
Diffusion theory

The mean and variance function for discrete processes

Let us consider the stochastic geometric growth model Nt+1 = ΛtNt, or

equivalently the random walk Xt+1 = Xt + St, where the Λt and St = ln Λt

are independent with the same distribution. With initial population size

N0 = exp(X0) at time 0 we find simply

Xt = X0 + S0 + S1 + . . . + St−1.

Hence, by the central limit theorem the distribution of Xt for a given X0 is

approximately normal with mean X0+µt and variance νt, where µ = ERt and

ν = var(St). It is well known that this approximation is remarkably good,

even for moderate values of t, which means that the form of the distribution

of the St has practically no effect on the process Xt, only the expectation µ

and the variance ν. We obtain a more general class of models of the type

Xt+1 = Xt + St, by allowing the distribution of St to depend on Xt. For

this process let us write µ(x) = E(St|Xt = x) and ν(x) = var(St|Xt = x).

In accordance with our remarks on the simple model with constant µ and

ν, where the properties of the process is practically determined by these two

parameters, we should expect that the functions µ(x) and ν(x) contains most

of the information of the behavior of the general process. As an illustration

we consider three processes with the same mean and variance functions, but

with rather different distributions of the St for given values of Xt. Let the

models be of the discrete logistic type E(ln Nt+1|Nt = n) = ln Nt+r(1−n/K)

or equivalently E(∆Xt|Nt = n) = E(∆Xt|Xt = ln n) = r(1− n/K) giving

µ(x) = r(1− ex/K)

where x = ln n. We assume that the variance is constant

ν(x) = σ2.

The model may now be written as

∆X = µ(x) +
√

ν(x)U
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Figure 1: Population fluctuations for three models with the same discrete

logistic type of dynamics with parameters r = 0.2, K = 1000, σ2 = 0.01. The

increments are modelled by different distributions: Normal distribution (a),

Rectangular distribution (b), Exponential distribution (c) and the diffusion

approximation recorded at discrete values with increments 1 (d).
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where U is standardized so that EU = 0 and var(U) = 1.

Fig.1a-c shows simulations of this process when U is standardized normal,

rectangular and exponential, respectively. Even if there is only one simulated

process for each distribution we do get the impression that the fluctuations

look fairly similar, especially for the normal and the rectangular, which both

has zero skewness. For the exponential, which is skewed to the right, there

is some tendency that the increases are somewhat quicker and the decreases

somewhat slower than for the other distributions.

In the next section, we define diffusion processes, which is a class of processes

that are continuous in the state variable as well as in time. The properties

of such processes will be completely defined by the functions µ(x) and ν(x)

which are called the infinitesimal mean and infinitesimal variance of the

process. Together with possible boundary conditions, these functions com-

pletely define the diffusion process. It turns out that discrete processes often

can be accurately approximated by diffusions with infinitesimal mean and

variance equal to the mean and variance function of the discrete process.

The infinitesimal mean and variance of a diffusion

When the mean and variance functions are constants we have seen that the

expectation as well as the variance of Xt−X0 for a given X0 are proportional

to t, more precisely E(Xt−X0|X0) = µt and var(Xt−X0|X0) = νt. The basic

assumption of diffusions, apart from the Markov property the future depends

only on the previous state), is that these relations hold for very small values of

t, that is, for a small time interval ∆t we assume E(∆Xt|Xt = x) ≈ µ(x)∆t

and var(∆Xt|Xt = x) ≈ ν(x)∆t. As ∆t actually approaches zero we see

that the last relation is equivalent to E[(∆Xt)
2|Xt = x] ≈ ν(x)∆t because

[E(Xt|Xt = x)]2 is of order (∆t) and vanish compared to terms of order ∆t as

∆t approaches zero. The precise mathematical definitions are that the limit

of E(∆Xt|Xt = x)/∆t as ∆t approaches zero is the infinitesimal mean µ(x),

while the limit of E[(∆Xt)
2|Xt = x]/∆t is the infinitesimal variance ν(x).

Together with some boundary conditions, for example an extinction barrier,

these two functions µ(x) and ν(x) completely define the diffusion process.
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Diffusion processes may be simulated by using small discrete time steps. If

the state at time t is Xt = x we simulate

Xt+∆t = x + µ(x)∆t + Ut

√
ν(x)∆t,

where the Ut are independent standard normal variables. By this method we

obtain E(∆Xt|Xt = x) = µ(x)∆t and var(∆Xt|Xt = x) = ν(x)∆t.

As an illustration Fig.1d shows one simulation of this process, that is µ(x) =

r(1−ex/K) and ν(x) = σ2, serving as an approximation to all three processes

shown in Fig.1a-c. The diffusion approximation constructed in this way, by

choosing the mean and variance functions of the discrete process as the infin-

itesimal mean and variance, is commonly referred to as the Ito approxima-

tion. More precisely, the method is based on first expressing the process by

a stochastic differential equation and using the stochastic integral called Ito

integration when solving the equation, which is equivalent to dealing with

the above diffusion.

Suppose now that we rather than working with Xt = log Nt considered the

diffusion approximation to Nt. This diffusion approximation would then

have infinitesimal mean and variance µN(n) = E(∆N |N = n) and variance

νN(n) = var(∆N |N = n). It turns out that these two diffusions are not

quite identical, but in practice fairly close if the changes in population size

between years are not too large.

Boundary conditions

A diffusion is fully defined by its infinitesimal mean and variance together

with some boundary conditions. In biology, the most actual boundary con-

dition is defined by introducing an absorbing barrier at some value of N

where the population actually goes extinct. Usually this extinction barrier

is chosen at N = 1 or N = 0. When the population trajectory reaches

the extinction barrier the population remains in this state. Hence, extinc-

tion barriers should only be used when modelling closed populations with no

immigration from other populations.

Sometimes population models may also be defined by introducing a reflecting
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Figure 2: Simulation of the model with µ(n) = rn for n < 1000, a reflecting

barrier at n = 1000 and infinitesimal variance ν(n) = σ2n2. The parameters

are r = 0.02, σ2 = 0.01.

barrier. This barrier can never be crossed. Rather than crossing, the process

is immediately reflected. Mathematically, a reflecting barrier at, say n =

a, can be modelled by defining the infinitesimal mean and variance to be

symmetric around n = a. More precisely, for n > a we use the infinitesimal

mean µ(n) = µ(2a− n) and variance ν(n) = ν(2a− n) and treat the process

as having no barrier at n = a. If the state of this process is Nt > a, we

simply interpret this as if the state of the real process with reflecting barrier

were 2a−Nt.

Fig.2 shows a simulation of a model called ’geometric growth’ with a reflecting

barrier at population size 1000.

Some results valid for diffusion models
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There are a number of useful analytical results on probabilities of absorbtion,

distribution of time to absorbtion and stationary distributions for diffusions.

Here we list some of these results.

The Wiener process

A process with constant environmental mean µ(x) = r and variance ν(x) =

σ2 is called Wiener process. We consider such a process with initial state

x0 > 0 at time t = 0 and an absorbing barrier at zero.

If r < 0 this process will reach the absorbing barrier with probability 1.

Absorbtion occurs at a time T which has the inverse Gaussian distribution

f(t) =
x0√

2πσ2t3
exp[−(x0 + rt)2

2σ2t
].

If r < 0 this is a proper distribution in the sense that the integral from zero

to infinity of g(t) is one. If r ≥ 0, the process may be absorbed at infinity

in which case the same integral equals the probability of ultimate extinction,

which is exp(−2rx0/σ
2). The cumulative distribution is given by

G(t) = P (T ≤ t) = Φ(−rt + x0

σ
√

t
) + e−2rx0/σ2

Φ(
rt− x0

σ
√

t
),

where Φ(x) =
∫ x
−∞ exp(−x2/2)dx is the standard normal integral.

If r < 0 the expectation is ET = −1/r, and if r > 0 we have conditionally

that E(T |T < ∞) = 1/r.

In the case of no extinction barrier the distribution of Xt is simply the normal

distribution with mean x0 +rt and variance σ2t. When there is an extinction

barrier at Xt = 0 this distribution is no longer applicable. At a given time t,

the process has either gone extinct, which occur with probability G(t), or the

population is still present with Xt > 0. The distribution of Xt in the case of

an extinction barrier is also known. This probability density takes the form

h(x; t) =
1√

2πtσ
[1− e−2xx0/(σ2t)]e−(x−x0−rt)2/(2σ2t).
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This distribution may be integrated to give P (Xt > x) =
∫∞
x h(z; t)dz, giving

H(x; t) = P (Xt ≤ x) = Φ(
x− x0 − rt

σ
√

t
) + e−2rx0/σ2

Φ(
rt− x− x0

σ
√

t
)].

Notice that H(0; t) = P (Xt = 0) = P (T ≤ t) = G(t) as expected.

Geometric Brownian motion

The process defined by µ(x) = rx and ν(x) = σ2x2 is called a geometric

Brownian motion. One can show that the process Yt = ln Xt then is a

Wiener process with infinitesimal mean r − σ2/2 and variance σ2. Hence,

starting at x0 = exp(y0) the above results for the time to absorbtion are

valid replacing x0 by y0 = ln(x0) and r by r − σ2/2 and choosing 1 as the

absorbing state for Xt (and 0 for Yt).

Geometric growth model with variance proportional to x

Consider the model µ(x) = rx and ν(x) = σ2x. Then the time to absorbtion

at zero has the simple form

P (T < t) = exp[− 2x0re
rt

σ2(ert − 1)
]

for r 6= 0, and exp[−2x0/(σ
2t)] for r = 0. For r > 0 the limit obtained as t

approaches infinity gives that the probability of ultimate extinction at zero

is exp(2rx0/σ
2). For r ≤ 0 we see from the cumulative distribution that the

probability of ultimate extinction is a certain event.

The Ornstein-Uhlenbeck process

The process with linear infinitesimal mean µ(x) = α− βx, where β > 0, and

constant infinitesimal variance ν(x) = σ2 is called an Ornstrein-Uhlenbeck

process. one can show that the distribution of Xt is normal with mean

E(Xt|X0 = x0) = α/β + (x0 − α/β)e−βt

var(Xt|X0 = x0) =
σ2

2β
(1− e−2βt).

We see that the expectation as well as the variance tend to a limit as t

approaches infinity. Hence, if t is sufficiently large, there is no information
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left in the observation X0 = x0, and the process will go on fluctuating for-

ever around the mean α/β with variance σ2/(2β). Such processes are called

stationary processes, and the distribution of the state for large values of t,

f(x) = f∞(x; x0), is called the stationary distribution of the process. Accord-

ingly, the Ornstein-Uhlenbeck process has a stationary distribution which is

normal with mean α/β and variance σ2/(2β). The joint distribution of Xt

and Xs, for 0 < t < s = t + h is the binormal distribution with

cov(Xt, Xt+h) =
σ2

2β
(1− e−2βt)e−βh.

Hence, when the process has reached stationarity the autocorrelation function

is simply corr(Xt, Xt+h) = e−βh.

Model Gompertz type of model

Models with infinitesimal mean µ(x) = rx(1 − ln x/ ln K) are called models

of the Gompertz type. If ν(x) = σ2x2 one can show that Yt = ln Xt then is

the Ornstrein-Uhlenbeck process with infinitesimal mean r−σ2/2−yr/ ln K

and variance σ2. Hence the stationary distribution of Y is normal and X

must have the lognormal distribution. All results for the Ornstein-Uhlenbeck

process can immediately be applied for the process Y and transformed back

to find the corresponding result for X.

The logistic model

The model with µ(x) = rx(1 − x/K) is called the logistic model. If ν(x) =

σ2x2 the stationary distribution is the gamma distribution

f(x) =
αβ

Γ(β)
xβ−1e−αx,

where the scale parameter α = 2r/(σ2K) and the shape parameter is β =

2r/σ2−1. Using the well known expression for the mean and variance of the

gamma distribution we find

EX = β/α = K(1− σ2

2r
)
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var(X) = β/α2 =
σ2

2r
K2(1− σ2

2r
).

Model with stationary beta-distribution

A model often applied in genetical problems is µ(x) = −ax + b(1 − x),

ν(x) = σ2x(1 − x) where 0 < x < 1. The stationary distribution for this

model is the beta-distribution

f(x) =
Γ(p + q)

Γ(p)Γ(q)
xp−1(1− x)q−1

where p = 2a/σ2 and q = 2b/σ2.

Model with stationary gamma distribution of the second kind

A model often used in describing fish populations is called the Beverton-Holt

model. The model is usually used for age-structured populations, but in its

simplest form the diffusion approximation has the form

µ(x) = x

(
α

1 + βx
− γ

)

and variance ν(x) = σ2x. This process is stationary if 2α− σ2 − γ > 0, and

then stationary distribution is the beta distribution of the second kind

f(x) =
Γ(p + q)βp

Γ(p)Γ(q)

xp−1

(1 + βx)p+q

where p = 2(α − γ)σ2/2 − 1 and q = 1 + 2γ/σ2. The mean and variance of

this distribution is p/[β(q − 1)] and p(p + q − 1)/[β2(q − 1)2(q − 2)]. The

variance is finite if q > 2.

The theta-logistic model

The theta-logistic model is a generalization of the logistic model with

µ(x) = rx[1− (x/K)θ]
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ν(x) = σ2x2.

Writing r = r1/(1 − K−θ) and keeping r1 a positive constant this model is

valid for all values of θ. The stationary distribution is the so-called general-

ized gamma distribution

f(x; K, α, θ) =
|θ|(α+1

θ
)α/θ

KΓ(α/θ)
(x/K)α−1e−

(α+1)
θ

(x/K)θ

for θ 6= 0,

which has moments

EXp =
KpΓ(β−θ+pθ

θ2 )

Γ(β−θ
θ2 )( β

θ2 )p/θ

for p = 1, 2, . . . , for θ > 0, while for θ < 0 the p’th moment exists for

p < 1−β/θ. From this expression the mean and variance may be computed.

For θ = 1 this is the gamma distribution with shape parameter α and scale

parameter (α +1)/K. Notice that K is a scale parameter of the distribution

f(x; K, α, θ), while α and θ are shape parameters. If θ = α the distribution

is Weibull and if θ = −1 it is the inverse gamma.

To confirm that the limiting distribution as θ approaches zero is the lognormal

we introduce z = x/K, and observe that the distribution of z is proportional

to zα−1e−(α+1
θ

)zθ
. Expanding the exponent at θ = 0 we find

exp[−(α + 1)/θ − 2 ln(z)− 1

2
(α + 1)θ ln(z)2 + ...].

Absorbing the constant in the constant factor of the distribution and observ-

ing that (α + 1)θ approaches β = 2r1

σ2
e ln K

as θ tends to zero, we find that the

limiting distribution is proportional to (1/z) exp[− ln(z)− 1
2
β ln(z)2] or pro-

portional to (1/z) exp[−1
2
β(ln(z) + 1/β)2]. Hence, the limiting distribution

of z is the lognormal distribution, and the corresponding distribution of ln(z)

is N [−1/β, 1/β]. Finally, since ln x = ln z + ln K we see that the limiting

distribution of ln(Xt) is normal with mean ln(K)[1− σ2/(2r1)] and variance

σ2 ln(K)/(2r1).

In the limit as θ approaches infinity we obtain the model with µ(x) = rx

below K and a reflecting barrier at K. We observe that the stationary

distribution for this model is

f(x; K, α,∞) =
α

Kα
xα−1
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for 0 ≤ x ≤ K, and otherwise zero.

11


