Solutions for TMA4170 Fourier Analysis

November 29, 2007

Problem 1

Since $f_{n} \geq f_{n+1} \geq 0$, we know that $\lim _{n \rightarrow \infty} f_{n}(x)=f(x) \geq 0$ exists almost everywhere (but it might be equal to ∞ for many x). Furthermore, since $\int_{\mathbb{R}} f_{n} d x \rightarrow 0$ as $n \rightarrow \infty$, we first conclude that there exists an N such that $\int_{\mathbb{R}} f_{N} d x<\infty$, and hence f_{N}, and thus also f, is finite almost everywhere. Using Lebesgue's dominated convergence theorem (using f_{N} to dominate) we find that

$$
0=\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f_{n} d x=\int_{\mathbb{R}} \lim _{n \rightarrow \infty} f_{n} d x=\int_{\mathbb{R}} f d x
$$

from which we conclude that $f=0$ almost everywhere.
Problem 2
a) Given

$$
g^{\prime \prime}+2 \alpha g^{\prime}+g=f
$$

we perform a Fourier-transform which yields

$$
\left((2 \pi i \lambda)^{2}+4 \pi i \lambda \alpha+1\right) \hat{g}(\lambda)=\hat{f}(\lambda) .
$$

Thus

$$
H(\lambda)=\frac{1}{(2 \pi i \lambda)^{2}+4 \pi i \lambda \alpha+1}
$$

b) We find that

$$
H(\lambda)= \begin{cases}\frac{1}{2 \sqrt{\alpha^{2}-1}}\left(\frac{1}{2 \pi i \lambda-\left(-\alpha+\sqrt{\alpha^{2}-1}\right)}-\frac{1}{2 \pi i \lambda-\left(-\alpha-\sqrt{\alpha^{2}-1}\right)}\right) & \text { for } \alpha \neq 1 \\ \frac{1}{(2 \pi i \lambda+1)^{2}} & \text { for } \alpha=1\end{cases}
$$

c) There are three distinct cases:
(A) $\alpha>1$. Here we find that the impulse response reads

$$
\begin{aligned}
h(t) & =\frac{1}{2 \sqrt{\alpha^{2}-1}}\left(e^{\left(-\alpha+\sqrt{\alpha^{2}-1}\right) t}-e^{-\left(\alpha+\sqrt{\alpha^{2}-1}\right) t}\right) u(t) \\
& =\frac{e^{-\alpha t}}{\sqrt{\alpha^{2}-1}} \sinh \left(\sqrt{\alpha^{2}-1} t\right) u(t) .
\end{aligned}
$$

Note that $-\alpha \pm \sqrt{\alpha^{2}-1}<0$ when $\alpha>1$.
(B) $\alpha=1$. The two roots are coinciding, and the impulse response reads

$$
h(t)=t e^{-t} u(t)
$$

(C) $0<\alpha<1$. Here we get two complex conjugate roots with solution

$$
\begin{aligned}
h(t) & =\frac{1}{2 \sqrt{\alpha^{2}-1}}\left(e^{\left(-\alpha+\sqrt{\alpha^{2}-1}\right) t}-e^{-\left(\alpha+\sqrt{\alpha^{2}-1}\right) t}\right) u(t) \\
& =\frac{1}{2 i \sqrt{1-\alpha^{2}}}\left(e^{\left(-\alpha+i \sqrt{1-\alpha^{2}}\right) t}-e^{-\left(\alpha+i \sqrt{1-\alpha^{2}}\right) t}\right) u(t) \\
& =\frac{1}{2 i \sqrt{1-\alpha^{2}}}\left(e^{i \sqrt{1-\alpha^{2}} t}-e^{-i \sqrt{1-\alpha^{2}} t}\right) e^{-\alpha t} u(t) \\
& =\frac{1}{\sqrt{1-\alpha^{2}}} \sin \left(\sqrt{1-\alpha^{2}} t\right) e^{-\alpha t} u(t) .
\end{aligned}
$$

Observe that $\operatorname{Re}\left(-\alpha \pm \sqrt{\alpha^{2}-1}\right)=-\alpha<0$ if $0<\alpha<1$.
d) In all cases we have that

$$
g=h * f
$$

and thus

$$
|g(t)| \leq \int|h(t-s) f(s)| d s \leq\|f\|_{\infty} \int|h(t-s)| d s=\|h\|_{1}\|f\|_{\infty}
$$

from which it follows

$$
\|g\|_{\infty} \leq\|h\|_{1}\|f\|_{\infty}
$$

e) The filter is both stable and realizable in all cases, cf. Theorem 24.5.2, as the real parts of all poles are strictly negative.

Problem 3

a) Since $|f(x)|=1 /|b+i x|=1 / \sqrt{(\operatorname{Re} b)^{2}+(\operatorname{Im} b+x)^{2}}$, we see that $f \notin$ $L^{1}(\mathbb{R})$, but $f \in L^{2}(\mathbb{R})$. Thus some care is needed when computing \hat{f}.
b) Consider $g_{\beta}(x)=e^{-\beta x} u(x) \in L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$ with $\operatorname{Re} \beta>0$. Then we can use the ordinary definition of the Fourier transform, and we find, for $\alpha \in \mathbb{R}$, that

$$
\mathcal{F}\left(g_{\beta}(x-\alpha)\right)(\xi)=e^{-2 \pi i \alpha \xi} \hat{g}_{\beta}(\xi)=e^{-2 \pi i \alpha \xi} \frac{1}{\beta+2 \pi i \xi}
$$

Choose $\alpha=-a$ and $\beta=2 \pi b$ to conclude that

$$
f(\xi)=\frac{e^{2 \pi i a \xi}}{b+i \xi}=2 \pi \mathcal{F}\left(g_{2 \pi b}(x+a)\right)(\xi)
$$

Applying Proposition 22.2 .1 we find that

$$
\begin{aligned}
(\mathcal{F} f)(x) & =\mathcal{F}\left(2 \pi \mathcal{F}\left(g_{2 \pi b}(x+a)\right)\right)=\left(2 \pi g_{2 \pi b}(x+a)\right)_{\sigma} \\
& =2 \pi g_{2 \pi b}(-x+a)=2 \pi e^{-2 \pi b(a-x)} u(a-x)
\end{aligned}
$$

Problem 4

a) By standard derivation we find $f^{\prime}(x)=2 x u(x) \in C(\mathbb{R})$ for all x, but $f^{\prime \prime}(x)=2 u(x)$ for $x \neq 0$, and $f^{(k)}(x)=0$ for $k=3,4, \ldots$ and for $x \neq 0$. So we find that

$$
\begin{aligned}
\left(T_{f}\right)^{\prime} & =T_{f^{\prime}}=T_{2 x u(x)}, \quad(\text { using Sec. 28.4.4 }) \\
\left(T_{f}\right)^{\prime \prime} & =\left(T_{2 x u(x)}\right)^{\prime}=T_{2 u}, \quad(\text { using Sec. 28.4.4 }) \\
\left(T_{f}\right)^{(3)} & =\left(T_{2 u}\right)^{\prime}=2 \delta_{0}, \quad(\text { using Sec. 28.4.4 }) \\
\left(T_{f}\right)^{(k)} & =2 \delta_{0}^{(k-3)}, \quad k=3,4, \ldots, \quad \text { (using common sense) }
\end{aligned}
$$

b) Using the definition we find

$$
\begin{aligned}
(g T)^{\prime}(\phi) & =-(g T)\left(\phi^{\prime}\right)=-T\left(g \phi^{\prime}\right)=-T\left((g \phi)^{\prime}-g^{\prime} \phi\right) \\
& =T^{\prime}(g \phi)+g^{\prime} T(\phi)=\left(g^{\prime} T+g T^{\prime}\right)(\phi), \quad \phi \in \mathcal{D}
\end{aligned}
$$

