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Small Area Estimation

Aims

Provide estimates of the target variables at different administative levels.

Data

Official statistics: Census, Family Resources Survy, Cancer Registers,
etc.

Aggretate Data (at different levels) can be obtained from National
Statistics Bureaus

Ad hoc surveys

Statistical Models

Direct Estimators

Model-assisted estimators

Model-based estimators
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Example

Average Income per Household (AIH) in Sweden

Average income per capita accounting for the number of adults and
children in the household

LOUISE Population Register in Sweden

Detailed register of every household in Sweden:

Income

Number of persons in the household

Head of household: gender, age, education level, employment status

How can AIH be estimated?

Survey data to measure AIH and other covariates of interest

Use additional information to estimate the AIH: aggregate data
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Direct Estimation

Survey

Significant sample of the population of interest

Simple random sampling without replacement (but there are others...)

Direct Estimator

Sample from area i : {(yij , xij) : j = 1, . . . , ni}
Survey weights: wij = Ni/ni

Ŷ D,i =

∑
j wijyij∑
j wij

=

∑
j yij

ni
= y i var [Ŷ D,i ] = (1− ni/Ni )S

2
i

Problems of Direct Estimation

Too many areas to estimate

Sampling from all areas is too expensive

Ignores complexity of the data (spatial effects, etc.)
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Model-based estimators

Motivation

Direct Estimator cannot be used in areas with no data

Model-based estimators are based on a model that can be used to
predict the target variables in the areas with no data

Main effects

Covarites (individual and area levels)

Random effects

Spatial random effects

Temporal random effects

Combining different sources

Sample

Aggregate data (from official sources)
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Bayesian Hierarchical Models

Introduction

BHM are multilevel models

All unknown quantities and parameters of interest θ of the model are
considered as random variables

Inference is based on the posterior distribution of θ given the observed
data

Complex models can be fitted using simulation techniques (Markov
Chain Monte Carlo) or approximate methods (INLA!) to obtain an
approximation to the posterior distribution of θ

Some benefits of Bayesian Inference

Probability estatements about the parameters of the model can be
made: P(θL < IMH < θU).

Results can be summarised as posterior probabilities: Probability of
having an income higher than 500EUR/week.
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Area level data

Fay-Herriott Estimator

Ŷ D,i = µi + ei

ei ∼ N(0, σ̂2
ei

)

µi = α + βX i + ui + vi

ui ∼ N(0, σ2
u)

vi |v−i ∼ N(
∑

j∈δi
vi
|δi | ,

σ2
v
|δi |)

f (α, β) ∝ 1
σ2

u, σ
2
v ∼ Ga−1(0.001, 0.001)

Small Area Estimation

Ŷ A,i = µ̂i

Graphical Model

β∗

α∗

X i

v−i

viui

σ2
u σ2

v

µi V̂ 2
i

Ŷ i

i=1,. . . ,m
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Unit level models

Model

yij = µij + eij

eij ∼ N(0, σ2
e )

σ2
e ∼ Ga−1(0.001, 0.001)

µij = α + βxij + ui + vi

Small Area Estimation

Ŷ u,i = α̂ + β̂X i + ûi + v̂i

Modelo Gráfico

β

α

xij

v−i

viui

σ2
u σ2

v

µij

σ2
e

yij

i=1,. . . ,m

j = 1, . . . , ni
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V. Gómez-Rubio (UCLM) Approximate Bayesian SAE 9 / 29



Unit level models

Model

yij = µij + eij

eij ∼ N(0, σ2
i )

log(σ2
i ) ∼ N(0, σ2)

µij = α + βxij + ui + vi

Small Area Estimation

Ŷ u,i = α̂ + β̂X i + ûi + v̂i

Modelo Gráfico

β

α

xij

v−i

viui

σ2
u σ2

v

σ2

µij

σ2
i

yij

i=1,. . . ,m

j = 1, . . . , ni
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Average Income per Household in Sweden

Data

Different surveys from the LOUISE Register

284 municipalities in Sweden in 1992

Sample size: 1% of total number of households

Actual values are known (and they can be use to validate the models)

Covariates:

Number of people in household
Head of household: gender, age, education level, employment

Models compared

Different models have been compared: ui , vi , ui + vi

Area and unit level models
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Model comparisson

Average (Relative) Empirical Mean Square Error

AEMSE =
20X

k=1

1

20 · 284

284X
i=1

(Ŷ
(k)

i − Y i )
2 AREMSE =

20X
k=1

1

20 · 284

284X
i=1

(Ŷ
(k)

i − Y i )
2

Y i

Deviance Information Criterion (DIC)

DIC = D(θ̂) + 2pD

Aims

Select the best model in terms of prediction of the values in the Small
Areas

AEMSE is more appropriate but in practice we can only compute the
DIC
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Small Area Estimates

AREA LEVEL MODEL TRUE MEAN UNIT LEVEL MODEL

   1055

   1132

1156.01

1173.04

1189.86

1215.23

1256.93

1838.91
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Classification of areas for policy making

Why rank areas?

To compare them

Detect areas with special needs (i.e., high unemployment, low income,
etc.)

How can we rank areas?

Point estimates (i.e., posterior means)

Ranks

Posterior probabilities

Poverty line (60% of national average income)
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Classification with real data (Area level models)
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The probability of being above the poverty line is always 1 for all
the municipalities in Sweden!!
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Classification with real data (Area level models)
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Intervals are sampling intervals which show sample-to-sample variation of
the posterior probabilities.
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Using INLA for Small Area Estimation

Why?

Many reasons but to tell you the truth...

We submitted these results for publication

The referees asked to increase the number of samples from 20 to 100

More than six months later we are still running some of the models!!!

Other reasons

Statistical offices and policy makers need to provide results in a
reasonable time

Area level models are usually fast, but Unit level models usually take
longer, especially if the sample size is large

Random effects models take even longer

Exploiting the full posterior is usually very expensive with MCMC (for
example, for spatial prediction and ranking)
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General problems in Small Area Estimation

Provide Small Area estimates from the marginals

Produce ranking of the areas

Deal with designs that include (many) areas with no survey data
(other data may be available)

Triple-goal estimation: SA estimates, histograms and ranking

Benchmarking and raking: producing SA estimates that are consistent
when aggregated over higher administrative levels

Useful for poverty mapping, i.e., estimate the proportion or number of
households below the poverty line.
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Exploiting the marginal distributions

Motivation

INLA provides an approximation to the marginal distribution of
several parameters and quantities

Where is the limit when we make inference with the marginals only?

First step: Operations with the marginals

Fit spline to the marginal: inla.spline, fitmarginalsp

Distribution function: dmarginal

Sample from the marginal: rmarginal

Compute probabilities: pmarginal

Compute quantiles: qmarginal
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Marginal distribution

xy<-res$marginals.linear.predictor[[1]]
marg1<-fitmarginalsp(xy)

curve(marg1, from=min(xy[,1]), to=max(xy[,1]) )
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Computing probabilities

Compute probability of average income being higher than 1350

a<-1350
inlaprob<-lapply(res$marginals.linear.predictor, function(X){

marg<-fitmarginalsp(X)
1-pmarginal(a, marg, range=range(X[,1]))

})
inlaprob<-unlist(inlaprob)
inlaprob[1:10]

index.1 index.2 index.3 index.4 index.5 index.6
7.429086e-03 9.540118e-06 8.508139e-05 3.263719e-05 1.149532e-03 5.077763e-05

index.7 index.8 index.9 index.10
2.992667e-02 4.010670e-02 3.621850e-03 8.379177e-03
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Computing quantiles

inlaq<-lapply(res$marginals.linear.predictor, function(X){
marg<-fitmarginalsp(X)
a<-qmarginal(.025, marg, range=range(X[,1]))
b<-qmarginal(.975, marg, range=range(X[,1]))
c(a,b)

})

#Summary statistics from INLA
283 1323.658 2.427987 1318.889 1328.419 0.000000e+00
284 1314.117 2.546993 1309.115 1319.112 7.395571e-32
#R code
> inlaq[283:284]
$index.283
[1] 1318.899 1328.416
$index.284
[1] 1309.125 1319.109
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Sampling from the marginals

samp1<-rmarginal(1000, marg1, range=range(xy[,1]) )

hist(samp1, freq=FALSE)
curve(marg1, add=TRUE)

Histogram of samp1
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Ranking of areas

What can be done with INLA (so far)?

Use SA estimates µ̂i to establish a ranking of the areas

Compute posterior probablities: P[µi > baseline]

What cannot be done with INLA?

Compute probability of being the most deprived area

Compute probability of being among the q% more deprived areas

Compute posterior distribution of the area ranks

Can we make use of the marginals to simulate from the full posterior?

Ranks based on repeated samling from π(µ|y) = Πiπ(µi |y) will not
work
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Areas with no data

Why do they appear?

Sampling seldom covers all areas

Two-stage sampling

Observed data only cover a few areas

Estimation in off-sample areas

Small Area estimates are obtained by
means of the fitted model and the
area level covariates

Spatially structured random effects
can be used to borrow information
from neighbouring areas

Áreas en el muestreo

OFF SAMPLE
IN SAMPLE
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INLA and missing data

INLA can handle missing observations in the response

This is fine with area level models because:

What we usually lack is the area level direct estimator
We have covariates that can be used in the preduction
Can INLA borrow information from neighbouring areas when spatially
structured random effects are used?

Unit level models

More complex issues: non-response, etc.

Sometimes we have detailed covariates on the households, so we can
just predict the income using the marginals of the model parameters

Usually we have indivual data from a survey and aggregate covariates
and we need to combine both data sources
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Triple-goal estimation

Motivation

When producing Small Area estimates we may want to obtain good
estimates, in the following sense:

They are no over-shrunk (i.e., too much towards the average value of
the SA estimates)

Good histogram, i.e., the distribution function of the estimates is
similar to that of the ensemble of µi ’s

Good ranks (useful to detect areas with extremes µi )

See Rao (2003, pages 211-214) and Shen and Louis (1998) for details
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Constrained estimators

Setting

We want a new set of estimates {ti} by minimising the posterior expected
squared loss E [

∑
i (µi − ti )

2|y ] subject to

Match mean: t· =
1

K

∑
i

ti = µ̂· =
1

K

∑
i

µ̂i

Match variance:
1

K − 1

∑
i

(ti − t·)
2 = E [

1

K − 1

∑
i

(µi − µ·)2|y ]

t̂i = µ̂· + a(µ̂, λ)(µ̂i − µ̂·)

a(µ̂, λ) =

[
1 +

(1/K )
∑

i V (µi |y , λ)

{(1/(K − 1)}
∑

i (µ̂i − µ̂·)2

]1/2
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Histogram

Motivation

The empirical distribution function on t̂i ’s is

F̃m(t) = m−1
∑

i

I (t̂i ≤ t)

but this is a poor estimator of Fm(t) = m−1
∑

i I (µi ≤ t)
An optimal estimator A(t) is obtained by minimising the posterior
expected integrated squared error loss E [

∫
{A(t)− F (m)}2dt|y ].

If A(t) is constrained to be discrete, the optimal estimator F̂m(t) is
discrete with mass 1/K at

Ûl = F
−1
m ((2l − 1)/(2m)) where F (t) =

1

m

∑
i

P(θi ≤ t|y)
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Ranks

Motivation

How good are the ranks based on t̂i compared to those based on µi?

t̂i ranks are identical to those based on µ̂i

The true rank of area i is R(i) =
∑

l I (µi ≥ ml)

An optimal estimator Q(i) can be obtained by minisming the expected
posterior squared error loss E [

∑
i (Q(i)− R(i))2|y ]

Qopt(i) = R̃(i) = E [R(i)|y ] =
∑

l

P(µi ≥ µl |y)

In general, R̃(i) are not integers, so we rank them to obtain R̂(i).

Shen and Louis’ triple-goal estimators

µ̂TG
i = ÛR̂(i)
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Summary and Discussion

Small Area Estimation

The marginals are usually most of what we need in SAE

INLA provides a suitable framework to obtain good estimates in a
short time

Wide range of models can be used: area level, unit level, spatial,
spatio-temporal, etc.

Marginals could be further exploited to provide some methods for
ranking

However, important problems like estimate the posterior ranks and
provide triple goal cannot be tackled (?)

Is there any way of approximating P(µi ≥ µl |y) to produce triple-goal
estimates? For example, with P(µi ≥ µ̂l |y)
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