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Abstract

A collection of R (and S-Plus) functions and some additional c-code for estimating the pattern
of migration in a subdivided population from genetic differences generated by local genetic drift
is described. The method is applicable to migration matrices of any form. Submodels defining
the general form of the migration matrix can be written by the user. Functions are also provided
for carrying out likelihood ratio tests between alternative models such as the island model and
the stepping stone model, or between alternative user defined submodels. In addition, plots of
predicted and observed covariances can be made to assess the fit of a selected model. Finally,
code for computing the asymptotic eigenvalue variance effective size of a subdivided population
is provided.
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1 Introduction

In population genetics, there has long been an interest in understanding and analyzing the gene fre-
quency structure found in natural populations. Local genetic drift will tend to create genetic differ-
ences between different subunits of a population. These differences will, after a number of initial
generations, be balanced by migration. One can thus, in principle, estimate the amount of migra-
tion between the different subunits from the observed gene frequencies. Most earlier approaches to
this problem have, in part, relied on the assumptions of the island model. Under that model one
can estimate the number of migrantsNm from the estimated amount of genetic differentiation as
measured by e.g. Wright’s parameterFst. Typically, these estimates are then, in further exploratory
analysis, regressed against geographic distances to test for isolation by distance effects predicted
by some idealized theoretical models. This manual documents the use of some S-Plus and c code
I wrote to implement an alternative solution of this problem based more directly on standard sta-
tistical principles, which allows much less restrictive assumptions about the underlying pattern of
migration. The general method, which is based on an idea in Felsenstein (1982), is described in
two papers (Tufto et al., 1996, 1998; Tufto and Hindar, 2002); preprints of these are available at
http://www.math.ntnu.no/˜jarlet/ . A brief summary of the approach is also given here.

You can read the online, most up-to-date version of this manual athttp://www.math.ntnu.
no/˜jarlet/migration . It is assumed that the reader has access to and some familiarity with
R or S-plus.

2 The model

We consideri = 1,2, . . . ,n subpopulation. The available data from which the inferences are to be
drawn are vectors of gene (allele) frequencies in these subpopulations, at a number of different loci.
Differences between local gene frequencies is assumed to be a result of local genetic drift balanced
by migration (or mutation). The pattern of migration between these subpopulation is described by
a migration matrixM with elementsmi j denoting the probability, or the proportion, of genes which
originates from subpopulationj, given migration to subpopulationi. The objective of analysis is to
obtain an estimate of the migration matrixM . In general, we will be interested in migration matrices
of certain biologically interesting forms only, involving a small number of parameters, which we hope
to be able to estimate. The effective size, or at least, the relative size, of each subpopulation,Ni ,
is treated as known parameters. All subpopulations are also assumed to receive a small amount of
immigrant genes from a large ‘outside world’ population with gene frequencyq.
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With these assumptions, one can show that the gene frequencies, at equilibrium, provided that the
fluctuations aroundq are small, have covariance matrixC, satisfying the matrix equation

C = MCM T +E, (1)

where

ei j =
{ 1

2Ni
for i = j

0 for i 6= j,
(2)

Using the solution of (1), the idea is to compute the likelihood of the data approximately by assuming
multivariate normality. It is then possible to obtain maximum likelihood estimates of the parameters
of any model for the migration matrix using numerical methods.

3 Downloading and loading the code into R or S-Plus

The library comes in one version which detects whether it is running under R or S-plus. In the-
ory, everything should work in both environments. However, because the S-plus’ memory usage
is sometimes quite inefficient (see section 5 and 8), and because S-Plus is pretty expensive, pro-
prietary software whereas R is GPL’ed software freely available on the Internet (e.g. fromhttp:
//www.R-project.org ), the code optimized for R. Note that to use the R version, you will prob-
ably need to have access to R installed on a Unix system which supports loading of shared libraries
with the “dlopen” mechanism. A good idea is probably to install some popular Linux distribution
on a fast computer somewhere in your network neighbourhood, install R, and run everything re-
motely over the network. If you want to use R’s excellent graphics capabilities you will also want
an X-server on your computer instead of just telnet’ing to the remote computer. There are several
freeware and shareware version available on the net (e. g athttp://www.starnet.com and
http://www.frontiertech.com ).

The R (or S-plus) and c code needed consists of the two files;migrlib.R andmigrlib.c .
In addition, the c part of the code usesrandlib for random number generation. These files and
accompanying documentation (this file in postscript format) can be downloaded fromhttp://www.
math.ntnu.no/˜jarlet/migration/migrlib.tar.gz (see Table 1).

Table 1: Contents ofmigrlib.tar.gz
migrlib.R R (or S-Plus) functions
migrlib.c c-code for generating bootstrap samples
migrlib-doc.tex LATEX file for generating this documentation
migrlib-doc.pdf This documentation in portable document format
randlib.c c-library for random number generation
randlib.h
linpack.c
com.c

Therandlib library may also be downloaded separately from fromhttp://hpftp.cict.
fr/hppd/hpux/Maths/Misc/randlib-1.3/ .

The first thing to do is to compile the c routines together withrandlib . On the Unix system I
used at one point in time, which had S-plus installed, there was a special command for compiling c
code for later loading into S-plus. The following command
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s+compile -o all.o -g linpack.c com.c randlib.c migrlib.c

from the OS-prompt, seemed to do the trick, but this will vary between different operating systems.
This will probably be different on, for example, a Windows 95 platform. It should be described
somewhere in S-plus’ documentation.

Dynamic loading of shared libraries in R is presently only implemented on unix version, for
example linux. On this platform, the shared library “all.so” can be compiled as follows:

gcc -g -O2 -fpic -c *.c
ld -shared -o all.so *.o

After having compiled the c code, start S-plus (or R), and load the library into R (or into S-Plus)
with the command

> source("migrlib.R")

In doing this, the compiled c code is also loaded through the command
dyn.load.shared("./all.o") (or dyn.load("./all.so") in R).

4 An introductory session

Instead of analysing a real set of data, we will, to illustrates some of the possibilities of the library, first
generate a simulated set of data from a known model. To do this let us first create a migration matrix
using thesteppingstone function. This function returns a stepping stone like(n×n) migration
matrix of the following form

M = (1−u)


1− 1

2m0
1
2m0 0

1
2m0 1−m0

1
2m0 0

... ... ... ...
0 1

2m0 1− 1
2m0

 , (3)

which is what was used in Tufto et al. (1996). It takes two arguments; the first is the parameter vector
theta (with elements representingu andm0), and the second isn, the number of subpopulations.
Thus,

> M <- steppingstone(c(.1,.2),10)

generates a migration matrix withu = .1 andm0 = .2, with dimension(10×10), that is,

> M
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 0.81 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
[2,] 0.09 0.72 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00
[3,] 0.00 0.09 0.72 0.09 0.00 0.00 0.00 0.00 0.00 0.00
[4,] 0.00 0.00 0.09 0.72 0.09 0.00 0.00 0.00 0.00 0.00
[5,] 0.00 0.00 0.00 0.09 0.72 0.09 0.00 0.00 0.00 0.00
[6,] 0.00 0.00 0.00 0.00 0.09 0.72 0.09 0.00 0.00 0.00
[7,] 0.00 0.00 0.00 0.00 0.00 0.09 0.72 0.09 0.00 0.00
[8,] 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.72 0.09 0.00
[9,] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.72 0.09

[10,] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.81
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In addition, let’s assume that each subpopulation has effective sizeNe = 100 individuals. This is
done by creating a vectorNe with elements specifying the effective size of each subpopulation:

> Ne <- rep(100,10)
> Ne

[1] 100 100 100 100 100 100 100 100 100 100

We can now create some data by stochastic simulation using thesimulate function. Required
arguments are a matrix specifying the migration rates and the vector specifying effective populations
sizes. If no additional optional arguments are given, a single vector of gene frequencies is returned:

> simulate(M,Ne)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 0.285 0.315 0.44 0.61 0.655 0.495 0.495 0.46 0.575 0.425

MandNe must, of course, have matching dimensions. To simulate data from more than one locus, the
optional argumentnloci should be given. A matrix of gene frequencies is then returned, where each
row represent different loci. In this example, the returned matrix is stored inp:

> p <- simulate(M,Ne,nloci=10)
> p

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 0.520 0.455 0.505 0.640 0.730 0.715 0.455 0.560 0.630 0.515
[2,] 0.635 0.535 0.485 0.530 0.610 0.450 0.370 0.415 0.515 0.510
[3,] 0.535 0.375 0.295 0.355 0.475 0.570 0.715 0.610 0.665 0.660
[4,] 0.615 0.555 0.535 0.550 0.485 0.565 0.470 0.475 0.325 0.465
[5,] 0.390 0.440 0.445 0.435 0.550 0.510 0.385 0.385 0.610 0.650
[6,] 0.705 0.580 0.490 0.410 0.565 0.480 0.565 0.745 0.750 0.755
[7,] 0.445 0.365 0.340 0.475 0.575 0.670 0.640 0.635 0.580 0.585
[8,] 0.490 0.395 0.545 0.395 0.310 0.320 0.390 0.325 0.280 0.250
[9,] 0.705 0.625 0.570 0.610 0.410 0.460 0.395 0.335 0.245 0.145

[10,] 0.320 0.300 0.400 0.255 0.320 0.450 0.440 0.425 0.495 0.295

In real life, one would typically load the gene frequency data matrix into R (or S-Plus) by doing
something like:

> p <- matrix(scan("data.txt"),byrow=T,nrow=10)

Using the approximation of the likelihood given in the appendix of Tufto et al. (1998), the max-
imum likelihood estimates of the parameters, for our simulated data set, can be found using the
fitmodel function. This function takes two arguments; the nameFUNof the migration model,
and the gene frequency matrix:

> fit1 <- fitmodel(steppingstone,p)

(The above call consumes about 33 seconds of cpu-time on the SGI Indy unix box I have been using.
With R running under Linux on a 90MHz Pentium processor it consumes about 25 seconds. )

The$parameter component of the returned list contains the maximum likelihood estimates:

> fit1$par
[1] 0.004024386 0.128945698
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and the$objective component contains the maximum likelihood:

> fit1$obj
[1] 125.4102

As illustrated by this example, the estimates obtained are, as they should, not excessivly far from
the true values. If you sit down in front of your computer and actually do the above, you will of course
get slightly different answers, which should come as any surprise, given that the data is random.

Thefitmodel function is only a simple interface to, depending on whether you use R or S-plus,
S-Plus’ non-linear optimizernlminb or R’s nlm function. The list returned bynlminb or nlm
is in both cases slightly modified so that the$objective component contains the maximum log
likelihood and theparameter component contains the maximum likelihood estimates.

5 Bootstrapping

Thebootstrap function makes use of both thesimulate andfitmodel functions and performs
parametric bootstrapping from a given point in the parameter space. It takes four arguments; the
name of the migration model, a parameter vector specifying at which point in the parameter space to
simulate from, the observed gene frequency matrix, and, optionally, the number of bootstrap replicates
to produce (which by default is 100).

The distribution of the data, conditioned on the observed gene frequency mean at each loci, is
simulated. This is why the observed gene frequency matrix is needed bybootstrap (to compute
the means). 50 bootstrap replicates from the maximum likelihood estimates obtained in section 4 is
produced by the following call:1

> boots <- bootstrap(steppingstone,fit1$par,p,nboots=50)

If you get the feeling that this call has caused your computer to hang, you can set the optional argument
dots=T . Then, at least, some small dots start to appear every now and then.

Thebootstrap function returns a matrix with rows corresponding to each bootstrap replicate
of the parameter vector:

> boots
[,1] [,2]

[1,] 0.002350949 0.12999907
[2,] 0.002001756 0.09736528
[3,] 0.001058648 0.14776179
[4,] 0.009843646 0.11854703

. . .

. . .

The variance-covariance matrix of the replicates is thus easy to compute using S-Plus’ function
1If you’re running the S-plus version, you should also note that this command may cause S-plus to consume huge

amounts of memory — after hours of simulation S-plus may suddenly decide to terminate because of too little memory.
Note that these problems with S-plus also turns up in likelihood ratio tests (see section 8). One solution to this is to call
bootstrap several times withnboots set to some small number (e.g. 50 if you have about 64MB of memory). You
may also try to run the the R-version which does not have these problems with memory.
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> var(boots)
[,1] [,2]

[1,] 5.317043e-05 -0.0000885599
[2,] -8.855990e-05 0.0007198054

Taking the square root of the diagonal elements gives us an estimate of the standard errors

> sqrt(diag(var(boots)))
[1] 0.007291805 0.026829190

which aren’t to large — the coefficient of variation form0 is only 0.2. The uncertainty inu is quite
big though.

6 Bias correction

Bias is easily estimated as the difference between the original estimates and the mean of the bootstrap
replicates:

> bias <- apply(boots,2,mean) - fit1$par
> bias
[1] 0.001642839 0.006198921

If the bias not excessivly large, and if it appears to be approximately independent of the true parameter
values, one way to correct for bias (Efron and Tibshirani, 1993, p. 138) is to subtract the estimated
bias from the orginal estimates:

> fit1$par - bias
[1] 0.002381547 0.122746777

In many cases, however, especially if there is a large amount of between-population differentiation,
there may be considerable bias in the obtained estimate, not only because asymptotic theory doesn’t
apply, but also because the likelihood function is quite approximate. More sophisticated methods for
reducing bias such as that of Cabrera and Watson (1997) may then be needed. I will try to tidy up
the code I used in Tufto et al. (1998) and put it into the library. The theoretical justification for that
method, however, only apply to one-parametric models.

7 Writing your own migration model

7.1 General ideas

The main motivation for developing the approach has been to make it possible for different researchers
to analyze their data using a model that they find biologically interesting and realistic. For example,
depending on the mode of dispersal, the probability distribution of the gene displacements may decay
more or less exponentially with distance. There may also be effects of habitat selection; migration
to high quality subpopulation may be more likely, and the geography may more complicated than in
idealized theoretical models.

Parameters representing such dependencies are fully possible to incorporate in the analysis. The
idea is that different users should write their own function for a migration matrix model that they find
biologically interesting. This function should take the following two arguments; a parameter vector
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theta , andn, the number of subpopulations, and should return a(n×n) matrix. The sum of each
row must be equal to or less than one. The remaining proportion, that is, 1−∑n

j=1mi j , represent the
sum the mutation rate and the rate of migration from the ‘outside world’ into each subpopulationi.

Both the R and S-plus version provides a way of handling so called box constraints on the param-
eters. For example, in the case of thesteppingstone model, only parameter values in the range
from 0 to 1 are allowed. When the likelihood is maximised,fitmodel needs to get this informa-
tion from the function defining the migration model provided by the user. The idea is to define this
information once and for all inside the declarations for the new migration model. The mechanism for
achieving this is implemented somewhat differently in the R and S-plus version:

7.2 R version

The R version uses R’snlm function to maximise the likelihood numerically.nlm does not take box
constaints. The idea is therefore to work with parameters transformed onto the whole real line, for ex-
ample by logit transformation of probabilities (or proportions) (such asu andm0 of the steppingstone
model). The user defined function should therefore be able to handle transformed paremeter when
the additional argumenttrans=T . In addition, when the other additional argumentconvert=T ,
the user defined function defining the migration pattern should return, instead of a migration matrix,
the parameter vector converted back to either the untransformed or transformed state, depending on
whethertrans=T or trans=F , respectively. Also, when the optional argumentstart=T , a vector
of sensible (untransformed) starting parameter values should be returned. You are free to implement
this in any way you like inside your own function. The R version ofsteppingstone should give
you an idea of how to do it:

steppingstone <- function(theta,n,trans=F,start=F,convert=F)
{

if (trans) {theta <- c(ilogit(theta[1],lower=.0001),ilogit(theta[2]))}
if (convert) {

if (!trans) {theta <- c(logit(theta[1],lower=.0001),logit(theta[2]))}
return(theta)

}
if (start) return(c(.1,.1))

M <- matrix(0,ncol=n,nrow=n)
diag(M) <- 1 - theta[2]
M[abs(row(M)-col(M))==1] <- theta[2]/2
M[1,1] <- M[n,n] <- 1 - theta[2]/2
M <- (1-theta[1])*M
return(M)

}

Logit and log transformations and their inverses are provided by the functionslogit , ilogit , log ,
and ilog which are part ofmigrlib.r . In some cases is necessary to restict the lower bound of
the parameter range to some small postive value, e.g. 0.0001 instead of 0 (see Tufto et al., 1998, p.
1979 for details). This lower bound can be passed tologit , ilogit , log , andilog through the
optionallower argument.
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7.3 S-plus version

fitmodel does, as already mentioned, usenlminb to carry out the actual numerical maximization.
In addition to the name of the function that is to be optimized,nlminb also needs vectors specifying
starting parameter values and upper and lower box constraints. Thefitmodel function assumes
that these vectors will be returned through additional calls toFUNwith one of the optional optional
argumentstart , lower , or upper set true. The following call illustrates the correct behaviour of
steppingstone :

> steppingstone(upper=T)
[1] 1 1

The source code to achieve this in the case of thesteppingstone model is as follows:

steppingstone <- function(theta,n,upper=F,lower=F,start=F)
{

if (upper) {return(c(1.0, 1.0 )) }
if (lower) {return(c(0.0001,0.0 )) }
if (start) {return(c(0.1, 0.1 )) }

M <- matrix(0,ncol=n,nrow=n)
diag(M) <- 1 - theta[2]
M[abs(row(M)-col(M))==1] <- theta[2]/2
M[1,1] <- M[n,n] <- 1 - theta[2]/2
M <- (1-theta[1])*M
return(M)

}

Only when none of the optional arguments are true (which is default) is the main code executed and
a migration matrix returned. Although this perhaps isn’t very good programming practice, the main
advantage of implementing things this way is that good starting and box constraint vectors are defined
once and for all, and that functions carrying out, for example, bootstrapping and likelihood ratio tests
can retrieve this information only knowing the name of the migration matrix submodel. This will
prove very useful when working with several alternative models.

7.4 Some additional remarks

Note that user provided functions should return abackwardmigration matrix. You can, however, in
cases where this is more natural, specify a model for the forward matrix, and then, before returning
the resulting matrix, convert it to a backward matrix, with theforw2back function. This function
takes a forward matrix as its first argument and a vector of subpopulation sizes as its second argument
and returns a backward matrix (Tufto et al., 1998, eq. 5).

User provided functions specifying a model for the migration matrix may, of course, incorporate
dependencies on additional information, say the geographic location (e.g. Tufto et al., 1998) or habitat
quality of different subpopulations, through the use of global variables.

8 Likelihood ratio tests

Code is also provided for doing likelihood ratio tests between different nested, and perhaps also,
non-nested alternative models. This is done, by brute force, by functionlrtest by simulating
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bootstrap data fromH0 and computing the likelihood ratio by fitting bothH0 andH1 numerically to
each bootstrap data set.

Let’s say we want to use the island model as our null hypothesis. Functionislandmodel simply
returns a diagonal matrix with nonzero elements equal to 1−m:

> islandmodel(.1,10)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
[2,] 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
[3,] 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0
[4,] 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0
[5,] 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0
[6,] 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.0
[7,] 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0
[8,] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0
[9,] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0

[10,] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9

Note that this model is nested within the steppingstone model.
lrtest takes six arguments;H0 andH1 which specifies the names of the functions specifying

migration pattern under the null and the alternative hypothesis, the gene frequency data matrixp,
optionally a vectortheta specifying from which parameter values underH0 to simulate from, and
nboots specifying the number of bootstrap replicates of the likelihood ratio to compute. After some
time (maybe some hours),lrtest , as a side-effect, displays a summary of the test results:

> test <- lrtest(islandmodel,steppingstone,p,nboots=50)
Likelihood-ratio test summary

Observed value of the test statistic: 26.8696459394272
Number of bootstrap samples: 10
Significance probability: 0

In addition, a list containing a number of objects is returned: The$H0 and$H1 components contains
the lists returned byfitmodel whenH0 andH1 are fitted to the observed data. Thus, for our example
data set, the maximum likelihood estimates under theislandmodel is stored in

> test$H0$par
[1] 0.04816419

As we see, under the fitted (false) islandmodel, the rate of migration from the ‘mainland’ has to be as
large as 0.04 to account for the small between-population differentiation generated by the high rate of
migration between neighbouring population in the true (steppingstone) model.

Note that, unless the optional argumenttheta is given,lrtest simulates the distribution of the
likelihood ratio from the maximum likelihood estimates underH0. However, if there is a large amount
of bias in the estimates (see e.g. Tufto et al., 1998), it may be adviceable to first do some sort of bias
correction and supplylrtest with the bias corrected estimate through thetheta argument.

The simulated (log) likelihood ratios are stored in the$lr component of the list returned by
lrtest . A histogram of these can be produced with S-Plus’hist function (see Figure 1). As can
be seen from the figure, the distribution is certainly far fromχ2.
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Figure 1: Histogram of simulated log likelihood ratios

Nothing prevents the user from carrying out likelihood ratio tests between non-nested models,
although the interpretation of such tests may be questionable from a theoretical point of view (see
e.g. Vuong, 1989). It should be kept in mind that such tests can be carried out in two directions. It is
therefore up to the user to decide which model represents the null hypothesis and which represent the
alternative.

9 Plotting predicted and observed covariances

Once you have fitted a number of alternative models, it’s a good idea to inspect how well the model
actually fits the data. One way to do this is to compare the covariances between the gene frequencies
predicted by the selected model with the covariances computed from the date directly.

The likelihood is computed on the basis ofn−1 contrastsy = (y1,y2, . . . ,yn−1) between the ob-
served standardized gene frequencies. The covariance matrix of these contrasts is returned by function
covpred . Two arguments are required; the name of the migration modelFUN, the parameter vector
theta .

Functioncovobs estimates the covariances from the observations directly using the estimator

ĉi j =
1

nloci

nloci

∑
k=1

(pi,k− p̄k)(p j,k− p̄k)
p̄k(1− p̄k)

. (4)

The only required argument is the matrix of gene frequenciesp. The covariances can be estimated
based on weighted gene frequency means at each loci, by providing a vectorwof weights tocovobs
as a second optional argument.

The predicted and observed covariances can be compared through plotting them with thecovplot
function. Arguments are the computed predicted and observed covariance matrices. The following
call

> covplot(covpred(steppingstone,fit1$par),covobs(p))
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Figure 2: Predicted and observed covariances plotted using thecovplot function

produced the plot shown in Figure 2. Two additional optional arguments can be given;mfcol speci-
fying the number of rows and columns in the plot, andfile specifying the name of a postscript file
(used as alternative output). The interpretation of these type of plots is discussed in Tufto et al. (1998).

Functioncovpred computes (an approximation) of the covariances under a given model, con-
ditioned on the observed gene frequency means at each locus. The unconditional covariances may
also be of interest. These can be computed by functioncourgeau , called with the migration matrix
Mand the vector of effective population sizesNe as arguments. This function rewrites the matrix
equation (Tufto et al., 1996, eq. 7) to a system ofn(n+1)/2 equations (Tufto et al., 1996, eq. A.4 and
A.5) and solves these. It may be noted that the returned unconditional covariances (which are exact
to the extent that the order of the events in the life cycle can be ignored) can differ greatly from the
conditional ones, especially if the long range rate of migration is low such that the gene frequency
vector is in one of the states(0,0, . . . ,0) or (1,1, . . . ,1) for long periods of time.

10 Sampling error

The model is able to handle most forms of sampling error. Typically, only a proportion of individuals
are sampled in each subpopulation. The most realistic assumption is to assume that the number of
copies of, say alleleA, conditional on the allele frequencypi in subpopulationi follow a hypergeo-
metric distribution. If we have hypergeometric sampling ofN(s)

i individuals from a finite population

of N(h)
i individuals, then the conditional variance in the sampled gene frequency is

Var(p′i |pi) =
2N(h)

i −2N(s)
i

2N(s)
i (2N(h)

i −1)
pi(1− pi). (5)
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The unconditional standardized variance of the sampled gene frequency is then

Var(pi) =
1

2N∗i
+(1− 1

2N∗i
)cii , (6)

where
1

2N∗i
=

2N(h)
i −2N(s)

i

2N(s)
i (2N(h)

i −1)
. (7)

This simplifies to the more standard binomial model whenN(h)
i →∞. Also, asN(s)

i →∞ there sampling
variance tends to zero.

To set up the model with sampling error, the two vectorsNs andNh containing the appropriate
sample sizes in each subpopulation (corresponding toN(s)

i andN(h)
i , respectively) should be defined

globally. The diagonal elements of the computed covariance matrix are then adjusted according to (6),
before evaluating the likelihood of the data. In addition, in thesimulate procedure, sampling error
is added at the end of each simulated realization of the process. Sample sizes differing between loci
is currently not handled. Assigning the valueInf to all elements ofNh results in binomial sampling.
The model is set up with no sampling error by assigning aNAto Ns or by assigningInf to some (or
all) of the elements.

11 Unsampled subpopulations

Typically, in most studies, sampling only take place in some of the populations, whereas no informa-
tion is available about the gene frequencies in surrounding subpopulations. One way of handling this
is simply to ignore the problem. A more satisfactory solution, perhaps somewhat experimental, is to
compute the covariances for the entire population system, including unsampled populations, and then
compute the likelihood of the data based on the appropriate covariance submatrix. Similarly, in the
simulations, the process of genetic drift in the entire system should be simulated to produce bootstrap
replicates of the data in the sampled regions of the population.

To incorporate unsampled subpopulations,Ne should be set up contain the effective size of all
subpopulations. In addition, the elements of the boolean vectorsampled should be set up to specify
which subpopulations are sampled and which are not, for example:

> sampled <- c(F,F,F,T,T,T,T,F,F)

Also note that the length ofNs andNh should match the number of true elements insampled .

12 Computing the effective size

The eigenvalue variance effective size determining the asymptotic rate of convergence of a subdivided
population is determined by eigenvalue of the transition matrix in the recurrence equation for the vari-
ances and covariances rearragned inton(n+ 1)/2 column vectors. For details, see Tufto and Hindar
(2002). The functioneffectpop returns the effective size based on this approach and takes two
arguments: a migration matrix M

¯
and a vector of effective population sizes of each subpopulations.

For example, the effective size of population with migration following a stepping stone pattern can be
computed as follows:
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> M <- steppingstone(c(0,.1),n=4)
> M
[,1] [,2] [,3] [,4]
[1,] 0.95 0.05 0.00 0.00
[2,] 0.05 0.90 0.05 0.00
[3,] 0.00 0.05 0.90 0.05
[4,] 0.00 0.00 0.05 0.95
> N <- rep(100,4)
> N
[1] 100 100 100 100
> effectpop(M,N)
[1] 413.0410

13 Known bugs

Thebootstrap andsimulate functions running under R version 0.62.2, occasionally makes R
terminate with the error message “Segmentation fault - core dumped”. This is supposedly due to
internal bugs in R’s memory management. Luckily, this bug appears to have disappeared in 0.63.0
and later versions of R.

14 Alternatives to R and S-Plus

One disadvantage of using R and S-Plus is that these languages are a bit slow. There is probably not
much to be gained by rewriting things in an other language, however, since most of the computer time,
in any case, will be consumed in matrix manipulations, which, in S-Plus (and I think in R too), are
carried out internally with efficient code from the LINPACK library.

15 Things to do

The code is currently only able to handle diallelic loci. With multiallelic loci, sayk alleles, one needs
the covariances between frequencies of different alleles, between different subpopulations. These are
straightforward to derive but the resulting covariance matrices involved would becomes much bigger,
and would differ between different loci making the code rather cumbersome to implement. I also
haven’t figured out how to simulate the conditional distribution conditioned, not on a single allele
frequency mean, but on a vector of means(p̄1, p̄2, . . . , p̄k−1).

16 Contacting the author

If you download something I would like to hear from you. This way I can keep you informed about
future updates etc. In addition, comments, questions, ideas, bug reports, success stories, contribution
of additional functions, etc. are highly welcome. My email address isjarlet@math.ntnu.no
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