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1. Introduction

Bivariate meta-analysis

Comparison of the performance of inla and the performance
obtained by the maximum likelihood procedure SAS PROC
NLMIXED (Paul et al., 2009).

Age-period-cohort models

Comparison of the performance of inla and an MCMC algorithm
implemented in C using the GMRFLib library (Rue and Held, 2005,
Appendix).

All analyses were run under Kubuntu 8.04 on a laptop with
Intel(R) Core(TM) 2 Duo T7200 processor with 2.00 GHz.

Andrea Riebler 3/ 29



Introduction Bivariate meta-analysis Age-period-cohort model Summary

Bivariate meta-analysis

Meta-analyses are used to summarise the results of separately
performed studies, here diagnostic studies.

Diagnostic studies often report two-by-two tables

⇒ Sensitivity Se = TP
TP + FN and specificity Sp = TN

TN + FP .

Bivariate meta-analysis:

Models the relationship between sensitivity and specificity (after
logit transformation), including random effects for both and
allowing for correlation between them.

Focus: Estimation of the expected sensitivity and specificity

TP = true positives, FP = false positives, TN = true negatives, FN = false negatives.
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Model formulation

1. Level

TPi |Sei ∼ Binomial(TPi + FNi ,Sei )

TNi |Spi ∼ Binomial(TNi + FPi ,Spi )

2. Level

logit(Sei ) = µ+ Uiα + φi ,

logit(Spi ) = ν + Viβ + ψi ,
with

(
φi

ψi

)
∼ N

[(
0

0

)
,

(
1/τφ ρ/

√
τφτψ

ρ/
√
τφτψ 1/τψ

)]
,

where i = 1, . . . , I is the study index (Chu and Cole, 2006).
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Inference

Likelihood approaches

Numerical maximisation might fail in complex problems.

Construction of confidence intervals is problematic.

Bayesian approaches

Markov chain Monte Carlo (MCMC) is very time-consuming.

Credible intervals are obtained as the quantiles of the samples.

Comparison of inla and SAS PROC NLMIXED using an extensive
simulation study.
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Simulation study

72 different scenarios where each scenario contains 1000
meta-analyses sampled from the model.

We varied

the number of studies per meta-analysis.

the overall sensitivity and specificity.

the between-studies precisions.

the correlation between logit sensitivity and logit specificity.

The number of participants is sampled for each study separately.
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Settings

In a Bayesian context all parameters are treated as random and
prior distributions are assigned (determined by a sensitivity
analysis):

For τφ, τψ: Gamma(shape=0.25, rate=0.025).

For Fisher’s z-transformed correlation ρ̃:

ρ̃ ∼ N (0, 0.2−1)
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Results

Comparison using bias, SD, MSE and coverage probabilities:

Bias and MSE of inla and NLMIXED are almost the same.

Bias and MSE depend on choice of sensitivity and specificity.

The estimates are more precise for more studies.

Precision of estimates and MSE are hardly influenced by the
value of ρ.

In general inla produces better coverage.
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Performance and running time

Performance:

Out of 72 000 analyses

inla failed 2 times,

NLMIXED failed 7 482 times (10.4%).

Running time:

For one scenario of 1000 meta-analyses

inla took on average 6.0 minutes (min: 4.7, max: 7.8),

NLMIXED took on average 38.1 minutes (min: 20.5, max: 89.3).

Andrea Riebler 10/ 29



Introduction Bivariate meta-analysis Age-period-cohort model Summary

Radiological evaluation of lymph node metastases

Three types of diagnostic imaging are compared for detecting
lymph node metastases in patients with cervical cancer (Scheidler
et al., 1997).

The meta-analysis consists of a total of 46 studies:

17 studies for lymphangiography (LAG)

19 studies for computed tomography (CT)

10 studies for magnetic resonance (MR)

with each containing at least 20 patients.
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INLA call using the R-Interface

> library(INLA)

> data(BivMetaAnalysis)
> head(BivMetaAnalysis)

N Y diid lag.tp lag.tn ct.tp ct.tn mr.tp mr.tn

1 29 19 1 1 0 0 0 0 0

2 82 81 2 0 1 0 0 0 0

3 10 8 3 1 0 0 0 0 0

4 22 13 4 0 1 0 0 0 0

5 53 41 5 1 0 0 0 0 0

6 50 49 6 0 1 0 0 0 0

> formula <- Y ~ f(diid, model = "2diid",

+ param = c(0.25, 0.025, 0.25, 0.025, 0, 0.2)) +

+ lag.tp + lag.tn + ct.tp + ct.tn + mr.tp + mr.tn - 1

> model <- inla(formula, family = "binomial", Ntrials = N,

+ data = BivMetaAnalysis, quantiles = c(0.025, 0.5, 0.975))

The analysis took about ∼ 0.6 seconds.
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Summary estimates

Imaging Sensitivity
Median 2.5%-quantile 97.5%-quantile

LAG 0.69 0.57 0.80
CT 0.49 0.36 0.62
MR 0.55 0.37 0.71

Imaging Specificity
Median 2.5%-quantile 97.5%-quantile

LAG 0.83 0.76 0.89
CT 0.93 0.89 0.96
MR 0.95 0.91 0.98

The correlation ρ was estimated to −0.48 (−0.76, −0.04).
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Discussion

Similar performance of inla and NLMIXED regarding bias and MSE.

Advantage of inla

Better coverage

More stable and faster

Since sensitivity and specificity are jointly analysed, a joint
confidence ellipse for these measures might be of interest.

Comparison of NLMIXED and inla using
an empirical Bayes approach?
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3. Age-period-cohort model

Data on cancer often consist of yearly counts for different age
groups and gender in pre-defined geographical areas.

Our goal lies in:

Detecting temporal patterns.

Providing predictions for subsequent periods.

Age-period-cohort (APC) model

to describe incidence or mortality rates using three time scales.

Age: age at diagnosis.

Period: date of diagnosis.

Cohort: date of birth.
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Univariate age-period-cohort model

yij : number of deaths or disease cases in age group i at period j
nij : number of persons at risk in age group i at period j

yij ∼ Poisson(nij exp(ξij)) ξij = µ+ αi + βj + γk + zij

with age effect αi , period effect βj , cohort effect γk and additional
random effect zij ∼ N (0, δ−1) to adjust for overdispersion.

To assure identifiability of the intercept µ, we set

I∑
i=1

αi =
J∑

j=1

βj =
K∑

k=1

γk = 0.

Note: Because of the linear relationship k = I − i + j , the age,
period and cohort effects are still not identifiable

Andrea Riebler 16/ 29



Introduction Bivariate meta-analysis Age-period-cohort model Summary

Bayesian age-period-cohort model

Non-parametric smoothing priors are used for the main effects with
gamma hyperpriors for the associated smoothing parameters.

Second-order random walk (RW2)

αi ∼ N (2αi−1 − αi−2, κ
−1) i = 3, . . . , I

RW2 penalises deviations from a linear trend αi = 2αi−1 − αi−2.

Note:

Non-identifiability of the latent parameters remains, but does not
require further constraints.

Andrea Riebler 17/ 29



Introduction Bivariate meta-analysis Age-period-cohort model Summary

Case study: Lung cancer mortality in West Germany
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18 age groups: < 5, 5-9, 10-14,. . . , 80-84, ≥ 85.

45 periods: 1952 - 1996.

130 cohorts: 1862-1867, 1863-1868, . . . , 1991-1996.

(Knorr-Held and Rainer, 2001)
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INLA call using the R-Interface

y n i j k z
3 250 1 1 2 1

20 260 2 1 1 2
9 230 1 2 3 3

12 270 2 2 2 4
7 260 1 3 4 5

10 290 2 3 3 6
...

For predictions, set yij = NA.

> library(INLA)

> lungm <- read.table("data/lungm4inla.txt", header=T)

> formula <- y ~ f(i, model="rw2", param=c(1,0.00005)) +

+ f(j, model="rw2", param=c(1,0.00005)) +

+ f(k, model="rw2", param=c(1,0.00005)) +

+ f(z, model="iid", param=c(1,0.005))

> model <- inla(formula, family="poisson", data=lungm, E=lungm$n,

+ quantiles=c(0.1, 0.5, 0.9), control.compute=list(cpo=TRUE),

+ control.predictor=list(compute=TRUE))

> hyper <- inla.hyperpar(model)
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Results for complete dataset

MCMC needed for 120 000 iterations about 10 minutes.

INLA needed for the model estimation about 17 seconds and
for the improved hyperparameter estimation about 2 minutes.
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The inspection of identifiable measures gave similar results.
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Predictions for 1987 - 1996
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Inclusion of smoking data in the APC model

The inclusion of appropriate covariate information in the APC
model could improve the predictions.

Model formulation:
Assuming a time-constant effect β:

ξij = µ+ αi + β · xj−L + γk + zij .

Assuming a time-varying effect βj :

ξij = µ+ αi + βj · xj−L + γk + zij ,

assigning a RW2 smoothing prior to βj .

xj : number of cigarettes sold per 1/1000 capita in 1955-1994.

L = 20 years: latency period.
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Inclusion of covariates in R-inla
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Goal: Prediction until 2010.

Note: Because of L = 20 years, only
data from 1975 onwards can enter.

Assuming a time-constant effect β:
formula_const <- y ~ f(i, model="rw2", param=c(1,0.00005), constr=1) +

f(k, model="rw2", param=c(1,0.00005), constr=1) +

f(z, model="iid", param=c(1,0.005) ) + cig_cov

Assuming a time-varying effect βj :
formula_vary <- y ~ f(i, model="rw2", param=c(1,0.00005), constr=1) +

f(j, model="rw2", param=c(1,0.00005), constr=0, weights=cig_cov) +

f(k, model="rw2", param=c(1,0.00005), constr=1) +

f(z, model="iid", param=c(1,0.005) )
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Covariate effects

Time constant effect exp(β):

10%-quantile Median 90%-quantile

1.11 1.13 1.15

Time-varying effect exp(βj):
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Model assessment

PIT histogram for count data (Czado et al. 2009):
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Log-score:
APC constant RW2

−log(CPO) 3.895? 3.887? 3.905?

?Two CPO values were removed as they were classified as unreliable.
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Prediction until 2010
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Discussion

INLA facilitates the analysis of Bayesian APC models.

Prediction is straightforward.

Covariate information can be easily incorporated.

Model diagnostics available, but not completely robust.
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4. Summary

For both applications presented, INLA is an alternative to the
standard used inference approaches (ML, MCMC). It is:

User-friendly and easy to apply

Fast

Flexible

Issues for future work might be:

Improved model diagnostics,

Calculation of joint credibility intervals,

Calculation of predictive distribution for response.
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Thank you for your attention
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