi b$ to conclude that

$$f(\xi) = \frac{e^{2\pi i a\xi}}{b + i\xi} = 2\pi \mathcal{F}(g_{2\pi b}(x+a))(\xi).$$

Applying Proposition 22.2.1 we find that

$$(\mathcal{F}f)(x) = \mathcal{F}(2\pi\mathcal{F}(g_{2\pi b}(x+a))) = (2\pi g_{2\pi b}(x+a))_{\sigma}$$
$$= 2\pi g_{2\pi b}(-x+a) = 2\pi e^{-2\pi b(a-x)}u(a-x).$$

Problem 4

a) By standard derivation we find $f'(x) = 2xu(x) \in C(\mathbb{R})$ for all x, but f''(x) = 2u(x) for $x \neq 0$, and $f^{(k)}(x) = 0$ for $k = 3, 4, \ldots$ and for $x \neq 0$. So we find that

$$\begin{aligned} (T_f)' &= T_{f'} = T_{2xu(x)}, & \text{(using Sec. 28.4.4)}, \\ (T_f)'' &= (T_{2xu(x)})' = T_{2u}, & \text{(using Sec. 28.4.4)}, \\ (T_f)^{(3)} &= (T_{2u})' = 2\delta_0, & \text{(using Sec. 28.4.4)}, \\ (T_f)^{(k)} &= 2\delta_0^{(k-3)}, & k = 3, 4, \dots, & \text{(using common sense)}. \end{aligned}$$

b) Using the definition we find

$$(gT)'(\phi) = -(gT)(\phi') = -T(g\phi') = -T((g\phi)' - g'\phi) = T'(g\phi) + g'T(\phi) = (g'T + gT')(\phi), \quad \phi \in \mathcal{D}.$$