BayesX and INLA - Opponents or Partners?

Thomas Kneib
Institut für Mathematik
Carl von Ossietzky Universität Oldenburg

Monia Mahling

Institut für Statistik
Ludwig-Maximilians-Universität München

Outline

- Conditionally Gaussian hierarchical models.
- MCMC inference in conditionally Gaussian models.
- BayesX.
- Credit Scoring Data.
- Summary and Discussion.

Conditionally Gaussian Hierarchical Models

- Hierarchical models with conditionally Gaussian priors for regression coefficients define a large class of flexible regression models.
- We will consider regression models with predictors of the form

$$
\eta_{i}=\boldsymbol{x}_{i}^{\prime} \boldsymbol{\beta}+f_{1}\left(\boldsymbol{z}_{i 1}\right)+\ldots+f_{r}\left(\boldsymbol{z}_{i r}\right)
$$

where \boldsymbol{x} and $\boldsymbol{\beta}$ are potentially high-dimensional vectors of covariates and parameters, while the generic functions f_{1}, \ldots, f_{r} represent different types of nonlinear regression effects.

- Examples:
- Nonlinear, smooth effects of continuous covariates x where $f_{j}\left(\boldsymbol{z}_{j}\right)=f(x)$.
- Interaction surfaces of two continuous covariates or coordinates x_{1}, x_{2} where $f_{j}\left(\boldsymbol{z}_{j}\right)=f\left(x_{1}, x_{2}\right)$.
- Spatial effects based on discrete spatial, i.e. regional information $s \in\{1, \ldots, S\}$ where $f_{j}\left(\boldsymbol{z}_{j}\right)=f_{\text {spat }}(s)$.
- Varying coefficient models where $f_{j}\left(\boldsymbol{z}_{j}\right)=x_{1} f\left(x_{2}\right)$.
- Random effects where $f_{j}\left(\boldsymbol{z}_{j}\right)=x b_{c}$ with a cluster index c.
- Model the generic functions with basis function approaches:

$$
f_{j}\left(\boldsymbol{z}_{j}\right)=\sum_{k=1}^{K} \gamma_{j k} B_{j k}\left(\boldsymbol{z}_{j}\right)
$$

- Yields a vector-matrix representation of the predictor:

$$
\boldsymbol{\eta}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{Z}_{1} \boldsymbol{\gamma}_{1}+\ldots+\boldsymbol{Z}_{r} \boldsymbol{\gamma}_{r}
$$

- Conditionally Gaussian priors:

$$
\boldsymbol{\beta} \mid \boldsymbol{\vartheta}_{0} \sim \mathrm{~N}(\boldsymbol{b}, \boldsymbol{B}) \quad \text { and } \quad \boldsymbol{\gamma}_{j} \mid \boldsymbol{\vartheta}_{j} \sim \mathrm{~N}\left(\boldsymbol{g}_{j}, \boldsymbol{G}_{j}\right)
$$

where $\boldsymbol{b}=\boldsymbol{b}\left(\boldsymbol{\vartheta}_{0}\right), \boldsymbol{B}=\boldsymbol{B}\left(\boldsymbol{\vartheta}_{0}\right), \boldsymbol{g}_{j}=\boldsymbol{g}_{j}\left(\boldsymbol{\vartheta}_{j}\right), \boldsymbol{G}_{j}=\boldsymbol{G}_{j}\left(\boldsymbol{\vartheta}_{j}\right)$.

- Most prominent examples of conditionally Gaussian priors in the context of estimating smooth effects are of the (intrinsic) Gaussian Markov random field type where

$$
p\left(\boldsymbol{\gamma}_{j} \mid \delta_{j}^{2}\right) \propto\left(\frac{1}{\delta_{j}^{2}}\right)^{\frac{\operatorname{rank}\left(\boldsymbol{K}_{j}\right)}{2}} \exp \left(-\frac{1}{2 \delta_{j}^{2}} \boldsymbol{\gamma}_{j}^{\prime} \boldsymbol{K}_{j} \boldsymbol{\gamma}_{j}\right)
$$

i.e. $\quad \boldsymbol{g}_{j}=\mathbf{0}$ and $\boldsymbol{G}_{j}^{-1}=\delta_{j}^{2} \boldsymbol{K}_{j}$.

- Example 1: Bayesian P-Splines

$$
f(x)=\sum_{k=1}^{K} \gamma_{k} B_{k}(x)
$$

where $B_{k}(x)$ are B-spline basis functions of degree l and γ follows a random walk prior such as

$$
\gamma_{k}=\gamma_{k-1}+u_{k}, \quad u_{k} \mid \delta^{2} \sim \mathrm{~N}\left(0, \delta^{2}\right)
$$

or

$$
\gamma_{k}=2 \gamma_{k-1}-\gamma_{k-2}+u_{k}, \quad u_{k} \mid \delta^{2} \sim \mathrm{~N}\left(0, \delta^{2}\right)
$$

- Usually, an inverse gamma prior is assigned to the smoothing variance:

$$
\delta^{2} \sim \operatorname{IG}(a, b)
$$

- Bayesian P-splines include simple random walks as special cases (degree zero, knots at each distinct observed covariate value).
- Bayesian P-splines can be made more adaptive by replacing the homoscedastic random walk with a heteroscedastic version:

$$
\gamma_{k}=\gamma_{k-1}+u_{k}, \quad u_{k} \mid \delta_{k}^{2} \sim \mathrm{~N}\left(0, \delta_{k}^{2}\right)
$$

- Joint distribution of the regression coefficients becomes

$$
p(\gamma \mid \boldsymbol{\delta}) \propto \exp \left(-\frac{1}{2} \gamma^{\prime} \boldsymbol{D} \boldsymbol{\Delta} \boldsymbol{D} \boldsymbol{\gamma}\right)
$$

where $\boldsymbol{\Delta}=\operatorname{diag}\left(\delta_{2}^{2}, \ldots, \delta_{k}^{2}\right)$.

- Different types of hyperpriors for $\boldsymbol{\Delta}$:
- l.i.d. hyperpriors, e.g. δ_{k}^{2} i.i.d. $\operatorname{IG}(a, b$,$) .$
- Functional hyperpriors, e.g. $\delta_{k}^{2}=g(k)$ with a smooth function $g(k)$ modeled again as a P-spline.
- Conditional on Δ the prior for γ remains of the same type and an MCMC updates would not require changes.
- Example 2: Markov random fields for regional spatial effects:

$$
\gamma_{s} \mid \gamma_{r}, r \in N(s) \sim N\left(\frac{1}{|N(s)|} \sum_{r \in N(s)} \gamma_{r}, \frac{\delta^{2}}{|N(s)|}\right)
$$

- Based on the notion of spatial adjacency:

- Again, a hyperprior can be assigned to the smoothing variance but the joint distribution of the spatial effects remains conditionally Gaussian.
- For regularised estimation of high-dimensional regression effects $\boldsymbol{\beta}$ we are considering conditionally independent priors, i.e.

$$
\boldsymbol{\beta} \mid \boldsymbol{\vartheta}_{0} \sim \mathrm{~N}(\boldsymbol{b}, \boldsymbol{B})
$$

with $\boldsymbol{b}=\mathbf{0}$ and $\boldsymbol{B}=\operatorname{diag}\left(\tau_{1}^{2}, \ldots, \tau_{q}^{2}\right)$.

- While allowing for different variances, hyperpriors for τ_{j}^{2} will typically be identical.
- Example 1: Bayesian ridge regression

$$
\beta_{j} \mid \tau_{j}^{2} \sim \mathrm{~N}\left(0, \tau_{j}^{2}\right), \quad \tau_{j}^{2} \sim \operatorname{IG}(a, b)
$$

- Note that the log-prior $\log p\left(\beta_{j} \mid \tau_{j}^{2}\right)$ equals the ridge penalty β_{j}^{2} up to an additive constant.
- Induces a marginal t-distribution with $2 a$ degrees of freedom and scale parameter $\sqrt{a / b}$.
- Informative priors provide the Bayesian analogon to frequentist regularisation.
- Example: Multiple linear model

$$
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\varepsilon, \quad \varepsilon \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \boldsymbol{I}\right)
$$

- For high-dimensional covariate vectors, least squares estimation becomes increasingly unstable.
\Rightarrow Add a penalty term to the least squares criterion, for example a ridge penalty

$$
L S_{\mathrm{pen}}(\boldsymbol{\beta})=(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})^{\prime}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})+\lambda \sum_{j=1}^{p} \beta_{j}^{2} \rightarrow \min _{\boldsymbol{\beta}}
$$

- Closed form solution: Penalised least squares estimate

$$
\hat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{\prime} \boldsymbol{X}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{y}
$$

- Bayesian version of the linear model:

$$
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \quad \beta \sim \mathrm{N}\left(\mathbf{0}, \tau^{2} \boldsymbol{I}\right)
$$

- Yields the posterior

$$
p(\boldsymbol{\beta} \mid \boldsymbol{y}) \propto \exp \left(-\frac{1}{2 \sigma^{2}}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})^{\prime}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})\right) \exp \left(-\frac{1}{2 \tau^{2}} \boldsymbol{\beta}^{\prime} \boldsymbol{\beta}\right)
$$

- Maximising the posterior is equivalent to minimising the penalised least squares criterion

$$
(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})^{\prime}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})+\lambda \boldsymbol{\beta}^{\prime} \boldsymbol{\beta}
$$

where the smoothing parameter is given by the signal-to-noise ratio

$$
\lambda=\frac{\sigma^{2}}{\tau^{2}}
$$

- The posterior mode coincides with the penalised least squares estimate (for given smoothing parameter).
- More generally:
- Penalised likelihood

$$
l_{\mathrm{pen}}(\boldsymbol{\beta})=l(\boldsymbol{\beta})-\operatorname{pen}(\boldsymbol{\beta}) .
$$

- Posterior:

$$
p(\boldsymbol{\beta} \mid \boldsymbol{y})=p(\boldsymbol{y} \mid \boldsymbol{\beta}) p(\boldsymbol{\beta}) .
$$

- In terms of the prior distribution

$$
\text { Penalty } \equiv \text { log-prior. }
$$

- Example 2: Bayesian lasso prior:

$$
\beta_{j} \mid \tau_{j}^{2}, \lambda \sim \mathrm{~N}\left(0, \tau_{j}^{2}\right), \quad \tau_{j}^{2} \sim \operatorname{Exp}\left(\frac{\lambda^{2}}{2}\right)
$$

- Marginally, β_{j} follows a Laplace prior

$$
p\left(\beta_{j}\right) \propto \exp \left(-\lambda\left|\beta_{j}\right|\right)
$$

- Hierarchical (scale mixture of normals) representation:

VS.

- A further hyperprior can be assigned to the smoothing parameter such as a gamma distribution $\lambda^{2} \sim \mathrm{Ga}(a, b)$.
- Marginal Bayesian ridge and marginal Bayesian lasso:

- Example 3: General L_{p} priors

$$
p\left(\beta_{j} \mid \lambda\right) \propto \exp \left(-\lambda\left|\beta_{j}\right|^{p}\right)
$$

with $0<p<2$ (power exponential prior).

- Note that

$$
\exp \left(-\left|\beta_{j}\right|^{p}\right) \propto \int_{0}^{\infty} \exp \left(-\frac{\beta_{j}^{2}}{2 \tau_{j}^{2}}\right) \frac{1}{\tau_{j}^{6}} s_{p / 2}\left(\frac{1}{2 \tau_{j}^{2}}\right) d \tau_{j}^{2}
$$

where $s_{p}(\cdot)$ is the density of the positive stable distribution with index p.

MCMC Inference in Conditionally Gaussian models

- The general structure of conditionally Gaussian models enables the construction of general MCMC samplers.
- The conditionally Gaussian prior makes inference tractable in situations which are difficult with direct estimation (such as the lasso).
- Suitable hyperpriors enable inference and uncertainty assessment for all model parameters.
- MCMC fully exploits the hierarchical nature of the models through the consideration of full conditionals.
- For (latent) Gaussian responses, we obtain Gibbs sampling steps for the regression coefficients.
- For example, $\boldsymbol{\beta} \mid \cdot \sim \mathrm{N}\left(\boldsymbol{\mu}_{\boldsymbol{\beta}}, \boldsymbol{\Sigma}_{\boldsymbol{\beta}}\right)$ with

$$
\boldsymbol{\mu}_{\boldsymbol{\beta}}=\boldsymbol{\Sigma}_{\boldsymbol{\beta}} \frac{1}{\sigma^{2}} \boldsymbol{X}^{\prime}\left(\boldsymbol{y}-\boldsymbol{\eta}_{-\boldsymbol{\beta}}\right)+\boldsymbol{B}^{-1} \boldsymbol{b}, \quad \boldsymbol{\Sigma}_{\boldsymbol{\beta}}=\left(\frac{1}{\sigma^{2}} \boldsymbol{X}^{\prime} \boldsymbol{X}+\boldsymbol{B}^{-1}\right)^{-1}
$$

- For non-Gaussian responses, construct adaptive proposal densities based on iteratively weighted least squares approximations to the full conditionals.
- For example, $\boldsymbol{\beta}$ is proposed from a multivariate Gaussian distribution with expectation and covariance matrix

$$
\boldsymbol{\mu}_{\boldsymbol{\beta}}=\boldsymbol{\Sigma}_{\boldsymbol{\beta}} \boldsymbol{X}^{\prime} \boldsymbol{W}\left(\tilde{\boldsymbol{y}}-\boldsymbol{\eta}_{-\boldsymbol{\beta}}\right)+\boldsymbol{B}^{-1} \boldsymbol{b}, \quad \boldsymbol{\Sigma}_{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{\prime} \boldsymbol{W} \boldsymbol{X}+\boldsymbol{B}^{-1}\right)^{-1}
$$

where \boldsymbol{W} and $\tilde{\boldsymbol{y}}$ are the usual generalised linear model weights and working responses.

- Full conditionals for hyperparameters are independent of the observation model.
- Bayesian ridge:

$$
\tau_{j}^{2} \left\lvert\, \cdot \sim \mathrm{IG}\left(a+\frac{q}{2}, b+\frac{1}{2} \beta_{j}^{2}\right)\right.
$$

- Bayesian lasso:

$$
\frac{1}{\tau_{j}^{2}}\left|\cdot \sim \operatorname{InvGauss}\left(\frac{|\lambda|}{\left|\beta_{j}\right|}, \lambda^{2}\right), \quad \lambda^{2}\right| \cdot \sim \mathrm{Ga}\left(a+q, b+\frac{1}{2} \sum_{j=1}^{q} \tau_{j}^{2}\right)
$$

- Smoothing variances:

$$
\delta_{j}^{2} \left\lvert\, \cdot \sim \operatorname{IG}\left(a_{j}+\frac{\operatorname{rank}\left(\boldsymbol{K}_{j}\right)}{2}, b_{j}+\frac{1}{2} \gamma_{j} \boldsymbol{K}_{j} \boldsymbol{\gamma}_{j}\right) .\right.
$$

BayesX

- Markov chain Monte Carlo approaches for conditionally Gaussian regression models are implemented in BayesX.

- Available from
http://www.stat.uni-muenchen.de/~bayesx
- Numerical efficient implementation employing sparse matrix operations.
- Also contains mixed model based inference for the same class of models (comparable to INLAs Gaussian approximation).

Credit Scoring Data

- Data on the defaults of 1,000 consumer credits from a German bank.
- Response variable is a binary indicator y_{i} that specifies whether the credit has been paid back ($y_{i}=1$, credit-worthy) or not ($y_{i}=0$, not credit-worthy).
- Covariates include age of the client, credit amount and duration of the credit.
- Consider binary logit models with nonparametric effects of these three covariates.
- Compare different approximations available in INLA with MCMC-based estimation in BayesX.
- Effects of amount obtained with the complete data:

- Effects of age obtained with one outlier excluded:

- Effects of duration obtained with one outlier excluded:

- Effects of amount obtained with one outlier excluded:

- Effects of amount based on rounded data with one outlier excluded:

- Effects of amount after standardising covariates with one outlier excluded:

- Effects of age after standardising covariates with one outlier excluded:

- Effects of duration after standardising covariates with one outlier excluded:

- Computing times for some selected models (in seconds, very rough estimates):
- INLA with Gaussian approximation: 200s.
- INLA with simplified Laplace: 240s.
- INLA with Laplace (amount rounded): 2540s.
- BayesX with RW prior and 12,000 iterations: 60s.
- BayesX with RW prior and 103,000 iterations: 510s.
- Bayes X with P-spline prior and 12,000 iterations: 90 s.
- BayesX with P-spline prior and 103,000 iterations: 790s.
- Effects of age obtained with one outlier excluded: Different random walk orders and hyperparameters for Gaussian Approximation

- Effects of amount obtained with one outlier excluded: Different random walk orders and hyperparameters for Gaussian Approximation

- Effects of age obtained with one outlier excluded: Different random walk orders and hyperparameters for Simplified Laplace

- Effects of amount obtained with one outlier excluded: Different random walk orders and hyperparameters for Simplified Laplace

- Effects of age obtained with one outlier excluded: Different random walk orders and hyperparameters for Bayes X

- Effects of amount obtained with one outlier excluded: Different random walk orders and hyperparameters for BayesX

Summary and Discussion

- Conditionally Gaussian models provide a rich class of regression models.
- BayesX and INLA provide comparable estimates in well-behaved examples but results may differ substantially in difficult situations.
- In particular, covariates with outliers seem to yield highly variable estimates with INLA.
- Differences in computing times not always as expected (full Laplace approximation may be slow).
- In particular, covariates with a large number of different covariate values yield long computing times.
- Suggestions for improving INLA:
- Provide characterisations for "difficult" data sets?
- Implement Bayesian P-splines instead of random walk priors (faster and more stable)?
- Revise default prior choice for hyperparameters?
- Further questions:
- Flexibility in terms of hyperprior choices (further hierarchical levels)?
- Partial impropriety of the conditionally Gaussian priors and model choice quantities.

