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Model selection is performed for various reasons

» Which model is most appropriate for our modelling
purposes/for our data?

» Which model requires least computational effort?
» Which model ist most flexible?
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A brief introdution to point processes

A space or time point process is a random collection of events
X ={x;j:i=1,...,n}, where x denotes either location within a
spatial region D or time within a time-interval [0, T].

The intensity measure of the process is given by
A(A) = E{# of points in A}.

When modelling point processes, we are often interested in the
intensity function, A(s),

/\(A):/A)\(s)ds

and we will here assume that such A(-) exists.
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Current model selection methods have two goals

1. To describe the features of the point pattern to distinguish
between

» complete randomness (Poisson process)
» repulsion
» clustering

2. To check the compatibility of a suggested/fitted model with
the observed data
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Goodness-of-fit tests are based on summary
statistics

The most classical summary statistic is Ripley's K-function. It is a
function of the pair correlation function

B )\2(u, v)
g0 v) = Sy’

where ) is the intensity function and A2 is the second order product
density for X. If g(u,v) = g(u — v), the K-function is defined by

K(r) = / g(u)du, r>0.
b(0,r)

Empirical estimates of the K-function are then compared to
theoretical values for suggested models.
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Goodness-of-fit for rain forest data based on the
K-function
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Type of pattern can be learned by analyzing
interpoint distances

» The empty space function F is the cdf of the distance from

an arbitrary location to the nearest point in X,
F(r)=P(XNb(0,r)#£0), r>0.

» The nearest-neighbour function G(r) is the cdf of the
distance between a 'typical’ point in X and its nearest
neighbour in X.

» The J-function incorporates both and is given by

1-G(r)

J(r) = T-F0) for F(r) <1

Estimates of these functions are then compared to the theoretial
values for a Poisson process to detect repulsion or clustering.
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Interpoint distances for Norwegian spruce data
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We want to take this a step further

Can we detect the type of clustering mechanism underlying a point
pattern based on formal tests?
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Cluster point processes

We consider and independent cluster process x = U{®; + 7;},
where W = {7;} is the parent process and ®; are secondary
offspring processes that are inhomogeneous Poisson.

Conditional density of x w.r.t x; ~ Po(¢) on B C R?

plx |V, 0,6) = exp (<181 — [ Z(€|W,,0)de) [T Z(€1 W10,

§ex

where | - | denotes area and

Z(¢|W,0,0) = Y aik(§ —7i]6))

T,EV

is the random intensity function for some kernel function k.
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Cluster process models consist of three parts

» model for ¥

» random (Poisson)

repulsive (Strauss, Matérn)

» clustered (multi-level)

» homogeneous/inhomogeneous

v

» model for the cluster sizes

» Poisson (distinct «j, a; = «)
» dispersion density k
normal (isotropic or not)
Cauchy

uniform on a disc
a mixture

vV vy VvVyy

We propose to perform the model selection within a Bayesian
inference framework.
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Our tool: Bayes factors

The marginal likelihood of the observed data x under model M is
given by

m(x|M) = / p(x[6. M)p(8]M)do,

where p(:|6, M) is the likelihood and p(-|M) is the prior density for
the parameter vector 6.

Two models, My and My, may then be compared by calculating the

Bayes factor

_ m(x|Mp)
PO = M)

Problem: m(x|M) is usually intractable.
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A very simple example: precipitation events at

Whiteface Mountain, NY

1976 1977 1978 1979 1980 1981 1982
L I I I I I I

T T T
1 Oct 1 Nov 1 Dec

13/33



We consider two competing models

Poisson process with intensity A on [0, T]:

P(X|A, Mpo) = A" exp (T (1 — /\))J

Matérn Type Ill point process with thinning parameter R:

p(X|A, R, M\ia) = 1{p(x) > R}A\"exp (T + A(nR — T)),J

where p(x) is the minimum interpoint distance in x.
(Huber and Wolpert, 2009)
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There is a strong evidence for repulsion
We assign prior distributions

p(\) =2¢"2* p(R)=1/T.

The resulting Bayes factor equals

o T ) )

where p(x) = 0.75, T =92, and n = 127.

BMa,Po =

log Bayes factor
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Example 2: Detecting a mixture of two processes

Can we detect whether we have one cluster process, or a mixture of
two such processes?

We test this under a modified Thomas model in a simulation study
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Modified Thomas process (Diggle, Besag and Gleaves, 1976)

» an (unobserved) homogeneous Poisson cluster centre process
> Poisson cluster sizes

» a normal isotropic dispersion process

We are interested in comparing two models on B = [0,1]?
Mo: modified Thomas process (with true dispersion sd w = 0.03)

My : mixture of two such processes (w; = 0.02,w, = 0.04)
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Model and inference

The random intensity function under My is given by

ziv.0 =olgg T o (Y o o (i)

with w; < wy for identifiability. The joint posterior distribution is

p(¢7 R, &, w’X) X P(X’Z(Wy «, w))P(wl’ﬁl)P(¢2’H2)P(“)P(0‘)P(w)7
and the MCMC simulation algorithm consists of
(a) updating the latent process 1) (via birth-death-move alg.);

(b) updating the parameters k, &, w (via MH or Gibbs sampling);

(c) proposing to jump between My and Mj (similar to Richardson and
Green (1997)).
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Reversible jump algorithm

We merge by

2 2
’ R1wi + Kaw5

W =1 U, K =k1+kKy W=
K1+ K2

The split move has two degrees of freedom, uy, u, ~ Beta(2,2),

K = (K, Kkh) = (u1k, (1 — U)K

1—U2
(.U— wl,w2 1_u1

Each point in v belongs to v} with probability s} /x or to ¥} with
probability x5 /k.

== Norsk
== Regnesentral 19/33



We need to balance the proposals

The density of the latent parent process ¥ w.r.t. y ~ Po(() is

p(v]k) = exp(|B|(¢ — r))k"¥)

and usually, the choice of ( is irrelevant. Here, we set

¢=n()/IBl, ¢ =n(1)/IB|, (2= n(y2)/|Bl.

This gives

D} 1) p(h )
og (=)

o Ky (i) / Ky (1)
= n(wl)[bg — —log n(w)] + n(wz)[bg = —log () }
which penalizes for a lack of balance between intensites and point

patterns.
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Bayesian model selection outperforms AIC

We compare our method to model selection with AIC,
AIC = —2log L + 2k,

where L is the ML value and k is the number of parameters, based
on maximum Palm likelihood estimation (Tanaka et al., 2008).

AIC BF
My My My M

True model My 8 2 10 O
True model M; 3 7 0 10

Classification results for 10 repetitions under each model
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Example 2: Detecting second order structure in
the parent process

» Can we detect whether the parent process is completely
random (Poisson), or whether the structure is repulsive?

» We want to answer this question for a young Pacific silver fir
(Abies amabilis) forest

» For this, we apply a Strauss model for the centre process with
normal dispersion density and Poisson cluster sizes as before
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Pacific silver fir data set

.ot

The data consists of locations of Pacific silver fir trees at eight 6 x 6m
plots at Findley Lake Reserve, WA. The area was clear-cut in 1957; we
have observations from 1978, 1990, and 20009.

.
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Distributions of interpoint distances indicate
clustering
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Summary statistics based on the J-function
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Model for the latent parent process

The Strauss model (Strauss, 1975) has density

p(¥ | v, 7, R) = Z(v, 7, R)v" =R o p* (4| 1,7, R)

where Z is an intractable normalizing constant and

s(,R)= Y Lllm -] <R}

Ti Ty €Y

» for v =1, this is the Poisson model
» for 0 < v < 1, cluster centres closer than R are discouraged

» for v = 0, cluster centres closer than R are not allowed
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Auxilliary variable MH algorithms make full
inference possible

Exchange algorithm by Murray et al. (2006)

for 6 € {v,v,R} do
1. sample ¢’ from q(6, )

2. generate a new latent process 7 from p(-|6’)
(Berthelsen and Mgller, 2003; spatstat)

3. compute
e ©19) p(al9)
q(60,6")p(0)p* (¢ [0) p*(n|6")

4. accept 0’ with probability min{1, r}

end

(Mgller et al., 2006; Murray et al., 2006; Liang and Jin, 2011)
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Posterior distributions
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Results based on the data from 1978 only
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Posterior distributions
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The temporal aspect

No reprocduction was recorded in the tree stand over the
observation period.

We can thus assume that the cluster centres and the dispersion
process don't change over time.

We assign « a conjugate ['(a, b) prior which results in

al{} Uk w ~ r(a+Z n(), b+> 0 > / 32 ( ”5 T’” )de).

JoTi Ell);

It is easy to obtain new posterior samples for o conditional on the
other parameters in the model.
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Cluster size development in time
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Cluster sizes for observations from 1978, 1990, and 2009
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Extensions to the inference procedure

» Formal testing procedure to determine whether v =1

» More rigorous method to deal with the identifiability issues
than to simply assume that R > r for some small r > 0

» Fully spatio-temporal analysis of the data
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Conclusions

» Bayesian model selection allows us to compare different
models for the clustering mechanism underlying clustered point
patterns

» When the marginal likelihood is intractable, the model
comparison can be complicated for non-nested models

» Recent advances in MH algorithms have made precise
inference possible for a large class of point process models with
intractable likelihoods
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