Particle Filters for high-dimensional problems

Peter Jan van Leeuwen and Mel Ades

Data-Assimilation Research Centre DARC

University of Reading

How is DA used today in geosciences?

Present-day data-assimilation systems are based on linearizations and state covariances are essential.

4DVar, Representer method (PSAS):

- Gaussian pdf's for the state, solves only for posterior mode, needs error covariance of initial state (B matrix)

(Ensemble) Kalman filter:

- assumes Gaussian pdf's for the state, approximates posterior mean and covariance, doesn't minimize anything in nonlinear systems, needs inflation and localisation

Combinations of these: hybrid methods

Nonlinear filtering: Particle filter

$$p(x|y) = \frac{p(y|x)p(x)}{\int p(y|x)p(x) dx}$$

Use ensemble
$$p(x) = \sum_{i=1}^{N} \frac{1}{N} \delta(x - x_i)$$

$$p(x|y) = \sum_{i=1}^{N} w_i \delta(x - x_i)$$

with

$$w_i = \frac{p(y|x_i)}{\sum_j p(y|x_j)}$$

the weights.

Why are particle filters degenerate I

Probability space in large-dimensional systems is 'empty': the curse of dimensionality

Why are Particle Filters degenerate II

 The volume of a hypersphere of radius r in an M dimensional space is

$$V \propto \frac{r^M}{\Gamma(M/2 - 1)}$$

• Taking for the radius $r \approx 3\sigma_y$ we find, using Stirling:

$$V \propto \left[\frac{9\sigma_y}{M/2}\right]^{M/2}$$

So very small indeed.

Why are Particle Filters degenerate III

For the optimal proposal density we find, for Gaussian process model and Gaussian observation errors:

$$w_i \propto p(y^n | x_i^{n-1})$$

$$\propto \exp\left[-\frac{1}{2}(y^n - Hf(x_i^{n-1}))(HQH^T + R)^{-1}\right]$$

$$\times (y^n - Hf(x_i^{n-1})).$$

Ignoring covariances we find:

$$var[-\log(w_i)] \propto \frac{M}{2} \left(\frac{V_x}{V_\beta + V_y} \right)^2 \left(1 + 2 \left(\frac{V_y + V_\beta}{V_x} \right) \right)$$

Why are Particle Filters degenerate?

- 'Number of particles needed grows exponentially with dimension of the state vector (Bickel et al, 2007).'
- A slightly different view: degeneracy due to number of independent observations.
- This is related to the extremely narrow likelihood, a tiny move of a particle gives a completely different weight.

The statistics

• The Stochastic PDE:
$$x^n = f(x^{n-1}) + \beta^{n-1}$$

Observations:

$$y^n$$

• Relation between the two:
$$y^n = H(x^n) + \epsilon^n$$

Assume: $\beta \sim N(0,Q)$

$$\epsilon \sim N(0,R)$$

H is linear

The Equivalent-Weights Particle Filter

- Use simple proposal at each time step, e.g. relaxation to observations.
- Use different proposal at final time step to ensure that weights are very similar.

Transition density for x^n

Stochastic model

$$x^{n} = f(x^{n-1}) + \beta^{n-1}$$

With

$$\beta^{n-1} \sim N(0, Q)$$

Hence transition density

$$p(x^n|x^{n-1}) = N(f(x^{n-1}), Q)$$

Bayes Theorem and the proposal density

Bayes Theorem can be written as:

$$p(x^{n}|y^{n}) = \frac{p(y^{n}|x^{n})p(x^{n})}{p(y)}$$

$$= \frac{p(y^{n}|x^{n})}{p(y)} \int p(x^{n}|x^{n-1})p(x^{n-1}) dx^{n-1}$$

Multiply and divide this expression by a proposal transition density *q*:

$$p(x^n|y^n) = \frac{p(y^n|x^n)}{p(y)} \int \frac{p(x^n|x^{n-1})}{q(x^x|x^{n-1}, y^n)} q(x^n|x^{n-1}, y^n) p(x^{n-1}) dx^{n-1}$$

Proposal transition density

For each particle at time n-1 draw a sample from the proposal transition density q, to find:

$$p(x^{n}|y^{n}) = \frac{1}{N} \sum_{i=1}^{N} \frac{p(y^{n}|x_{i}^{n})}{p(y)} \frac{p(x_{i}^{n}|x_{i}^{n-1})}{q(x_{i}^{n}|x_{i}^{n-1}, y^{n})} \delta(x^{n} - x_{i}^{n})$$

Which can be rewritten as:

$$p(x^n|y^n) = \sum_{i=1}^N w_i \delta(x^n - x_i^n)$$

with weights

$$w_{i} = \frac{p(y^{n}|x_{i}^{n})}{p(y^{n})} \frac{p(x_{i}^{n}|x_{i}^{n-1})}{q(x_{i}^{n}|x_{i}^{n-1}, y^{n})}$$

Likelihood weight

Proposal weight

Proposal density between observations

We can explore the fact that the model needs several O(100) time steps between observations, e.g. by using a relaxation term in the proposal:

$$q(x^{n}|x_{i}^{n-1}, y^{m}) = N\left(f(x_{i}^{n-1}) + S\left(y^{m} - H(x_{i}^{n-1})\right), Q\right)$$

Corresponding to an evolution equation for each particle

$$x_i^n = f(x_i^{n-1}) + \hat{\beta}_i^n + S(y^n - H(x_i^{n-1}))$$

Proposal density between observations

- One could also use the 'optimal proposal density' between observations.
- This can be implemented as a minimization method for each particle, and is also known as the Implicit Particle Filter.
- This is related to a method called 4DVar in meteorology and oceanography, which explores only the mode of the joint-in-time pdf.

Proposal density at observation time: the essence of the Equivalent-Weights Particle Filter

The proposal density depends on the maximum weight a particle can achieve using a deterministic time step. It is defined as:

$$q(x^{n}|x_{i}^{n-1}, y^{n}) = \begin{cases} q_{1}(x^{n}|x_{i}^{n-1}, y^{n}) & \text{if } w_{i}^{max} > w^{target} \\ q_{2}(x^{n}|x_{i}^{n-1}, y^{n}) & \text{if } w_{i}^{max} < w^{target} \end{cases}$$

The target weight is set by the user, as e.g. the weight that 80% of the particles can achieve.

The maximum weights

1. We know:

$$w_i = \frac{p(y^n | x_i^n)}{p(y^n)} \frac{p(x_i^n | x_i^{n-1})}{q(x_i^n | x_i^{n-1}, y^n)}$$

2. Write down expression for each weight ignoring proposal:

$$w_i \propto w_i^{rest} \exp \left[-\frac{1}{2} \left(x_i^n - f(x_i^{n-1}) \right)^T Q^{-1} \left(x_i^n - f(x_i^{n-1}) \right) - \frac{1}{2} (y^n - H(x_i^n))^T R^{-1} (y^n - H(x_i^n)) \right]$$

3. When H is linear this is a quadratic function in x_i^n for each particle. Otherwise linearize.

The target weight

The Equivalent-Weights Particle Filter

The proposal density is chosen as:

$$q(x^{n}|x_{i}^{n-1}, y^{n}) = \begin{cases} q_{1}(x^{n}|x_{i}^{n-1}, y^{n}) & \text{if } w_{i}^{max} > w^{target} \\ q_{2}(x^{n}|x_{i}^{n-1}, y^{n}) & \text{if } w_{i}^{max} < w^{target} \end{cases}$$

The target weight is set by the user, as e.g. the weight that 80% of the particles can achieve.

The two proposal densities

For particles that can reach the target weight we use:

$$q_1(x^n|x_i^{n-1}, y^m) = (1 - \epsilon)U\left(\hat{x}_i - \gamma_U Q^{1/2}\mathbf{1}, \hat{x}_i + \gamma_U Q^{1/2}\mathbf{1}\right) + \epsilon N\left(\hat{x}_i, \gamma_N^2 Q\right)$$

The deterministic move

Determine α at crossing of line with target weight contour in:

$$\hat{x}_i = f(x_i^{n-1}) + \alpha_i K\left(y^n - H(f(x_i^{n-1}))\right)$$

with

$$K = QH^T(HQH^T + R)^{-1}$$

The stochastic part of the proposal

A draw from the uniform density gives:

$$w_i = \frac{|Q|^{1/2} (2\gamma_U)^k}{1 - \epsilon} w_i^{rest} p(x_i^n | x_i^{n-1}) p(y^n | x_i^n)$$

A draw from the Gaussian density gives:

$$w_{i} = \frac{w_{i}^{rest} p(x_{i}^{n} | x_{i}^{n-1}) p(y^{n} | x_{i}^{n})}{\frac{\epsilon}{(2\pi)^{k/2} |\gamma_{N}^{2} Q|^{1/2}} \exp(-\frac{1}{2} \gamma_{U} d\beta_{i}^{n} (\gamma_{U}^{2} Q)^{-1} \gamma_{U} d\beta_{i}^{n})}$$

The ratio between the two is (ignoring the exp part):

$$\frac{(2\pi)^{k/2}|\gamma_N^2 Q|^{1/2}}{\epsilon} \frac{(1-\epsilon)}{|Q|^{1/2}(2\gamma_U)^k}$$

which can be made equal to one when:

$$\gamma_N = \frac{2^{k/2} \epsilon}{\pi^{k/2} (1 - \epsilon)} \gamma_U^k$$

Equivalent-Weights Particle Filter

- Use relaxation-term proposal up to last time step
- Calculate w_i^{max} and target weight (e.g. 80%)
- Calculate deterministic moves for high-weight particles:

$$\hat{x}_i = f(x_i^{n-1}) + \alpha_i K\left(y^n - H(f(x_i^{n-1}))\right)$$

Determine stochastic move

$$p(\hat{\beta}_i^{n-1}) \propto (1-a)U[-b,b] + aN(0,\hat{Q})$$

Calculate new weights and resample 'lost' particles

How essential are Gaussian assumptions?

- Allows for analytical expressions.
- But no real need.
- w_i^{max} calculations do not have to be very accurate.
- Same for w^{target.}
- Deterministic move has to be very accurate, good iterative schemes should be used.

Application: the barotropic vorticity equation

Stochastic barotropic vorticity equation:

$$\frac{\partial q}{\partial t} + u \cdot \nabla q = F$$

- 256 by 256 grid 65,536 variables
- Double periodic boundary conditions
- Semi-Langrangian time stepping scheme
- Twin experiments
- Observations every 50 time steps decorrelation time of 42
- 32 particles

Fully observed system

1/4 Observations over half of state

Truth

Mean of particle filter ensemble

Individual particles are not smooth.

The update of the unobserved part

Particle 23 before update

Particle 23 after update

Difference

Time evolution at a specific grid point

¼ observations over half of state

Marginal posterior probability densities

Convergence of the pdf's

Rank histograms

Full state observed

1/4 of half state observed

Miss-specification of process noise

Miss-specification of process noise

Conclusions

- Particle filters do not need state covariances.
- Degeneracy is related to number of observations, not to size of the state space.
- Proposal density allows enormous freedom
- Equivalent-weights scheme solves dimensionality problem?
- Other efficient schemes are being derived.
- Present work: numerical weather prediction, climate forecasting

We need more people!

- The Data Assimilation group at reading consists of 30 scientists
- We still have room in the

Data Assimilation and Inverse Methods in Geosciences MSc programme

References

All references can be found on my website http://www.met.reading.ac.uk/~xv901096/research/publications.html

- Nonlinear Data Assimilation in geosciences: an extremely efficient particle filter Van Leeuwen, P.J., Q.J.R.Meteorol.Soc., 136, 1991-1996, doi:10,1002/qj699, 2010.
- <u>Efficient non-linear Data Assimilation in Geophysical Fluid Dynamics</u> Van Leeuwen, P.J., Computers and Fluids, doi:10,1016/j.compfluid.2010.11.011, 2011.
- Efficient non-linear Data Assimilation for ocean models of intermediate
 complexity Van Leeuwen, P.J., IEEE Statistical Signal Processing workshop, Nice,
 28-30 June, doi: 10.1109/SSP.2011.5967700, 2011.
- Efficient fully nonlinear data assimilation for geophysical fluid dynamics Van Leeuwen, P.J. and M. Ades, In Press, Computers and Geosciences, http://dx.doi.org/10.1016/j.cageo.2012.04.015, 2012.
- <u>An exploration of the Equivalent-Weights Particle Filter</u> Ades, M., and P.J. Van Leeuwen, In Press, Q. J. Royal Meteorol. Soc., 2012.