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New data types - what is distance?

I Distance between time series, images, songs or videos.

I Similar shopping profiles or medical history?

I Clustering of related temperature, wind and rain datasets!

I Distances between travel routes.

I How quantify if two matrices are similar?
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Distance between routes
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Distance between curves
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Distances

Data Y 1, . . . ,Y n, Y i = (Yi1, . . . ,Yip) for large p.
Distance or dissimilarity of data Dij = distance(Y i ,Y j). i , j = 1, . . . , n.

Similar ideas applies to distances or loss-functions, say between densities,
and for predictive power or cross-validation purposes?

Topic of course relates to norms and metrics in mathematics, but has
gotten increased interest the last years with abundant multivariate data.



Useful ”distance-based” methods for comparison and clustering

Main focus

I Traditional measures for statistical distance. Hausdorff distances
between curves and points.

I Multidimensional scaling (MDS) for distance projection.

I Dynamic time warping (DTW) for alignment, and related methods .
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Distances

Traditional distance measures in statistics: I

Some common norms and distances for data

DManhattan(Y i ,Y j) =

p∑
k=1

abs(Yik − Yjk)

DEuclid(Y i ,Y j) =

√√√√ p∑
k=1

(Yik − Yjk)2

DMahalanobis(Y i ,Y j) = (Y i − Y j)
tS−1(Y i − Y j)

where S is some specified or fitted covariance matrix.
(These measures provide limited visual basis and they are not always
natural or aligned for new data types. )
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Distances

Traditional distance measures in statistics: II

The Kullback-Leibler (KL) distance is often used to measure the
difference between two densities f and g .

DKL(f , g) =

∫
log

f (y)

g(y)
f (y)dy

For two Gaussian f and g distributions, : N(µ1,Σ1) and N(µ2,Σ2) the
KL divergence is:

DKL(f , g) =
1

2
(tr(Σ−11 Σ2)+(µ1−µ2)tΣ−11 (µ1−µ2)−p+log |Σ2|−log |Σ1|)

Cross-entropy is CE = −
∫

log g(y)f (y)dy .
(Often computed empirically for training and test set in machine
learning.)
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Distances

Traditional distance measures in statistics III

Wasserstein distance calculated the minimum effort to transform unit
masses from one density function to another (used in machine learning to
avoid vanishing gradients). For two Normal distributions:

DW(f , g) = tr(Σ1 + Σ2 − 2(Σ
1/2
2 Σ1Σ

1/2
2 )1/2) + (µ1 − µ2)t(µ1 − µ2)

Hellinger distances, Bhattacharya distance, also compute dissimilarity
between distributions.
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Distances

Traditional distance measures in statistics: IV
Brier Score or controlled rank probability score:

DCRPS(f , y) =

p∑
k=1

∫
(F (yk)− I (yk > yo

k ))2dyk

F (yk) is the cumulative distribution function of variable Yk .
(Often used to evaluate predictive performance, cross-validation.)

(There are related multivariate alternatives to CRPS.)
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Distances

Strings, curve or point measures I

Levenshtein distance counts number of changes to match two strings.
Distance is used a lot in text / word data.
Hausdorff distance is the maximum minimum distance.from one curve or
point set to the other.
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Distances

Hausdorff distance between routes
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Distances

Hausdorff distance between routes mapping
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Distances

Hausdorff distance

h = dist1(D,C ) = max {hH(D,C ), hH(C ,D)} ,

hH(D,C ) = max
i=1:|D|

{
min

j=1:|C |
||xD,i − xC ,j ||

}
.

where xE ,i is a point on curve E = {C ,D}.
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Distances

Hausdorff distance between designs
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Distances

Hausdorff distance between designs

Question is to allocate maximum n sensors to n possible different sites
s1, . . . , sn:

D0 = ∅,
D1 = {(s1), (s2), . . . , (sn)} ,
D2 = {(s1, s2), (s1, s3), . . . , (sn−1, sn)} ,

...
...

Dn = {(s1, . . . , sn)} , .

n possible designs of cardinality one,
(
n
2

)
possible designs of cardinality

two, etc.
2n possible designs in set D = {D0, . . . ,Dn}}.



Useful ”distance-based” methods for comparison and clustering

Distances

Finding useful designs

2n possible designs in set D = {D0, . . . ,Dn}}.
Comparing all designs is only feasible in smaller cases. Hausdorff
distances (or other) to measure similarity in designs can help guide search
for useful designs.
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Distances

Optimal designs
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Multidimensional scaling

Projected distances - MDS

Datasets Y 1, . . . ,Y n, Y i = (Yi1, . . . ,Yip) for large p.
Embed the dissimilarity of data Dij = distance(Y i ,Y j) in a smaller
dimension (typically 2) such that close points in the 2 dimensional plane
are also close in the p dimensional space.
Idea of Multi-dimensional scaling (MDS) goes back to Torgerson (1950s)
and Kruskal (1960-70s).
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Multidimensional scaling

MDS mathematics

Stress(x1, . . . , xn) =

√∑
i 6=j

(Dij − |xi − xj |)2

Find x1, . . . , xn, locations in 2 dimensional space that best visualize
differences and clusters in the data. (x attributes are centered at the
origin.)
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Multidimensional scaling

MDS plot in 2 dimensions

Figure: MDS of physical modeling data of drainage data (Scheidt et al. (2017).
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Multidimensional scaling

MDS algorithm

Gradient descent is one method to solve for xi , i = 1, . . . ,N.

argminx1,...,xN

√∑
i 6=j

(Dij − |xi − xj |)2

Find x1, . . . , xN , locations in 2 dimensional space that best visualize
differences in the data.
Actual implementation depends on distance measures (Sect 6.2 in Buja
et al.)
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Multidimensional scaling

MDS extensions

I Dissimilarities can be metric or nonmetric distance between data
inner-products (Sect 4.2 in Buja et al. )

I Dissimilarities use PCA (or PLS) with smoothing kernels.

I Dissimilarities based on neighborhood embeddings (tSNE), using
conditional probabilities, kernels with heavy tails and divergence
measures.
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Multidimensional scaling

MDS for datasets

Figure: MDS in two-dimensions of 1000 realizations of seismic variables from
two different dependence models.
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DTW

Dynamic time warping (DTW)

Figure: Illustration of warping function

Used a lot in speech recognition.
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DTW

Gas pipe data

Figure: Gas-pipe ethane measured in Norway, and in Germany.

Must align time series.
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DTW

Distances

Constraints on path p.
Cumulative distances

D(i , j) = min{D(i − 1, j − 1),D(i , j − 1),D(i − 1, j)}+ (xi − yj)
2

D(i , j) computed in cumulative manner, moving forward, from the
nearest neighbors.
d and D form two alignment matrices over paths (i , p(i)).
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DTW

Optimization problem

Time series xi , i = 1, . . . , n, yj , j = 1, . . . ,m.
Define path p : {i , j}, i = 1, . . . , n.

Dp =
n∑

i=1

(xi − yp(i))
2.
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DTW

Aligning sequences

Figure: Alignment matrix for ethane time series data, and optimal warping path.

Optimal (global) path is solved by backward selection in the cumulative
distance matrix.

p̂ er path som minimerer distansen Dp.

Full scale optimization can be slow, windowing, bounds, etc. can speed
up algorithm.
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Related problems

Recursive optimization

I Viterbi algorithm

I Sequential optimization

Examples of dynamic programming (DP).
Approximate dynamic programming and reinforcement learning.
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Related problems

Hidden Markov models

xi ∈ {0, . . . , k}, p(xi |xi−1, . . . , x0) = p(xi |xi−1),
p(yi |xi , . . . , x0, yi−1, . . . , y1) = p(yi |xi ).
Recursive forward summation.

p(xi |y1, . . . , yi−1) =
∑
xi−1

p(xi |xi−1)p(xi−1|y1, . . . , yi−1)

p(xi |y1, . . . , yi ) =
p(xi |y1, . . . , yi−1)p(yi |xi )∑
xi
p(xi |y1, . . . , yi−1)p(yi |xi )
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Related problems

Optimal sequence

[x̂1, . . . , x̂n] = argmax{p(x1, . . . , xn|y1, . . . , yn)}

Recursive forward maximization.

δk(1) = p(x1 = k)p(y1|x1 = k)

δl(i + 1) = maxk{∆k,l(i , i + 1)},

∆k,l(i , i + 1) = δk(i)p(xi+1 = l |xi = k)p(yi+1|xi+1 = l)

Optimal sequence by backtracking - ’path’ selection

[x̂n] = argmaxl{δl(n)}

[x̂i |x̂i+1, . . . , x̂n] = argmaxk{∆k,x̂i+1(i , i + 1)}
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Related problems

Optimal sequence vs marginal probabilities

Joint maximum:

[x̂1, . . . , x̂n] = argmax{p(x1, . . . , xn|y1, . . . , yn)}

Marginal maximum:

[x̃i ] = argmax{p(xi |y1, . . . , yn)}, i = 1, . . . , n.

Joint maximization is possible for this Markov model because of pairwise
coupling.
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Related problems : Sequential decisions

Sequential decisions

1. First, make best decision among many.

2. See outcome of selection.

3. Then, depending on the outcome xi ∈ {1, . . . , k}, make next best
decision.

The sequential selections depends on the outcome of the previously
selected nodes. Conditioning influences the conditional probabilities for
models with statistical dependence.
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Related problems : Sequential decisions

Selection of drilling locations
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Figure: Network of 25 drilling prospects, identified with the nodes from 1 to 25,
where we can possibly drill.
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Related problems : Sequential decisions

Evidence propagation
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Figure: Difference between the marginal probability of the state oil and the
probability of the state oil after observing a dry (left) or oil (right) evidence in
prospect 14 (top) or 10 (bottom).
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Related problems : Sequential decisions

Sequential decisions

Value is defined by nested equations:

v = max
i∈N


k∑

j=1

p(xi = j)

[
r ji + δ max

s∈N−1

{
k∑

l=1

p(xs = l |xi = j)(r ls + . . .), 0

}]
, 0

 ,

I Reward r ji .

I Discounting factor δ.

I Sequence of maximizations and expectations.
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Related problems : Sequential decisions

Way of life

1. First, decide which node, if any, to exploit first.

2. Then, depending on the outcome xi ∈ {1, . . . , k}, which node to
exploit next, if any, and so on.

The sequential selections depends on the outcome of the previously
selected nodes. Conditioning influences the conditional probabilities for
models with statistical dependence. Greedy exploitation often yields
poor exploration. Need both!

DP solves the optimization problem by working backwards:

1. First, decide whether to drill the last prospect, conditional on the
first N − 1 observables.

2. Then, decide which prospect to drill if there are two nodes left, and
so on, until the initial empty set.

Combinatorial complexity - approximations required.
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Related problems : Sequential decisions

Common approximation methods : heuristics

Naive strategy:

1. First, decide best from marginals.

2. Then, decide second best from marginal, third best marginal, if
positive rewards, and so on.

3. Value approximation by naive selection:

vN =
N∑
i=1

max


k∑

j=1

r ji p(xi = j), 0

 ,
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Related problems : Sequential decisions

Common approximation methods : heuristics
Myopic strategy:

1. First, decide best from marginal. i(1).

2. Observe, xi(1) = j , and condition based on data.

3. Then, decide second i(2j) from conditional distribution, observe xi(2j) ,
condition, and continue if positive rewards, and so on.

4. Value approximation by myopic selection:

v1 = max


k∑

j=1

r ji p(xi(1) = j), 0


v2 =

k∑
j=1

(
max

{
k∑

l=1

r lxi(2j)
p(xi(2j) = l |xi(1) = j), 0

})
p(xi(1) = j)

vM =
N∑
i=1

δi−1vi ,



Useful ”distance-based” methods for comparison and clustering

Related problems : Sequential decisions

Other heuristics

I Look-ahead stategies account for the next stages, but not all future
rewards.

I Rolling-horizon look-ahead strategies, conditioning every step, then
look-ahead.

I In large problems value computation is approximated over Monte
Carlo samples, playing the game of the strategy.
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Related problems : Sequential decisions

Comparison of some heuristics
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Figure: BN used for small case. N=6.
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Related problems : Sequential decisions

Comparison of some heuristics

Table: Results of the sequential exploration program different heuristics.

Naive Myopic Exact Dpt1 Dpt2 Dpt3 Dpt4

i(1) 3 3 6 6 6 6 6

i(2)|xi(1) = dry 4 Q 3 3 3 3 3

i(2)|xi(1) = gas 4 2 5 2 5 5 5

i(2)|xi(1) = oil 4 2 5 2 4 4 5

i(3)|xi(1) = dry , xi(2) = dry 6 Q Q Q Q Q Q

i(3)|xi(1) = dry , xi(2) = gas 6 Q 2 2 2 2 2

i(3)|xi(1) = dry , xi(2) = oil 6 Q 2 2 2 2 2

i(3)|xi(1) = gas, xi(2) = dry 6 4 4 5 4 4 4

i(3)|xi(1) = gas, xi(2) = gas 6 4 4 5 4 4 4

i(3)|xi(1) = gas, xi(2) = oil 6 4 4 5 4 4 4

i(3)|xi(1) = oil , xi(2) = dry 6 4 4 5 3 5 4

i(3)|xi(1) = oil , xi(2) = gas 6 4 4 4 2 2 4

i(3)|xi(1) = oil , xi(2) = oil 6 4 4 4 2 2 4

Final Value 0.63 1.67 4.960 3.85 4.84 4.93 4.957
Time 0.24 sec 0.24 sec 85.6 sec 0.43 sec 3.52 sec 16.11 sec 48.22 sec
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Related problems : Sequential decisions

Simulation regression approaches

Training:

1. Run many different strategies

2. Note results (rewards) along the way, for each strategy.

3. Fit a regression model for rewards based on this training data.

Regression:

1. First, decide best from regression function.

2. Observe, and condition based on data.

3. Then, update with observations, and continue with next best
positive rewards, according to the regression model, and so on.

Reinforcement learning using neural networks for training are very
popular at the moment. (AlphaGo).
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