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Problem 1
a) Two possible approaches:

(i) Since F(e−α|x|) = 2α/(α2 + (2πξ)2) (p. 159), we infer that

f̂α(ξ) = e−α|ξ|.

(ii) An alternative is to write

fα(x) =
1

α+ 2πix
+

1
α− 2πix

and then use that (p. 166)

F(
1

α+ 2πix
) = eαξu(−ξ), F(

1
α− 2πix

) = e−αξu(ξ).

Adding the two terms yields the same result.
b) The convolution theorem (Prop. 23.1.2) yields

f̂α ∗ fβ = f̂αf̂β = e−α|ξ|e−α|ξ| = e−(α+β)|ξ| = f̂α+β ,

which shows that
fα ∗ fβ = fα+β ,

Problem 2
a) It is clearly linear. As for the continuity, we have for φm ∈ S, φm → 0 in

S that
|δc(φm)| = |φm(c)| ≤ ‖φm‖∞ → 0.

Hence δc → 0 in S ′. As for the Fourier transform we find

δ̂c(φ) = δc(φ̂) = φ̂(c) =
∫
e−2πicxφ(x)dx,

thus
δ̂c = e−2πicx.

b) Linearity is clear. If φm ∈ S, φm → 0 in S we have

|Da(φm)| ≤
∑
n

|φm(an)| ≤
∑
n

1
1 + (na)2

|(1 + (na)2)φm(an)|

≤
∥∥(1 + x2)φm(x)

∥∥
∞

∑
n

1
1 + (na)2

→ 0

as m → ∞ since
∥∥(1 + x2)φm(x)

∥∥
∞ → 0 by assumption, and

∑
n

1
1+(na)2 con-

verges.
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c) Pointwise we have that

g′(x) = 1/a, x ∈ R \ {na | n ∈ Z}.

At points na, n ∈ Z the function g makes a jump of minus one. Thus we find
(cf. Section 28.4.4) that

(Tg)′ = Tg′ −
∑
n

δna.

or
g′ =

1
a
−
∑
n∈Z

δna

in the sense of distributions.
d) Using the standard formula

g(x) =
∑
n

cne
2πinx/a

where
cn =

1
a

∫ a

0

g(x)e−2πinx/adx

we find
c0 =

1
2
, cn =

i

2πn
, n 6= 0.

Convergence is pointwise to g(x) for all x except at points na, n ∈ Z by using
Dirichlet’s theorem (Theorem 5.2.4). At points na, n ∈ Z Dirichlet’s theorem
gives convergence to 1/2. The Fourier series converges in L2

p(0, a) from Theorem
16.3.9.

e) From Proposition 29.3.2 we infer that the partial sums of the Fourier series
converge to g in the sense of distributions. From Theorem 29.1.3 we conclude
that the partial sums of the pointwise derivates converge to the distributional
derivative of g. From this we infer using d) that

g′ = −1
a

∑
n∈Z
n 6=0

e2πinx/a

in the sense of distributions.
f) If we combine a) and b) we find

D̂a =
∑
n

e−2πinax =
∑
n

e2πinx/(1/a).

On the other hand, if we combine c) and e) we find

g′ − 1
a

= −1
a

∑
n∈Z

e2πinx/a = −
∑
n

δna.
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By replacing a by 1/a in the last result we can write this as

1
1/a

∑
n∈Z

e2πinx/(1/a) =
∑
n

δn/a.

This yields

D̂a =
∑
n

e2πinx/(1/a) =
1
a

∑
n

δn/a =
1
a
D1/a.

Observe that this implies that D̂1 = D1.

Problem 3
a) Given

g′′ + 2g′ + βg = f,

we perform a Fourier transform which yields

((2πiλ)2 + 4πiλ+ β)ĝ(λ) = f̂(λ).

Thus
H(λ) =

1
(2πiλ)2 + 4πiλ+ β

.

b) We find that

H(λ) =

{
1

2
√

1−β

(
1

2πiλ−(−1+
√

1−β)
− 1

2πiλ−(−1−
√

1−β)

)
for β 6= 1,

1
(2πiλ+1)2 for β = 1.

c) There are four distinct cases:
(A) 0 < β < 1. Here we find that the impulse response reads

h(t) =
1

2
√

1− β
(
e(−1+

√
1−β)t − e−(1+

√
1−β)t

)
u(t)

=
e−t√
1− β

sinh(
√

1− β t)u(t).

Note that −1±
√

1− β < 0 when 0 < β < 1.
(B) β = 1. The two roots are coinciding, and the impulse response reads

h(t) = te−tu(t).

(C) β > 1. Here we get two complex conjugate roots with solution

h(t) =
1

2
√

1− β
(
e(−1+

√
1−β)t − e−(1+

√
1−β)t

)
u(t)

=
1

2i
√
β − 1

(
e(−1+i

√
β−1)t − e−(1+i

√
β−1)t

)
u(t)

=
1

2i
√
β − 1

(
ei
√
β−1t − e−i

√
β−1t

)
e−tu(t)

=
1√
β − 1

sin(
√
β − 1 t)e−tu(t).
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Observe that Re(−1±
√

1− β) = −1 < 0 if β > 1.
(D) β < 0. Here we have real roots with opposite sign.

h(t) =
1

2
√

1− β
(
e(−1+

√
1−β)tu(−t)− e−(1+

√
1−β)tu(t)

)
= − sign(t)√

1− β
e−t−

√
1−β|t|.

d) In all cases except β = 0 we have that

g = h ∗ f,

and thus

|g(t)| ≤
∫
|h(t− s)f(s)| ds ≤ ‖f‖∞

∫
|h(t− s)| ds = ‖h‖1 ‖f‖∞

from which it follows
‖g‖∞ ≤ ‖h‖1 ‖f‖∞ .

e) The filter is realizable when β > 0, cf. Theorem 24.5.2, as the real parts
of all poles are strictly negative in that case. The filter is stable for all β 6= 0
because no poles are on the imaginary axis, cf. Theorem 24.4.2.
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