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Movement plays a central role in ecology

• All organisms move!

• Understanding movement is central to all questions in spatial ecology

• Applications (monitoring, managing and conserving populations) often 
require an understanding of movement.

• Habitats are fragmenting – can the organisms move between the 
fragments?

• Climate is changing – can the organisms move to the areas where 
climate will be suitable in the future?



Mark-recapture on butterfly movement

Examples of movement data:

Ovaskainen, O. et al. 2008. An empirical test of a diffusion model: predicting clouded 
apollo movements in a novel environment. American Naturalist 171, 610-619.



Movements by GPS collared wolves (2002-2008)

I.Kojola

S. Ronkainen

male
female

GPS data on wolf, bear, lynx, moose, forest reindeer, ...

Source: llpo Kojola / GFR

Examples of movement data:



Harmonic radar butterfly movement

Examples of movement data:

Ovaskainen, O. et al. 2008. Tracking butterfly movements with harmonic radar reveals an 
effect of population age on movement distance. PNAS 105, 19090-19095.



Veera Norros collecting spore 
samples with a cyclone sampler

>sample1 
TTTCCGTAGGTGAACCTGCGGAAGGATCATTAATGAATACAATTCGGTCGGCGGGAAGGAGGGGGAG
CTGTCGCTGGCCTTGTGGCATGTGCACGCTCTCTTTGGAACGTCGGTCGTCTTTCATATTTTCACCAGTG
CACCCAATGTAGGATGCCTCTCCTCCGGGAGGGGGGACCTATGTCTTTTTCAGACGCCCCCACAGTTTA

>sample2
GAAAGTCTCAGAATGTTTACTATCGTCGAACCATGACTTCCAGGAGACGTGGGTCGGCGAGATAAAAG
TTATCACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCGAATTGCGATATG
TAATGTGAATTGCAGATCTACAGTGAATCATCGAATCTTTGAACGCACATTGCGCTCCTCGGTGTTCCG

>sample3

DNA data on dispersing fungal spores

Examples of movement data:



Bayesian state-space approach

Technical details on computation of likelihood and MCMC sampling:

Ovaskainen, O. 2004. Habitat-specific movement parameters estimated using mark–recapture data and a diffusion 

model. Ecology 85, 242-257.

Ovaskainen, O., Rekola, H., Meyke, E. and Arjas, E 2008. Bayesian methods for analyzing movements in 

heterogeneous landscapes from mark-recapture data. Ecology 89, 542-554.

Ovaskainen, O.  2008. Analytical and numerical tools for diffusion based movement models. Theoretical Population 

Biology 73, 198-211.
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2D

3D

A model of animal movement in heterogeneous space

Diffusion parameter  D

= movement rate within 
a given habitat type



Edge-mediated behavior (habitat selection at edges)

Schultz, C. B., and E. E. Crone. 2001. Edge-mediated dispersal 

behavior in a prairie butterfly. Ecology 82, 1879-1892.

tendency to continue in the 
direction already moving

tendency to 
move toward 
habitat patch

expected direction 
for the next move

http://www.esajournals.org/na101/home/literatum/publisher/esa/journals/content/ecol/2001/00129658-82.7/0012-9658(2001)082[1879:emdbia]2.0.co;2/production/images/large/i0012-9658-82-7-1879-f03.jpeg


Edge-mediated behaviour pushes the individual 
towards the preferred habitat
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Ovaskainen, O. and Cornell, S. J. 2003. Biased movement at a boundary and conditional 

occupancy times for diffusion processes. Journal of Applied Probability 40, 557-580.



Solving the diffusion model numerically



Simulating the time-evolution of the probability density

initial location 

location of a 

site that is 

searched for



Searching but not finding gives information

The capture probability p is the probability of observing an 

individual given that it actually is at the site
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Probability that an individual is 

in a site before the search

Probability that an individual is in 

the site after the site is searched 

for (without finding the individual)

Ovaskainen, O. 2004. Habitat-specific movement parameters estimated using 

mark–recapture data and a diffusion model. Ecology 85, 242-257.
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Females move faster than males outside the breeding habitat

Example of biological inference

Ovaskainen, O. et al. 2008. An empirical test of a diffusion model: predicting clouded 
apollo movements in a novel environment. American Naturalist 171, 610-619.



Example of model prediction

* ( ) 0L p x 

Theorem. The hitting 
probability satisfies

with boundary condition 1*CB

Ovaskainen & Cornell 2003 
(Journal of Applied Probability)
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What is the probability that the butterfly ever visits this meadow?
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Example of model validation

Model parameterized with data 

from Landscape A, prediction for 

Landscape B
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Ovaskainen, O., Luoto, M., Ikonen, I., Rekola, H., Meyke, E. and Kuussaari, M. 2008. An empirical test of a diffusion 

model: predicting clouded apollo movements in a novel environment. American Naturalist 171, 610-619.



Example of population-level data: winter track 
data have been collected in Finland for ca. 30 

game animal species since 1989

12 km long skiing route

Photo: I.Kojola
Graphics: Eliezer Gurarie



Spatio-temporal statistics (with INLA)

Number of tracks / km of searching effort

Jussi Jousimo



Movements by GPS collared wolves (2002-2008)

I.Kojola

S. Ronkainen

male
female

Source: llpo Kojola / GFR

GPS data on wolf movement

Gurarie, E., Suutarinen, J., Kojola, I. and Ovaskainen, O. (2011)



GPS data tells about movement distances and habitat use

Sample of 
GPS data

Urban Field Forest Bog Water

Expected use 0.04 0.08 0.69 0.08 0.11

Realized use 0.01 0.00 0.94 0.04 0.01

Relative preference 0.13 0.02 1.00 0.39 0.06

Histogram of daily
movement distances



Correcting population density by habitat preferences

=
x

Habitat preference

Individuals per 100 km  
2

Number of tracks / km
of searching effort

Daily
movement

distance



Comparison to independent data

Predicted number of lynxes
from winter track data

Source: GFR

Official statistics based
on independent data

Lynx

Individuals per 100 km  
2



Long-term aim: integrate information from various data sources



We talk about marked point processes...

Yuri Kondratiev

...or Markov evolutions in 
the space of locally 

finite configurations...

...and these models can be written down as a 
spatial moment equation

Ben Bolker

Mathematical methods for spatio-
temporal point processes



Markov evolutions in the space of finite configurations

Configuration space

Particles may

• follow birth-death dynamics
• move by jumps
• have marks (e.g. resource-consumer, predator-prey, genotypes)
• interact with other particles (or groups of particles)



General notation: evolution of measures

Example model: spatial logistic model

space of locally finite configurations a point configuration

observable



Mathematical methods of predicting 
such how models behave

dots: simulation results
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1 / interaction distance

Stephen Cornell

Example model:
spatial logistic model



Summer 2012: research program in stochastic 
dynamics in Bielefeld / Germany

Yuri KondratievLeonid Bogachev Ben Bolker

Four months, ca. 100 participants, with expertise in 
mathematics, physics and spatial ecology

Otso Ovaskainen



Translating mathematics to biology and vice versa

Prof. Yuri Kondratiev (Bielefeld, Germany)

"So we have a set of particles 
which we call animals.

And they produce seeds, right?"



Evolution of measures
(model definition, what the individuals do?)

Evolution of correlation functions
(how the model behaves, what the population does)?

Lesson from 
mathematicians



Correlation functions

Vector of all correlation functions:

x2
x1

x3x4x5

x6



Example: spatial logistic model

"Model 
definition"

"How the model 
behaves?"



Mathematical methods of predicting 
such how models behave

dots: simulation results
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Stephen Cornell

Example model:
spatial logistic model



Example: second truncated correlation function

e=1

e=1/2

e=1/4 e=1/8

e=1/16

e=1/32



Ingredients for cooking your model

(Ovaskainen, Cornell, Bolker, Kutovyi, Finkelshtein and Kontratiev, in prep.)



Conclusions

• State-space models combine a process model with an observation model. 

They allow one to bring biological knowledge into statistical inference, 

combine different data sources and use data with missing observations.

• Movement models can be integrated into models of demographic, genetic 

and evolutionary dynamics. Bringing different kinds of information 

together can help to get a more full picture.

• Hierarchical modeling approaches make it possible to build community-

level models from species-specific considerations. Such approaches 

allow one to assess the influences of different kinds of factors 

(environmental covariates, species interactions, phylogenetic effects, ...) 

on community structure.



Case study 1:
evolution of dispersal distance

Case study 2:
local adaptation

Ace North

North, Pennanen, Ovaskainen and Laine. 

Evolution 2010

The method applies to a wide range of models

North, Cornell and Ovaskainen. 

Evolution 2011



Case study 3: encounter rates between searcher 
(e.g. predators) and targets (e.g. prey)

Eli Gurarie

Gurarie and Ovaskainen. Theoretical Ecology 2012

The method applies to a wide range of models
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species-specific model

community model

The community model gives improved 
estimates for species-specific parameters

The ellipses 

show the 75% 

quantiles of the 

parameter 

estimates
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Inference based on the community-level parameters 

Mean response (over species) 

to the covariates

Variation (among species) in response to the covariates, and 

correlation between pairs of covariates

Rare species are specialised to nutrient 

poor and high pH waters, whereas 

common species are generalists

35% of the distance decay can be 

attributed environmental covariates 

parameters, 65% to spatial covariates

prediction with spatial and environmental covariates

prediction with spatial covariates only

0 1( , ) ~ ( , )N  μ V



Winter track data have been collected in Finland 
for ca. 30 game animal species since 1989

12 km long skiing route

Photo: I.Kojola
Graphics: Eliezer Gurarie



Evolutionary dynamics (evolution of dispersal): model vs. data
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C-allele for PGI makes the individual especially dispersive



A movement corridor was cut 
through the forest

The effect of a movement corridor

Northern population

Southern populationA B C
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Movements between 
the populations

Movements to 
the corridor area

Without corridor With corridor
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What kind of a corridor would increase movements?



The Levins metapopulation model

• Dynamic variable: p, fraction of occupied patches

• Extinction rate e

• Amount of suitable habitat: h

• Colonization rate parameter c

ceh /

Threshold condition for 

persistence:
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Levins, R. 1969. Some demographic and genetic consequences of environmental heterogeneity for biological control. 

Bull. Entomol. Soc. Am. 15, 237-240.

Lande, R. 1987. Extinction thresholds in demographic models for territorial populations. Am. Nat. 130, 624-635.

(1 )
dp

cph p ep
dt

  



• Dynamic variable: pi, the 

probability that patch i is occupied

• Extinction rate decreases with 

patch area

• Colonization rate increases with 

connectivity and patch area

ceM /Threshold condition for persistence:

The Hanski metapopulation model

Hanski, I. and Ovaskainen, O. 2000. The metapopulation capacity of a fragmented landscape. Nature 404, 755-758.

(Colonization rate) (1 ) (Extinction rate)i
i i i i

dp
p p

dt
  

black dots:

habitat patches



. 

The number of larval groups 
that survived over winter

~ ( , )N Bin E ~ ( )E Poisson 

The number of egg
groups in the autumn

 E N

The amount of time 
females spend in a patch

Deriving a stochastic patch occupancy model 
(SPOM) from the individual-based model (IBM)

Can we integrate E out?

The probability that no egg groups 
successfully spin a winter nest is  0 (1 )EP N   

Summing over the Poisson distribution gives  0 exp( )P N   





Non-random co-occurrence among species

In wood decaying fungi, some 

species pairs co-occur more often 

and others less often than expected

from independent occurrences

(after accounting for the covariates)

Multivariate species community models

1. Fit one model for the species community

Ovaskainen, O., Hottola, J. and Siitonen, J. 2010. Modeling species co-occurrence by 

multivariate logistic regression generates new hypotheses on fungal interactions. 

Ecology 91, 2514-2521.

Sebastián-Conzález, E., Sánchez-Zapata, J. A., Botella, F. and Ovaskainen, O. 2010. 

Testing the heterospecific attraction hypothesis with time-series data on species co-

occurrence. Proceedings of the Royal Society B: Biological Sciences 277, 2983-2990.

' '=Cov( , )ii ij i jR  

~ T

ij j i ijy x  

Environmentally constrained null-models

1. Fit species-specific models independently

2. Do a randomization test for the residuals

Peres-Neto. P. R., Olden, J. D. and Jackson, D. A. 2001. Environmentally

constrained null models: site suitability as occupancy criterion. Oikos 93, 110-120.

RMatrix
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Community-level model:

Shared responses to environmental covariates
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Testing the predictive power with real data
(500 diatom species on 105 streams)

Ovaskainen, O. and Soininen, J. 2011. Making more out of sparse data: 

hierarchical modeling of species communities. Ecology 92, 289-295.

~ T

ij j i ijy x  

~ ( , )i N  

Species-level models:

Community-level model:



Hierarchical modelling approaches

Baseline model for site j: ~ T

j j jy x  

Spatial & spatio-temporal models:
'Cov( , ) 0j j  

Multispecies models (i=species): ~ T

ij j i ijy x  

Co-occurrence patterns:
'Cov( , ) 0ij i j  

Shared responses to covariates ~ ...i

species occurrence residual

explanatory variables parameters



Spatio-temporal models (with INLA)

Jussi Jousimo et al., in prep.


