Approximate Bayesian Inference for Small Area Estimation

V. Gómez-Rubio

Dep. of Mathematics, U. of Castilla-La Mancha, Spain
Dep. of Epidemiology and Public Health, Imperial College London
Trondheim, 14 May 2009

Joint work with Nicky Best, Sylvia Richardson, Philip Li and Philip Clarke (ONS)

Outline

- Small Area Estimation
- Example: Average Income per Household
- Direct Estimation
- Survey Design
- Model-based estimation
- Model selection
- Classification, ranking and policy making
- Models with missing observations
- How can INLA be used for SAE?
- Discussion

Small Area Estimation

Aims

Provide estimates of the target variables at different administative levels.

Data

- Official statistics: Census, Family Resources Survy, Cancer Registers, etc.
- Aggretate Data (at different levels) can be obtained from National Statistics Bureaus
- Ad hoc surveys

Statistical Models

- Direct Estimators
- Model-assisted estimators
- Model-based estimators

Example

Average Income per Household (AIH) in Sweden
Average income per capita accounting for the number of adults and children in the household

LOUISE Population Register in Sweden
Detailed register of every household in Sweden:

- Income
- Number of persons in the household
- Head of household: gender, age, education level, employment status

How can AIH be estimated?

- Survey data to measure AIH and other covariates of interest
- Use additional information to estimate the AIH: aggregate data

Direct Estimation

Survey

- Significant sample of the population of interest
- Simple random sampling without replacement (but there are others...)

Direct Estimator

Sample from area $i:\left\{\left(y_{i j}, x_{i j}\right): j=1, \ldots, n_{i}\right\}$
Survey weights: $w_{i j}=N_{i} / n_{i}$

$$
\hat{Y}_{D, i}=\frac{\sum_{j} w_{i j} y_{i j}}{\sum_{j} w_{i j}}=\frac{\sum_{j} y_{i j}}{n_{i}}=\bar{y}_{i} \quad \operatorname{var}\left[\hat{\bar{Y}}_{D, i}\right]=\left(1-n_{i} / N_{i}\right) S_{i}^{2}
$$

Problems of Direct Estimation

- Too many areas to estimate
- Sampling from all areas is too expensive
- Ignores complexity of the data (spatial effects, etc.)

Model-based estimators

Motivation

- Direct Estimator cannot be used in areas with no data
- Model-based estimators are based on a model that can be used to predict the target variables in the areas with no data

Main effects

- Covarites (individual and area levels)
- Random effects
- Spatial random effects
- Temporal random effects

Combining different sources

- Sample
- Aggregate data (from official sources)

Bayesian Hierarchical Models

Introduction

- BHM are multilevel models
- All unknown quantities and parameters of interest θ of the model are considered as random variables
- Inference is based on the posterior distribution of θ given the observed data
- Complex models can be fitted using simulation techniques (Markov Chain Monte Carlo) or approximate methods (INLA!) to obtain an approximation to the posterior distribution of θ

Some benefits of Bayesian Inference

- Probability estatements about the parameters of the model can be made: $P\left(\theta_{L}<\mathrm{IMH}<\theta_{U}\right)$.
- Results can be summarised as posterior probabilities: Probability of having an income higher than 500EUR/week.

Area level data

Fay-Herriott Estimator

$$
\begin{aligned}
\hat{\bar{Y}}_{D, i} & =\mu_{i}+e_{i} \\
e_{i} & \sim N\left(0, \hat{\sigma}_{e_{i}}^{2}\right) \\
\mu_{i} & =\alpha+\beta \bar{X}_{i}+u_{i}+v_{i} \\
u_{i} & \sim N\left(0, \sigma_{u}^{2}\right) \\
v_{i} \mid v_{-i} & \sim N\left(\sum_{j \in \delta_{i}} \frac{v_{i}}{\left|\delta_{i}\right|}, \frac{\sigma_{v}^{2}}{\left|\delta_{i}\right|}\right) \\
f(\alpha, \beta) & \propto 1 \\
\sigma_{u}^{2}, \sigma_{v}^{2} & \sim G a^{-1}(0.001,0.001)
\end{aligned}
$$

Small Area Estimation

Graphical Model

$$
{\hat{Y^{Y}}}=\hat{\mu}_{i}
$$

Unit level models

Model

$$
\begin{gathered}
y_{i j}=\mu_{i j}+e_{i j} \\
e_{i j} \sim N\left(0, \sigma_{e}^{2}\right) \\
\sigma_{e}^{2} \sim G a^{-1}(0.001,0.001) \\
\mu_{i j}=\alpha+\beta x_{i j}+u_{i}+v_{i}
\end{gathered}
$$

Small Area Estimation

$$
\hat{\bar{Y}}_{u, i}=\hat{\alpha}+\hat{\beta} \bar{X}_{i}+\hat{u}_{i}+\hat{v}_{i}
$$

Modelo Gráfico

Unit level models

Model

$$
\begin{gathered}
y_{i j}=\mu_{i j}+e_{i j} \\
e_{i j} \sim N\left(0, \sigma_{i}^{2}\right) \\
\sigma_{i}^{2} \sim G a^{-1}(0.001,0.001) \\
\mu_{i j}=\alpha+\beta x_{i j}+u_{i}+v_{i}
\end{gathered}
$$

Small Area Estimation

$$
\hat{\bar{Y}}_{u, i}=\hat{\alpha}+\hat{\beta} \bar{X}_{i}+\hat{u}_{i}+\hat{v}_{i}
$$

Modelo Gráfico

Unit level models

Model

$$
\begin{gathered}
y_{i j}=\mu_{i j}+e_{i j} \\
e_{i j} \sim N\left(0, \sigma_{i}^{2}\right) \\
\log \left(\sigma_{i}^{2}\right) \sim N\left(0, \sigma^{2}\right) \\
\mu_{i j}=\alpha+\beta x_{i j}+u_{i}+v_{i}
\end{gathered}
$$

Modelo Gráfico

Average Income per Household in Sweden

Data

- Different surveys from the LOUISE Register
- 284 municipalities in Sweden in 1992
- Sample size: 1% of total number of households
- Actual values are known (and they can be use to validate the models)
- Covariates:
- Number of people in household
- Head of household: gender, age, education level, employment

Models compared

- Different models have been compared: $u_{i}, v_{i}, u_{i}+v_{i}$
- Area and unit level models

Model comparisson

Average (Relative) Empirical Mean Square Error

$$
A E M S E=\sum_{k=1}^{20} \frac{1}{20 \cdot 284} \sum_{i=1}^{284}\left(\hat{\bar{Y}}_{i}^{(k)}-\bar{Y}_{i}\right)^{2} \quad \text { AREMSE }=\sum_{k=1}^{20} \frac{1}{20 \cdot 284} \sum_{i=1}^{284} \frac{\left(\hat{\bar{Y}}_{i}^{(k)}-\bar{Y}_{i}\right)^{2}}{\bar{Y}_{i}}
$$

Deviance Information Criterion (DIC)

$$
D I C=D(\hat{\theta})+2 p_{D}
$$

Aims

- Select the best model in terms of prediction of the values in the Small Areas
- AEMSE is more appropriate but in practice we can only compute the DIC

Small Area Estimates

Classification of areas for policy making

Why rank areas?

- To compare them
- Detect areas with special needs (i.e., high unemployment, low income, etc.)

How can we rank areas?

- Point estimates (i.e., posterior means)
- Ranks
- Posterior probabilities
- Poverty line (60% of national average income)

Classification with real data (Area level models)

Average Income

Ranking of areas

The probability of being above the poverty line is always 1 for all the municipalities in Sweden!!

Classification with real data (Area level models)

Prob. in poorest 10% of areas

Prob. in poorest 20\% of areas

Intervals are sampling intervals which show sample-to-sample variation of the posterior probabilities.

Using INLA for Small Area Estimation

Why?

- Many reasons but to tell you the truth...
- We submitted these results for publication
- The referees asked to increase the number of samples from 20 to 100
- More than six months later we are still running some of the models!!!

Other reasons

- Statistical offices and policy makers need to provide results in a reasonable time
- Area level models are usually fast, but Unit level models usually take longer, especially if the sample size is large
- Random effects models take even longer
- Exploiting the full posterior is usually very expensive with MCMC (for example, for spatial prediction and ranking)

General problems in Small Area Estimation

- Provide Small Area estimates from the marginals
- Produce ranking of the areas
- Deal with designs that include (many) areas with no survey data (other data may be available)
- Triple-goal estimation: SA estimates, histograms and ranking
- Benchmarking and raking: producing SA estimates that are consistent when aggregated over higher administrative levels
- Useful for poverty mapping, i.e., estimate the proportion or number of households below the poverty line.

Exploiting the marginal distributions

Motivation

- INLA provides an approximation to the marginal distribution of several parameters and quantities
- Where is the limit when we make inference with the marginals only?

First step: Operations with the marginals

- Fit spline to the marginal: inla.spline, fitmarginalsp
- Distribution function: dmarginal
- Sample from the marginal: rmarginal
- Compute probabilities: pmarginal
- Compute quantiles: qmarginal

Marginal distribution

```
xy<-res$marginals.linear.predictor [[1]]
marg1<-fitmarginalsp(xy)
curve(marg1, from=min(xy[,1]), to=max(xy[,1]) )
```


Computing probabilities

Compute probability of average income being higher than 1350

```
a<-1350
inlaprob<-lapply(res$marginals.linear.predictor, function(X){
    marg<-fitmarginalsp(X)
    1-pmarginal(a, marg, range=range(X[,1]))
})
inlaprob<-unlist(inlaprob)
inlaprob[1:10]
index. 1 index. 2 index. 3 index. 4 inde
7.429086e-03 9.540118e-06 8.508139e-05 3.263719e-05 1.149532e-
    index.7 index.8 index.9 index.10
2.992667e-02 4.010670e-02 3.621850e-03 8.379177e-03
```


Computing quantiles

```
inlaq<-lapply(res$marginals.linear.predictor, function(X){
    marg<-fitmarginalsp(X)
    a<-qmarginal(.025, marg, range=range(X[,1]))
    b<-qmarginal(.975, marg, range=range(X[,1]))
    c(a,b)
})
#Summary statistics from INLA
283 1323.658 2.427987 1318.889 1328.419 0.000000e+00
284 1314.117 2.546993 1309.115 1319.112 7.395571e-32
#R code
> inlaq[283:284]
$index. }28
[1] 1318.899 1328.416
$index. }28
[1] 1309.125 1319.109
```


Sampling from the marginals

```
samp1<-rmarginal(1000, marg1, range=range(xy[,1]) )
hist(samp1, freq=FALSE)
curve(marg1, add=TRUE)
```


Ranking of areas

What can be done with INLA (so far)?

- Use SA estimates $\hat{\mu}_{i}$ to establish a ranking of the areas
- Compute posterior probablities: $P\left[\mu_{i}>\right.$ baseline $]$

What cannot be done with INLA?

- Compute probability of being the most deprived area
- Compute probability of being among the $q \%$ more deprived areas
- Compute posterior distribution of the area ranks
- Can we make use of the marginals to simulate from the full posterior?
- Ranks based on repeated samling from $\pi(\mu \mid y)=\Pi_{i} \pi\left(\mu_{i} \mid y\right)$ will not work

Areas with no data

Why do they appear?

- Sampling seldom covers all areas
- Two-stage sampling
- Observed data only cover a few areas

Estimation in off-sample areas

- Small Area estimates are obtained by means of the fitted model and the area level covariates
- Spatially structured random effects can be used to borrow information from neighbouring areas

Áreas en el muestreo

INLA and missing data

- INLA can handle missing observations in the response
- This is fine with area level models because:
- What we usually lack is the area level direct estimator
- We have covariates that can be used in the preduction
- Can INLA borrow information from neighbouring areas when spatially structured random effects are used?

Unit level models

- More complex issues: non-response, etc.
- Sometimes we have detailed covariates on the households, so we can just predict the income using the marginals of the model parameters
- Usually we have indivual data from a survey and aggregate covariates and we need to combine both data sources

Triple-goal estimation

Motivation

When producing Small Area estimates we may want to obtain good estimates, in the following sense:

- They are no over-shrunk (i.e., too much towards the average value of the SA estimates)
- Good histogram, i.e., the distribution function of the estimates is similar to that of the ensemble of μ_{i} 's
- Good ranks (useful to detect areas with extremes μ_{i})

See Rao (2003, pages 211-214) and Shen and Louis (1998) for details

Constrained estimators

Setting

We want a new set of estimates $\left\{t_{i}\right\}$ by minimising the posterior expected squared loss $E\left[\sum_{i}\left(\mu_{i}-t_{i}\right)^{2} \mid y\right]$ subject to

$$
\text { Match mean: } \quad t .=\frac{1}{K} \sum_{i} t_{i}=\hat{\mu} .=\frac{1}{K} \sum_{i} \hat{\mu}_{i}
$$

Match variance: $\quad \frac{1}{K-1} \sum_{i}\left(t_{i}-t .\right)^{2}=E\left[\left.\frac{1}{K-1} \sum_{i}\left(\mu_{i}-\mu .\right)^{2} \right\rvert\, y\right]$

$$
\begin{gathered}
\hat{t}_{i}=\hat{\mu} .+a(\hat{\mu}, \lambda)\left(\hat{\mu}_{i}-\hat{\mu} .\right) \\
a(\hat{\mu}, \lambda)=\left[1+\frac{(1 / K) \sum_{i} V\left(\mu_{i} \mid y, \lambda\right)}{\left\{(1 /(K-1)\} \sum_{i}\left(\hat{\mu}_{i}-\hat{\mu} .\right)^{2}\right.}\right]^{1 / 2}
\end{gathered}
$$

Histogram

Motivation

The empirical distribution function on \hat{t}_{i} 's is

$$
\tilde{F}_{m}(t)=m^{-1} \sum_{i} I\left(\hat{t}_{i} \leq t\right)
$$

but this is a poor estimator of $F_{m}(t)=m^{-1} \sum_{i} I\left(\mu_{i} \leq t\right)$ An optimal estimator $A(t)$ is obtained by minimising the posterior expected integrated squared error loss $E\left[\int\{A(t)-F(m)\}^{2} d t \mid y\right]$.

If $A(t)$ is constrained to be discrete, the optimal estimator $\hat{F}_{m}(t)$ is discrete with mass $1 / K$ at

$$
\hat{U}_{I}=\bar{F}_{m}^{-1}((2 l-1) /(2 m)) \text { where } \bar{F}(t)=\frac{1}{m} \sum_{i} P\left(\theta_{i} \leq t \mid y\right)
$$

Ranks

Motivation

- How good are the ranks based on \hat{t}_{i} compared to those based on μ_{i} ?
- \hat{t}_{i} ranks are identical to those based on $\hat{\mu}_{i}$
- The true rank of area i is $R(i)=\sum_{l} I\left(\mu_{i} \geq m_{l}\right)$

An optimal estimator $Q(i)$ can be obtained by minisming the expected posterior squared error loss $E\left[\sum_{i}(Q(i)-R(i))^{2} \mid y\right]$

$$
Q_{o p t}(i)=\tilde{R}(i)=E[R(i) \mid y]=\sum_{l} P\left(\mu_{i} \geq \mu_{l} \mid y\right)
$$

In general, $\tilde{R}(i)$ are not integers, so we rank them to obtain $\hat{R}(i)$.
Shen and Louis' triple-goal estimators

$$
\hat{\mu}_{i}^{T G}=\hat{U}_{\hat{R}(i)}
$$

Summary and Discussion

Small Area Estimation

- The marginals are usually most of what we need in SAE
- INLA provides a suitable framework to obtain good estimates in a short time
- Wide range of models can be used: area level, unit level, spatial, spatio-temporal, etc.
- Marginals could be further exploited to provide some methods for ranking
- However, important problems like estimate the posterior ranks and provide triple goal cannot be tackled (?)
- Is there any way of approximating $P\left(\mu_{i} \geq \mu_{i} \mid y\right)$ to produce triple-goal estimates? For example, with $P\left(\mu_{i} \geq \hat{\mu}_{l} \mid y\right)$

