Markov chain Monte Carlo updating schemes for hidden Gaussian Markov random field models

Ingelin Steinsland

ingelins@math.ntnu.no

Norwegian University of Science and Technology
Background

“The work of this thesis is driven by the need of one-block updating schemes in Markov chain Monte Carlo simulations of latent spatial models, and the opportunity of fast sampling and evaluations of Gaussian Markov random fields. “
Background

“The work of this thesis is driven by the need of one-block updating schemes in Markov chain Monte Carlo simulations of latent spatial models, and the opportunity of fast sampling and evaluations of Gaussian Markov random fields. “

- Latent spatial Gaussian Markov random field (GMRF) models
- Disease mapping in Germany
- Functional magnetic resonance imaging (fMRI) of the brain
- One-block MCMC updating schemes
Gaussian Markov random field

A GMRF $x = (x_1, x_2, \ldots, x_n)$ is:

- Multivariate Gaussian distributed
- with a Markov property;
 - neighbourhood structure
 - x_i and x_j conditionally dependent only if they are neighbours
Gaussian Markov random field

A GMRF $x = (x_1, x_2, \ldots, x_n)$ is:

- Multivariate Gaussian distributed
- with a Markov property;
 - neighbourhood structure
 - x_i and x_j conditionally dependent only if they are neighbours
- Gives sparse precision matrix and computational benefits.
Disease mapping in Germany

- Data: All cases of oral cavity cancer mortality in each of Germany’s 544 regions, $y_i, i = 1, \ldots, 544$
Disease mapping in Germany

- Data: All cases of oral cavity cancer mortality in each of Germany’s 544 regions, $y_i, i = 1, \ldots, 544$
- Of interest: The log-relative risk, x_i.
Disease mapping in Germany

- **Data:** All cases of oral cavity cancer mortality in each of Germany’s 544 regions, \(y_i, i = 1, \ldots, 544 \)
- **Of interest:** The log-relative risk, \(x_i \).
- **Model:**
 - Mutually independent likelihood:
 \[
 y_i | x_i \sim Po(\exp(x_i)) \quad \forall i
 \]
 - GMRF prior:
 \[
 \pi(x|\kappa) \propto \kappa^{(n-1)/2} \exp\left(-\frac{1}{2}\kappa \sum_{i \sim j} (x_i - x_j)^2\right)
 \]
Disease mapping in Germany

- **Data:** All cases of oral cavity cancer mortality in each of Germany’s 544 regions, \(y_i, i = 1, \ldots, 544 \)

- **Of interest:** The log-relative risk, \(x_i \).

- **Model:**
 - Mutually independent likelihood:
 \[
 y_i | x_i \sim Po(\exp(x_i)) \quad \forall i
 \]
 - GMRF prior:
 \[
 \pi(x | \kappa) \propto \kappa^{(n-1)/2} \exp\left(-\frac{1}{2} \kappa \sum_{i \sim j} (x_i - x_j)^2\right)
 \]

- **Posterior:**
 \[
 \pi(x, \kappa | y) \propto \pi(y | x) \pi(x | \kappa) \pi(\kappa)
 \]
fMRI

functional Magnetic Resonance Imaging -
Data from a visual stimulation experiment.

- Stimulus: 8 Hz flickering checkerboard.
- 4 periods (a 30 sec.) rest, 3 periods stimulus.

- Cross section of the brain observed every 3rd sec.
- Observe BOLD effects.
fMRI

functional Magnetic Resonance Imaging -
Data from a visual stimulation experiment.
fMRI

functional Magnetic Resonance Imaging - Data from a visual stimulation experiment.
Model fMRI

\[y_{it} = a_i + z_t b_{it} + \epsilon_{it} \]

- \(y_{it} \): Data in pixel \(i \) at time step \(t \)
 \(i = 1, \ldots, 75 \times 67, t = 1, \ldots 70 \)
Model fMRI

\[y_{it} = a_i + z_t b_{it} + \epsilon_{it} \]

- \(y_{it} \): Data in pixel \(i \) at time step \(t \)
 \(i = 1, \ldots, 75 \times 67, t = 1, \ldots, 70 \)
- \(a_i \): Baseline image, pixel \(i \), \(i = 1, \ldots, 75 \times 67 \)
Model fMRI

\[y_{it} = a_i + z_t b_{it} + \epsilon_{it} \]

- \(y_{it} \): Data in pixel \(i \) at time step \(t \)
 \(i = 1, \ldots, 75 \times 67, t = 1, \ldots, 70 \)
- \(a_i \): Baseline image, pixel \(i \), \(i = 1, \ldots, 75 \times 67 \)
- \(z_t \): Transformed stimulus at time step \(t \),
 \(t = 1, \ldots, 70 \)
- \(b_{it} \): Activation effect of pixel \(i \) at time step \(t \),
 \(i = 1, \ldots, 75 \times 67, t = 1, \ldots, 70 \)
Model fMRI

\[y_{it} = a_i + z_t b_{it} + \epsilon_{it} \]

- \(y_{it} \): Data in pixel \(i \) at time step \(t \)
 \(i = 1, \ldots, 75 \times 67, \; t = 1, \ldots, 70 \)

- \(a_i \): Baseline image, pixel \(i \), \(i = 1, \ldots, 75 \times 67 \)

- \(z_t \): Transformed stimulus at time step \(t \),
 \(t = 1, \ldots, 70 \)

- \(b_{it} \): Activation effect of pixel \(i \) at time step \(t \),
 \(i = 1, \ldots, 75 \times 67, \; t = 1, \ldots, 70 \)

- \(\epsilon_{it} \): Measurement error of pixel \(i \) at time step \(t \)
 \(i = 1, \ldots, 75 \times 67, \; t = 1, \ldots, 70 \)
Model specification

\[y_{it} = a_i + z_t b_{it} + \epsilon_{it} \]

\[\epsilon \sim N(0, \tau_{Data} I) \rightarrow y_{it} | a, b \sim N(a_i + z_t b_{it}, \tau_{Data}) \]
Model specification

\[y_{it} = a_i + z_t b_{it} + \epsilon_{it} \]

- \(y_{it} | a, b \sim N(a_i + z_t b_{it}, \tau_{Data}) \)
- \(z \); use estimate from similar studies
Model specification

\[y_{it} = a_i + z_t b_{it} + \epsilon_{it} \]

- \[y_{it} | a, b \sim N(a_i + z_t b_{it}, \tau_{Data}) \]
- GMRF for \(a \): \[\pi(a) \propto \exp\left(-\frac{1}{2} \tau A \sum_{i \sim j} (a_i - a_j)^2\right) \]
Model specification

\[y_{it} = a_i + z_t b_{it} + \epsilon_{it} \]

- \(y_{it} | a, b \sim N(a_i + z_t b_{it}, \tau_{Data}) \)
- GMRF for \(a \): \(\pi(a) \propto \exp\left(-\frac{1}{2} \tau_A \sum_{i \sim j} (a_i - a_j)^2\right) \)
- Time-space GMRF for \(b \):

\[\pi(b) \propto \exp\left(-\frac{1}{2} \tau_B \sum_{t=1}^{T} \sum_{i \sim j} (b_{it} - b_{jt})^2\right) \]

\[\exp\left(-\frac{1}{2} \tau_T \sum_{i=1}^{N} \sum_{t \sim r} (b_{it} - b_{ir})^2\right) \]
Model specification

- \(y_{it} | a, b \sim N(a_i + z_t b_{it}, \tau_{Data}) \)
- GMRF for \(a \):
 \[\pi(a) \propto \exp(-\frac{1}{2}\tau_A \sum_{i \sim j} (a_i - a_j)^2) \]
- Time-space GMRF for \(b \):
 \[\pi(b) \propto \exp(-\frac{1}{2}\tau_B \sum_{t=1}^{T} \sum_{i \sim j} (b_{it} - b_{jt})^2) \]
 \[\exp(-\frac{1}{2}\tau_T \sum_{i=1}^{N} \sum_{t \sim r} (b_{it} - b_{ir})^2) \]
- Posterior, \(x = (a, b) \) and \(\theta = (\tau_A, \tau_B, \tau_T, \tau_{Data}) \):
 \[\pi(x, \theta | y) \propto \pi(y | x) \pi(x | \theta) \pi(\theta) \]
Latent GMRF models used

- Mutually independent likelihoods
- $\pi(x|\theta) \sim GMRF$
Metropolis-Hastings with one-block updating scheme

One-block updating scheme: x and θ are updated simultaneously.
Metropolis-Hastings with one-block updating scheme

- Given x^0 and θ^0
- for $j = 0 : (n\text{iter} - 1)$
 - Sample $\theta^{new} \sim q(\theta|\theta^j)$
Metropolis-Hastings with one-block updating scheme

- Given x^0 and θ^0
- for $j = 0 : (n_{iter} - 1)$
 - Sample $\theta^{new} \sim q(\theta | \theta^j)$
 - Sample $x^{new} \sim q(x | x^j, \theta^{new})$

Challenge:
To make a good and cheap proposal for x.

Markov chain Monte Carlo updating schemes for hidden Gaussian Markov random field models – p.9/45
Metropolis-Hastings with one-block updating scheme

- Given x^0 and θ^0
- for $j = 0 : (niter - 1)$
 - Sample $\theta^{new} \sim q(\theta|\theta^j)$
 - Sample $x^{new} \sim q(x|x^j, \theta^{new})$
 - Calculate α and accept / reject
 - if(accept)
 - $\theta^{j+1} = \theta^{new}$ and $x^{j+1} = x^{new}$
 - else
 - $\theta^{j+1} = \theta^j$ and $x^{j+1} = x^j$
Metropolis-Hastings with one-block updating scheme

- Given x^0 and θ^0
- for $j = 0 : (niter - 1)$
 - Sample $\theta^{new} \sim q(\theta|\theta^j)$
 - Sample $x^{new} \sim q(x|x^j, \theta^{new})$
 - Calculate α and accept / reject
 - if(accept)
 - $\theta^{j+1} = \theta^{new}$ and $x^{j+1} = x^{new}$
 - else
 - $\theta^{j+1} = \theta^j$ and $x^{j+1} = x^j$
- Return $(x^1, x^2, \ldots, x^{niter})$ and $(\theta^1, \theta^2, \ldots, \theta^{niter})$
Metropolis-Hastings with one-block updating scheme

- Given x^0 and θ^0
- for $j = 0 : (niter - 1)$
 - Sample $\theta^{new} \sim q(\theta|\theta^j)$
 - Sample $x^{new} \sim q(x|x^j, \theta^{new})$
 - Calculate α and accept / reject
 - if(accept)
 - $\theta^{j+1} = \theta^{new}$ and $x^{j+1} = x^{new}$
 - else
 - $\theta^{j+1} = \theta^j$ and $x^{j+1} = x^j$
- Return $(x^1, x^2, \ldots, x^{niter})$ and $(\theta^1, \theta^2, \ldots, \theta^{niter})$

Challenge: To make a good and cheap proposal for x.
Contents

- Introduction
- Part I: Approximating hidden Gaussian Markov random fields
- Part II: Parallel sampling of GMRFs and geostatistical GMRF models
- Part III: Overlapping block proposals for latent Gaussian Markov random fields
- Part IV: Approximation to hidden Gaussian Markov random fields and overlapping block proposals in parallel
Contents

- Introduction
- Part I: *Approximating hidden Gaussian Markov random fields*
 With Håvard Rue and Sveinung Erland, paper
- Part II: *Parallel sampling of GMRFs and geostatistical GMRF models*
- Part III: *Overlapping bock proposals for latent Gaussian Markov random fields*
- Part IV: *Approximation to hidden Gaussian Markov random fields and overlapping block proposals in parallel*
Contents

- Introduction
- Part I: *Approximating hidden Gaussian Markov random fields*
- Part II: *Parallel sampling of GMRFs and geostatistical GMRF models*
 Technical report
- Part III: *Overlapping block proposals for latent Gaussian Markov random fields*
- Part IV: *Approximation to hidden Gaussian Markov random fields and overlapping block proposals in parallel*
Contents

- Introduction
- Part I: Approximating hidden Gaussian Markov random fields
- Part II: Parallel sampling of GMRFs and geostatistical GMRF models
- Part III: Overlapping block proposals for latent Gaussian Markov random fields
 With Håvard Rue, technical report
- Part IV: Approximation to hidden Gaussian Markov random fields and overlapping block proposals in parallel
Contents

- Introduction
- Part I: *Approximating hidden Gaussian Markov random fields*
- Part II: *Parallel sampling of GMRFs and geostatistical GMRF models*
- Part III: *Overlapping block proposals for latent Gaussian Markov random fields*
- Part IV: *Approximation to hidden Gaussian Markov random fields and overlapping block proposals in parallel*

Note
Contents

- Introduction
- Part I: Approximating hidden Gaussian Markov random fields
- Part II: Parallel sampling of GMRFs and geostatistical GMRF models
- Part III: Overlapping block proposals for latent Gaussian Markov random fields
- Part IV: Approximation to hidden Gaussian Markov random fields and overlapping block proposals in parallel

Constructions of approximations to $\pi(x|y, \theta^{new})$ and/or sampling from these distributions.
Part I: Approximating hidden Gaussian Markov random fields

Idea:

- Find an approximation $\widetilde{\pi}(x) \approx \pi(x|y, \theta)$ we can sample from and evaluate.
- Use $q(x|x^{old}, \theta^{new}) = \widetilde{\pi}(x)$.
Part I: Approximating hidden Gaussian Markov random fields

\[\pi(x \mid \theta, y) \propto \pi(x \mid \theta) \prod_{i \in I} \pi(y_i \mid x_i) \]

\[\pi(x \mid \theta, y) \propto \exp \left(-\frac{1}{2} x^T Q(\theta) x - \sum_i g_i(x_i, y_i) \right) \]
A1: Gaussian approximation at the mode

- If $\pi(y|x, \theta)$ is log-concave then $\pi(x|y, \theta)$ is unimodal.
- Can use Gaussian approximation at the mode, x^m.
A1: Gaussian approximation at the mode

- If $\pi(y|x, \theta)$ is log-concave then $\pi(x|y, \theta)$ is unimodal.
- Can use Gaussian approximation at the mode, x^m.
- Replace $g_i(x_i, y_i)$ by the Taylor expansion at the mode, $a_i + b_i x_i + c_i x_i^2$.
A1: Gaussian approximation at the mode

- If $\pi(y|x, \theta)$ is log-concave then $\pi(x|y, \theta)$ is unimodal.
- Can use Gaussian approximation at the mode, x^m.
- Replace $g_i(x_i, y_i)$ by the Taylor expansion at the mode, $a_i + b_i x_i + c_i x_i^2$.
- $\tilde{\pi}^{A1}(x)$ is $GMRF(x^m, Q(\theta) + c)$
Improved approximations

\[\pi(x \mid \theta, y) = \prod_{t=1}^{n} \pi(x_t \mid x_{(t+1):n}, \theta, y) \]

where \(x_{t+1:n} = (x_{t+1}, x_{t+2}, \ldots, x_n) \).
Improved approximations

\[
\pi(x \mid \theta, y) = \prod_{t=1}^{n} \pi(x_t \mid x_{(t+1):n}, \theta, y)
\]

\[
\propto \prod_{t=1}^{n} \tilde{\pi}_A(x_t \mid x_{(t+1):n}, \theta, y) \exp \left(-h_t(x_t, y_t) \right)
\]

where

\[
h_t(x_t, y_t) = g_t(x_t, y_t) - (a_t + b_t x_t + c_t x_t^2 / 2).
\]
Marginal conditional approximations

\[
\pi(x_t \mid x_{(t+1):n}, \theta, y) \propto \pi_G(x_t \mid x_{(t+1):n}, \theta, y) \\
\times \exp(-h_t(x_t, y_t)) \\
\times \int \pi_G(x_{1:(t-1)} \mid x_{t:n}, \theta, y) \\
\exp(-\sum_{j=1}^{t-1} h_j(x_j, y_j)) dx_{1:(t-1)}
\]
Marginal conditional approximations

\[
\pi(x_t \mid x_{(t+1):n}, \theta, y) \propto \pi_G(x_t \mid x_{(t+1):n}, \theta, y) \\
\times \exp(-h_t(x_t, y_t)) \\
\times \int \pi_G(x_{1:(t-1)} \mid x_{t:n}, \theta, y) \\
\exp(-\sum_{j=1}^{t-1} h_j(x_j, y_j)) dx_{1:(t-1)},
\]

- A1: Gaussian approximation at the mode.
Marginal conditional approximations

\[
\pi(x_t \mid x_{(t+1):n}, \theta, y) \propto \pi_G(x_t \mid x_{(t+1):n}, \theta, y) \\
\times \exp(-h_t(x_t, y_t)) \\
\times \int \pi_G(x_{1:(t-1)} \mid x_{t:n}, \theta, y) \exp(-\sum_{j=1}^{t-1} h_j(x_j, y_j)) \, dx_{1:(t-1)}
\]

- A1: Gaussian approximation at the mode.
- A2: Also correct for \(h_t(x_i, y_i) \) when sampling \(x_i \).
Marginal conditional approximations

\[\pi(x_t \mid x_{(t+1):n}, \theta, y) \propto \pi_G(x_t \mid x_{(t+1):n}, \theta, y) \times \exp(-h_t(x_t, y_t)) \times \int \pi_G(x_{1:(t-1)} \mid x_{t:n}, \theta, y) \]

\[\exp(-\sum_{j=1}^{t-1} h_j(x_j, y_j)) dx_{1:(t-1)} \]

- A1: Gaussian approximation at the mode.
- A2: Also correct for \(h_t(x_i, y_i) \) when sampling \(x_i \).
- A3: Also correct for \(\int \ldots \).
A2: Correcting for current likelihood-term

- Want to sample from and evaluate

\[
\pi_{A2}(x_t \mid x_{(t+1):n}, \theta, y) \propto \pi_G(x_t \mid x_{(t+1):n}, \theta, y) \exp \left(- h_t(x_t, y_t) \right)
\]
A2: Correcting for current likelihood-term

- Want to sample from and evaluate

\[\pi_{A2}(x_t \mid x_{(t+1):n}, \theta, y) \propto \pi_G(x_t \mid x_{(t+1):n}, \theta, y) \exp \left(-h_t(x_t, y_t) \right) \]

- For evaluation reasons we use a log spline approximation between knots instead:

\[\tilde{\pi}_{A2}(x_t \mid x_{t+1:n}, \theta, y) \approx \pi_{A2}(x_t \mid x_{t+1:n}, \theta, y) \]
A2: Correcting for current likelihood-term

- Want to sample from and evaluate

\[\pi_{A2}(x_t | x_{(t+1):n}, \theta, y) \propto \pi_G(x_t | x_{(t+1):n}, \theta, y) \exp \left(- h_t(x_t, y_t) \right) \]

- For evaluation reasons we use a log spline approximation between knots instead:

\[\tilde{\pi}_{A2}(x_t | x_{t+1:n}, \theta, y) \approx \pi_{A2}(x_t | x_{t+1:n}, \theta, y) \]

- Tuning parameter: \(K \), number of knots.
A3: Correcting for non-sampled non-Gaussian likelihood terms

Want to sample from

$$\pi_{A3}(x_t \mid x_{(t+1):n}, \theta, y) \propto \widetilde{\pi}_{A2}(x_t \mid x_{t+1:n}, \theta, y) I(x_t)$$

where $I(x_t)$ is

$$\int \pi_G(x_{1:(t-1)} \mid x_{t:n}, \theta, y) \exp \left(- \sum_{j=1}^{t-1} h_j(x_j, y_j) \right) dx_{1:(t-1)}$$
A3: Correcting for non-sampled non-Gaussian likelihood terms

Want to sample from

$$\pi_{A3}(x_t \mid x_{(t+1):n}, \theta, y) \propto \tilde{\pi}_{A2}(x_t \mid x_{t+1:n}, \theta, y) I(x_t)$$

where $I(x_t)$ is

$$\int \pi_G(x_{1:(t-1)} \mid x_{t:n}, \theta, y) \exp \left(- \sum_{j=1}^{t-1} h_j(x_j, y_j) \right) dx_{1:(t-1)}$$

$$I(x_t) = E \left[\exp \left(- \sum_{j=1}^{t-1} h_j(x_j, y_j) \right) \right]$$
A3: Correcting for non-sampled non-Gaussian likelihood terms

- Want to sample from

\[
\pi_{A3}(x_t \mid x_{(t+1):n}, \theta, y) \propto \tilde{\pi}_{A2}(x_t \mid x_{t+1:n}, \theta, y) I(x_t)
\]

- Approximate \(I(x_t)\) by sampling:

\[
\hat{I}(x_t) = \frac{1}{M} \sum_{i=1}^{M} \exp \left(- \sum_{j \in \mathcal{J}(t)} h_j(x^i_j, y_j) \right)
\]
A3: Correcting for non-sampled non-Gaussian likelihood terms

- Want to sample from

\[\pi_{A3}(x_t \mid x_{(t+1):n}, \theta, y) \propto \tilde{\pi}_{A2}(x_t \mid x_{t+1:n}, \theta, y) I(x_t) \]

- Approximate \(I(x_t) \) by sampling:

\[\hat{I}(x_t) = \frac{1}{M} \sum_{i=1}^{M} \exp \left(- \sum_{j \in \mathcal{I}(t)} h_j(x^i_j, y_j) \right) \]

- Use only some of the nearest unsampled neighbours.
A3: Correcting for non-sampled non-Gaussian likelihood terms

- Want to sample from

$$
\pi_{A3}(x_t \mid x_{(t+1):n}, \theta, y) \propto \tilde{\pi}_{A2}(x_t \mid x_{t+1:n}, \theta, y) I(x_t)
$$

- Approximate $I(x_t)$ by sampling:

$$
\hat{I}(x_t) = \frac{1}{M} \sum_{i=1}^{M} \exp \left(- \sum_{j \in \mathcal{J}(t)} h_j(x^i_j, y_j) \right)
$$

- Use only some of the nearest unsampled neighbours.

- **Tuning parameters:** Number of samples, M and neighbours $|\mathcal{J}(t)|$.

Markov chain Monte Carlo updating schemes for hidden Gaussian Markov random field models – p.16/45
Results: Disease mapping in Germany

<table>
<thead>
<tr>
<th>Average accept-rate</th>
<th>(\kappa = 0.1)</th>
<th>(\kappa = 1)</th>
<th>(\kappa = 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A1)</td>
<td>0.01</td>
<td>0.11</td>
<td>0.47</td>
</tr>
<tr>
<td>(A2)</td>
<td>0.94</td>
<td>0.80</td>
<td>0.78</td>
</tr>
<tr>
<td>(A3a)</td>
<td>0.96</td>
<td>0.87</td>
<td>0.86</td>
</tr>
<tr>
<td>(A3b)</td>
<td>0.99</td>
<td>0.96</td>
<td>0.90</td>
</tr>
</tbody>
</table>

- For \(A2 \) and \(A3 \): \(K = 20 \) knots.
- \(A3a \): \(M = 1 \)
- \(A3b \): \(M = 100 \)
Approximating $\pi(\kappa | y)$

- Use

$$\pi(\kappa | y) = \frac{\pi(x, \kappa | y)}{\pi(x | \kappa, y)}$$

for any x.
Approximating $\pi(\kappa \mid y)$

- Use

 $$\pi(\kappa \mid y) = \frac{\pi(x, \kappa \mid y)}{\pi(x \mid \kappa, y)}$$

 for any x.

- Use $\tilde{\pi}(x \mid \kappa, y, x^m(\kappa))$

 $$\tilde{\pi}(\kappa \mid y) \propto \frac{\pi(\kappa) \pi(x \mid \kappa) \pi(y \mid x)}{\tilde{\pi}(x \mid \kappa, y, x^m(\kappa))} \bigg|_{x=x^m(\kappa)}$$
Approximating $\pi(\kappa | y)$

- Use

$$\pi(\kappa | y) = \frac{\pi(x, \kappa | y)}{\pi(x | \kappa, y)}$$

for any x.

- Use $\tilde{\pi}(x|\kappa, y, x^m(\kappa))$

$$\tilde{\pi}(\kappa | y) \propto \frac{\pi(\kappa)\pi(x|\kappa)\pi(y|x)}{\tilde{\pi}(x|\kappa, y, x^m(\kappa))} \bigg|_{x=x^m(\kappa)}$$

- Can use $q(\kappa|\kappa^{old}) = \tilde{\pi}(\kappa | y)$

\Rightarrow Metropolised independence sampler
Results: Approximating $\pi(\kappa|y)$

- Estimated $\pi(\kappa|y)$ using $A1$, $A2$ and $A3a$:

- Acceptance rates Metropolised independence samplers: $A1$: 0.43, $A2$: 0.82 and $A3a$: 0.86.
Part III: Overlapping block proposals for latent GMRFs

Background: Too expensive to sample from an n-dim. distribution.

Here: Construct a proposal for x which we can sample from and evaluate working only with smaller blocks.
Proposal from blocks

- Can use one full scan of a Gibbs sampler as $q(x|x^{old}, \theta^{new})$.
- Block Gibbs sampler used to get better convergence.
Traditional blocking

- x: 100×100 GMRF, $E(x) = 0$ but $x^0 = 3$
- 5×5 neighbourhood
- A GMRF approximation to correlation function:

$$
\rho(x_i, x_j) = \exp\left(\frac{-3d(x_i, x_j)}{r}\right)
$$
Traditional blocking

- \(x: 100 \times 100 \text{ GMRF, } E(x) = 0 \text{ but } x^0 = 3 \)
- 5 \times 5 \text{ neighbourhood}
- A GMRF approximation to correlation function:

\[
\rho(x_i, x_j) = \exp\left(\frac{-3d(x_i, x_j)}{r}\right)
\]

First iteration (\(r = 40 \))
Traditional blocking

First iteration ($r = 40$)

200th iteration ($r = 40$)
Traditional blocking

Estimated autocorrelation:

![Estimated auto correlation](image-url)
Overlapping block Gibbs sampler

Idea: Let the blocks overlap.
Overlapping block Gibbs sampler

Idea: Let the blocks overlap.
Overlapping block Gibbs sampler

Given x^i

Sample $(x_1^{i+1}, x_2^{B1}, x_4^{B1}, x_5^{B1}) \sim \pi(x_{B1} | x_3^i, x_6^i, x_7^i, x_8^i, x_9^i)$
Overlapping block Gibbs sampler

Given x^i

Sample $(x_{1}^{i+1}, x_{2}^{B1}, x_{4}^{B1}, x_{5}^{B1}) \sim \pi(x_{B1} | x_{3}^{i}, x_{6}^{i}, x_{7}^{i}, x_{8}^{i}, x_{9}^{i})$

Sample $(x_{2}^{i+1}, x_{3}^{i+1}, x_{5}^{B2}, x_{6}^{B2}) \sim \pi(x_{B2} | x_{1}^{i+1}, x_{4}^{B1}, x_{7}^{i}, x_{8}^{i}, x_{9}^{i})$
Overlapping block Gibbs sampler

Given x^i

- Sample $(x_1^{i+1}, x_2^{B1}, x_4^{B1}, x_5^{B1}) \sim \pi(x_{B1}^i | x_3^i, x_6^i, x_7^i, x_8^i, x_9^i)$
- Sample $(x_2^{i+1}, x_3^{i+1}, x_4^{B2}, x_6^{B2}) \sim \pi(x_{B2}^i | x_1^{i+1}, x_4^{B1}, x_7^i, x_8^i, x_9^i)$
- Sample $(x_4^{i+1}, x_5^{B3}, x_7^{i+1}, x_8^{B3}) \sim \pi(x_{B3}^i | x_1^{i+1}, x_2^{i+1}, x_3^{i+1}, x_6^{B2}, x_9^i)$
- Sample $(x_5^{i+1}, x_6^{i+1}, x_8^{i+1}, x_9^{i+1}) \sim \pi(x_{B4}^i | x_1^{i+1}, x_2^{i+1}, x_3^{i+1}, x_4^{i+1}, x_7^{i+1})$

Return x^{i+1}
Does it work?

As previous example with $r = \{10, 20, 40, 100\}$ and $\text{buffer} = \{0, 1, 2, 5, 10\}$
Does it work?

Estimated auto-correlation function at pixel (48, 48).

Left: Block Gibbs without buffers
Right: With buffer five
Transition probability

Hard to calculate the transition probability:
Transition probability

Hard to calculate the transition probability:

\[
q(x|x') = \int [\pi_1(x'_1, x'_2, x'_4, x'_5 | x_3, x_6, x_7, x_8, x_9) \\pi_2(x'_2, x'_3, x'_5, x'_6 | x'_1, x'_4, x_7, x_8, x_9) \\pi_3(x'_4, x'_5, x'_7, x'_8 | x'_1, x'_2, x'_3, x'_6, x_9) \\pi_4(x'_5, x'_6, x'_8, x'_9 | x'_1, x'_2, x'_3, x'_4, x'_7)] dx'_2 dx'_4 dx'_5 dx'_1 dx'_5 dx'_6 dx'_3 dx'_2 dx'_8
\]

Markov chain Monte Carlo updating schemes for hidden Gaussian Markov random field models – p.25/45
Transition probability

Time series blocking:

B1
x1 x2 x3 x4 x5

B2
x1 x2 x3 x4 x5

B3
x1 x2 x3 x4 x5
Transition probability

Time series blocking:

\[
\begin{align*}
q(x|x^{'}) &= \int \left[\pi_1(x_1', x_2B_1 | x_3, x_4, x_5) \\
&\quad \pi_2(x_2', x_3', x_4B_2 | x_1', x_5) \\
&\quad \pi_3(x_4', x_5' | x_1', x_2', x_3') \right] dx_2B_1 dx_4B_2
\end{align*}
\]
Transition probability

Time series blocking:

\[
q(x|x') = \int [\pi_1(x'_1, x'_2|x_3, x_4, x_5) \\
\pi_2(x'_2, x'_3, x'_4|x_1, x_5) \\
\pi_3(x'_4, x'_5|x_1, x'_2, x'_3)]dx_2^{B_1}dx_4^{B_2} \\
= \pi(x'_1|x_3, x_4, x_5) \cdot \pi(x'_2, x'_3|x_1, x_5) \cdot \pi(x'_4, x'_5|x_1, x'_2, x'_3)
\]
Transition probability

Time series blocking:

\[q(x' | x) = \pi(x'_1 | x_3, x_4, x_5) \cdot \pi(x'_2, x'_3 | x'_1, x_5) \cdot \pi(x'_4, x'_5 | x'_1, x_2, x'_3) \]

Can use that:

\[
\pi(x'_1 | x_3, x_4, x_5) = \frac{\pi(x'_1, x_2^{B1} | x_3, x_4, x_5)}{\pi(x_2^{B1} | x'_1, x_3, x_4, x_5)}
\]

for any \(x_2^{B1} \)
Partial conditional block sampler
Given \(x^0 \)

for \(i = 0 : (niter - 1) \)

Sample \((x_1^{i+1}) \sim \pi(x_1 | x_3^i, x_6^i, x_7^i, x_8^i, x_9^i) \)
Partial conditional block sampler

\[\begin{align*}
&\text{Given } x^0 \\
&\quad \text{for } i = 0 : (niter - 1) \\
&\quad \text{Sample } (x_1^{i+1}) \sim \pi(x_1 | x_3^i, x_6^i, x_7^i, x_8^i, x_9^i) \\
&\quad \text{Sample } (x_2^{i+1}, x_3^{i+1}) \sim \pi(x_2, x_3 | x_1^{i+1}, x_4^i, x_7^i, x_8^i, x_9^i) \\
&\quad \text{Sample } (x_4^{i+1}, x_7^{i+1}) \sim \pi(x_4, x_7 | x_1^{i+1}, x_2^{i+1}, x_3^{i+1}, x_6^i, x_9^i) \\
&\quad \text{Sample } (x_5^{i+1}, x_6^{i+1}, x_8^{i+1}, x_9^{i+1}) \sim \pi(x_5, x_6, x_8, x_9 | x_1^{i+1}, x_2^{i+1}, x_3^{i+1}, x_4^{i+1}, x_7^{i+1}) \\
&\quad \text{Return } ((x_1^1, x_1^2, \ldots, x_1^9), (x_2^1, x_2^2, \ldots, x_2^9), \ldots, (x_1^{niter}, x_2^{niter}, \ldots, x_9^{niter}))
\end{align*} \]
Partial conditional block sampler

Transition probability:

\[
q(x|x') = \pi(x'_1 | x_3, x_6, x_7, x_8, x_9) \\
\pi(x'_2, x'_3 | x'_1, x_4, x_7, x_8, x_9) \\
\pi(x'_4, x'_7 | x'_1, x'_2, x'_3, x_6, x_9) \\
\pi(x'_5, x'_6, x'_8, x'_9 | x'_1, x'_2, x'_3, x'_4, x'_7)
\]
Opposite reversal

- A M-H proposal constructed by Gibbs steps doesn’t give acceptance probability 1.
Opposite reversal

- A M-H proposal constructed by Gibbs steps doesn’t give acceptance probability 1.
- Sample first a direction \(i = \{0, 1\} \)
 - if \(i == 0 \) use \(q_0 : B_1 \rightarrow B_2 \rightarrow B_3 \)
 - if \(i == 1 \) use \(q_1 : B_3 \rightarrow B_2 \rightarrow B_1 \)
Opposite reversal

- A M-H proposal constructed by Gibbs steps doesn’t give acceptance probability 1.

- Sample first a direction $i = \{0, 1\}$
 - if $i == 0$ use $q_0 : B_1 \rightarrow B_2 \rightarrow B_3$
 - if $i == 1$ use $q_1 : B_3 \rightarrow B_2 \rightarrow B_1$

- use acceptance probability

$$\alpha_{i,1-i}(y|x) = \min\left\{1, \frac{\pi(x')q_{1-i}(x|x')}{\pi(x)q_{i}(x'|x)}\right\}$$
Opposite reversal

- A M-H proposal constructed by Gibbs steps doesn’t give acceptance probability 1.

- Sample first a direction $i = \{0, 1\}$
 - if $i == 0$ use $q_0 : B_1 \rightarrow B_2 \rightarrow B_3$
 - if $i == 1$ use $q_1 : B_3 \rightarrow B_2 \rightarrow B_1$

- use acceptance probability

$$
\alpha_{i,1-i}(y|x) = \min \left\{ 1, \frac{\pi(x')q_{1-i}(x|x')}{\pi(x)q_i(x'|x)} \right\}
$$

- This gives $\alpha = 1$ for overlapping block Gibbs proposal, but generally not for a partial conditioning sampler.
Dimension \((a, b)\) full problem 356 775.

Dimension \((a, b)\) reduced problem 111 825.
Solution fMRI

Sampling scheme:

Block 1

Block 2

Block B

Markov chain Monte Carlo updating schemes for hidden Gaussian Markov random field models – p.29/45
Algorithm

- Given θ^0 and x^0
- for $j = 0 : (niter - 1)$
 - $niter = 20000$
 - Sample $\theta^{new} \sim q(\theta|\theta^j)$
 Independent random walk, τ_{Data} estimated beforehand
Algorithm

Given θ^0 and x^0
for $j = 0 : (niter - 1)$
 Sample $\theta^{new} \sim q(\theta|\theta^j)$
 Sample i: $P(i = 0) = P(i = 1) = 0.5$.
 Sample from overlapping block Gibbs proposal $x^{new} \sim q_i(x|x^{old}, \theta^{new})$
 Each block: a and five b_t.
 Overlap: a and two b_t.

Markov chain Monte Carlo updating schemes for hidden Gaussian Markov random field models – p.30/45
Algorithm

Given θ^0 and x^0

for $j = 0 : (niter - 1)$

Sample $\theta^{new} \sim q(\theta|\theta^j)$

Sample i: $P(i = 0) = P(i = 1) = 0.5$.

Sample from overlapping block Gibbs proposal $x^{new} \sim q_i(x|x^{old}, \theta^{new})$

Calculate acceptance probability

$$\alpha = \min(1, \frac{\pi(y|x^{new})\pi(x^{new}|\theta^{new})\pi(\theta^{new})q(\theta^j|\theta^{new})q_i(x^j|x^{new}, \theta^j)}{\pi(y|x^j)\pi(x^j|\theta^j)\pi(\theta^j)q(\theta^{new}|\theta^j)q_{1-i}(x^{new}|x^j, \theta^{new})})$$

Sample $u \sim \text{Unif}(0, 1)$

if($u < \alpha$)

$\theta^{j+1} = \theta^{new}$

$x^{j+1} = x^{new}$

else

$\theta^{j+1} = \theta^j$

$x^{j+1} = x^j$

Return $((\theta^1, x^1), (\theta^2, x^2), \ldots, (\theta^n, x^n))$.
Results fMRI

Trace plots hyper-parameters:
Results fMRI

Estimated mean a and b_{18}, b_{28} and b_{38}:
Results fMRI

Estimated mean a and b_{18}, b_{28} and b_{38}:

Estimate for some pixels in time:
Overlapping approximated blocks proposal

- Can sample each block from an approximation to $\pi(x_B|x_{-B})$.
- Enable us to make inference from hidden GMRF models (as in part I).
- Use approximations from Part I.
Overlapping approximated blocks proposal

Given θ^0 and y^0

for $j = 0 : (niter - 1)$

- Sample $\theta^{new} \sim q(\theta^{new} | \theta^j)$
- Sample i: $P(i = 0) = P(i = 1) = 0.5$.
- Sample from overlapping approximated blocks proposal $x^{new} \sim q_i^A(x | x^{old}, \theta^{new})$.
Overlapping approximated blocks proposal

Given θ^0 and y^0

for $j = 0 : (niter - 1)$

- Sample $\theta^{new} \sim q(\theta^{new}|j)$
- Sample i: $P(i = 0) = P(i = 1) = 0.5$.
- Sample from overlapping approximated blocks proposal
 $x^{new} \sim q^A_i(x|x^{old}, \theta^{new})$.
- Calculate

$$\alpha = \min(1, \frac{\pi(y|x^{new})\pi(x^{new}|\theta^{new})\pi(\theta^{new})q(\theta_j|\theta^{new})q^A_i(x^j|x^{new}, \theta^j)}{\pi(y|x^j)\pi(x^j|\theta^j)\pi(\theta^j)q(\theta^{new}|\theta^j)q^A_{1-i}(x^{new}|x^j, \theta^{new})})$$
Overlapping approximated blocks proposal

Given θ^0 and y^0

for $j = 0 : (niter - 1)$

- Sample $\theta^{\text{new}} \sim q(\theta^{\text{new}} | \theta^j)$
- Sample i: $P(i = 0) = P(i = 1) = 0.5$
- Sample from overlapping approximated blocks proposal
 $x^{\text{new}} \sim q_i^A (x | x^{\text{old}}, \theta^{\text{new}})$.

- Calculate
 \[
 \alpha = \min(1, \frac{\pi(y|x^{\text{new}})\pi(x^{\text{new}}|\theta^{\text{new}})\pi(\theta^{\text{new}})q(\theta^j|\theta^{\text{new}})q_i^A(x^j|x^{\text{new}}, \theta^j)}{\pi(y|x^j)\pi(x^j|\theta^j)\pi(\theta^j)q(\theta^{\text{new}}|\theta^j)q_{1-i}^A(x^{\text{new}}|x^j, \theta^{\text{new}})})
 \]

- $u \sim \text{Unif}(0, 1)$
- if ($u < \alpha$)
 - $\theta^{j+1} = \theta^{\text{new}}$
 - $x^{j+1} = x^{\text{new}}$
- else
 - $\theta^{j+1} = \theta^j$
 - $x^{j+1} = x^j$

Return $\theta = (\theta^1, \theta^2, \ldots, \theta^n)$ and $x = (x^1, x^2, \ldots, x^{niter})$.
Part II & IV Computational efficiency and parallelisation

- Computational benefits of GMRFs
- Parallelisation opportunity of methods in Part I and III.
- Use methods from numerical linear analysis.
Exact sampling from multivariate Gaussian distribution

- \(x \sim N(0, Q^{-1}) \Rightarrow \pi(x) \propto \exp\left(-\frac{1}{2}x^T Q x\right) \)
- \(Q = LL^T \), \(L \) is the Cholesky factor, lower triangular
- \(\pi(x) \propto \exp\left(-\frac{1}{2}x^T LL^T x\right) \)
- \(z \sim N(0, I) \) i.i.d. standard Gaussian.
- \(\pi(z) \propto \exp\left(-\frac{1}{2}z^T z\right) \)
- The solution of \(L^T x = z \) is a sample from our GMRF.
Exact sampling from multivariate Gaussian distribution

- \(x \sim N(0, Q^{-1}) \Rightarrow \pi(x) \propto \exp(-\frac{1}{2}x^T Q x) \)

- \(Q = LL^T \), \(L \) is the Choleskey factor, lower triangular

- \(\pi(x) \propto \exp(-\frac{1}{2}x^T L L^T x) \)

- \(z \sim N(0, I) \) i.i.d. standard Gaussian.

- \(\pi(z) \propto \exp(-\frac{1}{2}z^T z) \)

- The solution of \(L^T x = z \) is a sample from our GMRF.

Computational complexity: \(\mathcal{O}(n^3) \).
Why GMRF

- The Markov property makes Q sparse.
- **Precision matrix:** $Q_{ij} = 0 \Rightarrow x_i$ and x_j are conditional independent given $\forall x_k, k \neq i, j$
- **Choleskey factor:** $L^T_{ij} = 0 \ (i < j) \Rightarrow x_i$ and x_j are conditional independent given $\forall x_k \mid k \neq j \land k > i$.
Why GMRF

- The Markov property makes Q sparse.
- **Precision matrix:** $Q_{ij} = 0 \Rightarrow x_i$ and x_j are conditional independent given $\forall x_k, k \neq i, j$
- **Choleskey factor:** $L_{ij}^T = 0 (i < j) \Rightarrow x_i$ and x_j are conditional independent given $\forall x_k \mid k \neq j \land k > i$.

Sparse $Q \Rightarrow$ sparse L?
Graph

- Each variable is a node.
- Edges between neighbours

![Graph diagram with nodes 1 to 10 and edges connecting them]
Graph

Precision matrix:

Markov chain Monte Carlo updating schemes for hidden Gaussian Markov random field models – p.37/45
Graph

Choleskey factor L^T, \triangle non-zeros in Q.

Markov chain Monte Carlo updating schemes for hidden Gaussian Markov random field models – p.37/45
Graph

Choleskey factor L^T, \triangle non-zeros in Q.

Fill-in: The elements that are zero in Q, but non-zero in L.

Reduce fill-in \Rightarrow cheaper calculations.
Reordering

- The ordering of the variables are dummy.
- A reordering can reduce the fill-in.
Reordering

Reordered graph:

New Choleskey factor L, \triangle non-zeros in Q.

Markov chain Monte Carlo updating schemes for hidden Gaussian Markov random field models – p.38/45
Reordering

New Choleskey factor L, \triangle non-zeros in Q.

Original ordering: fill-in = 16
Reordered graph: fill-in = 4
Reordering

New Choleskey factor L, \triangle non-zeros in Q.

Original ordering: fill-in = 16
Reorder graph: fill-in = 4

- Computational complexity spatial GMRF: $O(n^{1.5})$
Fast sampling GMRF

Algorithm:
- Reorder (reduce fill-in)
- Calculate L
- Solve $L^T x = z$
Fast sampling GMRF

Algorithm:
- Reorder (reduce fill-in)
- Calculate L
- Solve $L^T x = z$

Triangular system:

\[
L^T \begin{bmatrix}
\cdots \\
\cdots \\
\cdots \\
\cdots \\
\cdots \\
\end{bmatrix} x = z
\]

\[
\pi(x) = \pi(x_n) \pi(x_{n-1}|x_n) \cdots \pi(x_1|x_2, x_3, \ldots, x_n)
\]
Parallel sampling of GMRF

Intuitive idea:

- If we have a sample \(x_C \sim \pi_C(x) \).
- \(x_A \sim \pi_{A|C}(x) \) and \(x_B \sim \pi_{B|C}(x) \) are independent
- \(x_A|x_C \) and \(x_B|x_C \) can be sampled in parallel.
- \(x^* = (x_A, x_C, x_B) \) a sample from our GMRF.

Markov property used to get conditional independent sets
Parallel solving of triangular system

\[L^T \cdot * \cdot x = z \]

Reordering \(x_r = (x_A, x_B, x_C) \):

Markov chain Monte Carlo updating schemes for hidden Gaussian Markov random field models – p.41/45
Parallel solving of triangular system

Choleskey factor L^T
Parallel solving of triangular system

AB zero $\Rightarrow A$ and B can be calculated in parallel.
Parallel Cholesky factorisation

Precision matrix for x_r:

Cholesky decomposition is done by "column wise right looking elimination" ⇒ Choleskey part OK.
Parallel sampling of A_1, A_2 and A_3

- **A_1:** The approx. is a GMRF \Rightarrow parallelisation OK.
Parallel sampling of A_1, A_2 and A_3

- **A_1:** The approx. is a GMRF \Rightarrow parallelisation OK.

- **A_2:** The approx. has the same Markov property as the prior GMRF \Rightarrow can parallelise by finding segmentation sets.
Parallel sampling of A_1, A_2 and A_3

- **A_1:** The approx. is a GMRF \Rightarrow parallelisation OK.

- **A_2:** The approx. has the same Markov property as the prior GMRF \Rightarrow can parallelise by finding segmentation sets.

- **A_3:** The approx. has a Markov property given by the prior and sampling neighbourhood $\mathcal{J} \Rightarrow$ can parallelise by finding segmentation sets.
Parallel overlapping block proposals

- When sampling from GMRF \Rightarrow parallelisation OK.
Parallel overlapping block proposals

- When sampling from GMRF \Rightarrow parallelisation OK.
- Using A_2 and A_3 \Rightarrow the ordering is restricted by the buffers.
Summary

Background:

- Spatial latent GMRF models describe a large class of problems.
- One-block updating schemes important for mixing of M-H.
Summary

Challenge: Proposal for x, $q(x|x^{old}, \theta^{new})$

- Part I: Made approximations to $\pi(x|\theta)$ and used as proposal.
- Part III: Made a proposal from overlapping blocks. Blocks sampled either:
 - exact (Gaussian likelihood)
 - from an approximation.
- Markov property gives large computational benefits and parallelisability.