Errata

F. Gesztesy, H. Holden, J. Michor, and G. Teschl Soliton Equations and Their Algebro-Geometric Solutions. Volume II: $(1+1)$-Dimensional Discrete Models
Cambridge studies in advanced mathematics, Vol. 114
Cambridge University Press, Cambridge, 2008
The official web page of the book: www.math.ntnu.no/ ${ }^{\text {hol }}$ olden/solitons
Please send comments and corrections to fritz@math.missouri.edu, holden@math.ntnu.no, jmichor@esi.ac.at, or Gerald.Teschl@univie.ac.at

Updated as of June 27, 2011
Changes appear in yellow. Line $k+$ (resp., line $k-$) denotes the k th line from the top (resp., the bottom) of a page.

Chapter 1
Page 58. Equation (1.135) is superfluous. Originally, it was intended to write $b(n)$ in (1.132) as

$$
\begin{equation*}
b(n)=\Lambda_{0}-\left.\sum_{j=1}^{p} c_{j}(p) \frac{\partial}{\partial w_{j}} \ln \left(\frac{\theta(\underline{A}+\underline{B} n+\underline{w})}{\theta(\underline{A}-\underline{B}+\underline{B} n+\underline{w})}\right)\right|_{\underline{w}=0} \tag{1.132}
\end{equation*}
$$

with

$$
\begin{equation*}
\Lambda_{0}=\frac{1}{2} \sum_{m=0}^{2 p+1} E_{m}-\sum_{j=1}^{p} \lambda_{j} \tag{1.135}
\end{equation*}
$$

Page 99. Replace $a(n)^{2}$ in line 7 - by $a\left(n, t_{r}\right)^{2}$ and $b(n)$ in line 6 - by $b\left(n, t_{r}\right)$. Page 99. A correction analogous to that in equation (1.135) on page 58 applies: Line 1 - is superfluous. Originally, it was intended to write $b\left(n, t_{r}\right)$ in line 5 and $6-$ as

$$
b\left(n, t_{r}\right)=\Lambda_{0}-\left.\sum_{j=1}^{p} c_{j}(p) \frac{\partial}{\partial w_{j}} \ln \left(\frac{\theta\left(\underline{A}+\underline{B} n+\underline{C}_{r} t_{r}+\underline{w}\right)}{\theta\left(\underline{A}-\underline{B}+\underline{B} n+\underline{C}_{r} t_{r}+\underline{w}\right)}\right)\right|_{\underline{w}=0}
$$

with

$$
\Lambda_{0}=\frac{1}{2} \sum_{m=0}^{2 p+1} E_{m}-\sum_{j=1}^{p} \lambda_{j}
$$

Chapter 3

Page 194. Equation (3.38) should read:

$$
\begin{equation*}
\hat{f}_{\ell, \pm}(\alpha, \beta)=\hat{h}_{\ell, \mp}(\beta, \alpha), \quad \hat{g}_{\ell, \pm}(\alpha, \beta)=\hat{g}_{\ell, \mp}(\beta, \alpha), \quad \ell \in \mathbb{N}_{0} \tag{3.38}
\end{equation*}
$$

Page 228. The last line of the displayed formula in the middle of the page should read:

$$
=\frac{F_{\underline{p}}}{F_{\underline{p}}^{-}}\left(1+\frac{\alpha H_{\underline{p}}}{\left(c_{0,+} / 2\right) z^{-p_{-}} y+G_{\underline{p}}}\right) \underset{P \rightarrow \hat{\mu}_{j}}{=} \frac{F_{\underline{p}}(z)}{F_{\underline{p}}^{-}(z)} O(1) .
$$

Page 292. The last line of the displayed formula in Hypothesis 3.50 should read:

$$
\alpha(n, \cdot), \beta(n, \cdot) \in C^{1}(\mathbb{R}), n \in \mathbb{Z}, \quad \alpha\left(n, t_{\underline{p}}\right) \beta\left(n, t_{\underline{p}}\right) \notin\{0,1\},\left(n, t_{\underline{p}}\right) \in \mathbb{Z} \times \mathbb{R} .
$$

Page 294. Equation (3.371) should read

$$
\begin{equation*}
D\left(t_{\underline{p}}\right)=\exp \left(\frac{i}{2} \int_{0}^{t_{\underline{p}}} d s\left(g_{p_{+},+}(0, s)-g_{p_{-},-}(0, s)\right)\right) D(0), \quad t_{\underline{p}} \in \mathbb{R} \tag{3.371}
\end{equation*}
$$

Bibliography

Page 399. Ahmad, S. and Chowdhury, A. Roy. 1987b. The quasiperiodic solutions to the discrete nonlinear Schrödinger equation. J. Math. Phys., 28 134-137.
Page 411. Killip, R. and Nenciu, I. 2006, appeared in Comm. Pure Appl. Math. 60 (2007) 1148-1188.

