
Gaussian Processes and Gaussian Markov Random Fields

Gaussian process regression

Model: Y (s) = X (s)β + w(s) + ε(s).

1. Y (s) response variable at ’location’ s.

2. β regression effects. X (s) covariates at s.

3. w(s) structured (space-time correlated) Gaussian process with 0
mean.

4. ε(s) unstructured (independent) Gaussian measurement noise.
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Gaussian model

Model: Y (s) = X (s)β + w(s) + ε(s).
Data at n ’locations’: Y = (Y (s1), . . . ,Y (sn))′.
Main goals are:

I Parameter estimation

I Prediction
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Gaussian model

Likelihood for parameter estimation:

l(Y ;β,θ) = −1

2
log |C | − 1

2
(Y − Xβ)′C−1(Y − Xβ)

C (θ) = C = Σ + τ 2I n
Var(w) = Σ, Var(ε(si )) = τ 2 for all i .
θ include parameters of the covariance model.
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Method

Maximum likelihood

MLE:
(θ̂, β̂) = argmaxθ,β{l(Y ;β,θ)}.
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Method

Analytical derivatives

Formulas for matrix derivatives.

Q(θ) = C−1

β̂ = [X ′QX ]−1X ′QY ,

Z = Y − X β̂

d log |C |
dθr

= trace(Q
dC
dθr

)

dZ ′QZ
dθr

= −Z ′Q
dC
dθr

QZ .
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Method

Score and Hessian for θ

dl

dθr
= −1

2
trace(Q

dC
dθr

) +
1

2
Z ′Q

dC
dθr

QZ ,

E

(
d2l

dθrdθs

)
= −1

2
trace(Q

dC
dθs

Q
dC
dθr

).



Gaussian Processes and Gaussian Markov Random Fields

Method

Updates for each iteration

Q = Q(θp)

β̂p = [X ′QX ]−1X ′QY ,

θ̂p+1 = θ̂p − E

(
d2l(Y ; β̂p, θ̂p)

dθ2

)−1
dl(Y ; β̂p, θ̂p)

dθ
,

Iterative scheme usually starts from preliminary guess, obtained via
summary statistics.
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Method

Illustration maximization

Exponential covariance with nugget effect. θ = (θ1, θ2, θ3)′: log
precision, logistic range, log nugget precision.
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Method

Asymptotic properties

θ̂ ≈ N(θ,G−1).

Information matrix:

G = G (θ̂) = −E
(
d2l

dθ2

)
.



Gaussian Processes and Gaussian Markov Random Fields

Prediction

Prediction from joint Gaussian formulation

Prediction

Ŷ0 = E (Y0|Y ) = X 0β̂ + C 0,.C−1(Y − X β̂).

C 0,. is size 1× n vector of cross-covariances between prediction site s0
and data sites.
Prediction variance

Var(Y0|Y ) = C0 − C 0,.C−1C ′0,..
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Numerical examples

Synthetic data

Consider unit square. Create grid of 252 = 625 locations. Use 49 data
randomly assigned, or along center line (two designs).

Covariance C (h) = τ 2I (h = 0) + σ2(1 + φh) exp(−φh), h = |s i − s j |.
θ include transformations of: σ, τ and φ.
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Numerical examples

Predictions
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Numerical examples

Likelihood optimization

True parameters β = (−2, 3, 1), θ = (0.25, 9, 0.0025).
Random design:
β = [−2(0.486), 3.43(0.552), 0.812(0.538)]
θ = [ 0.298(0.118), 7.89(1.98), 0.00563(0.00679)]
Center design:
β̂ = [−2.06(0.576), 3.4(0.733), 0.353(0.733)]
θ̂ = [0.255(0.141), 7.19(1.97), 0.00283(0.00128)]
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Computation

Computational challenge for large n

1. Build and store Σ(θ) = Σ = C + τ 2I n
2. Compute log |Σ|
3. Compute Σ−1 or (Y − Xβ)′Σ−1(Y − Xβ)

4. Factorize required matrices.

In general, the computational cost is O(n3).
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Computation

Possible solutions for large Gaussian models

I Approximate likelihood, Composite likelihoods.

I Basis representation.

I Markov representation.

I Predictive process models, sparse GPs.

I Tapered likelihood.

I Numerical linear algebra.
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Computation

Composite likelihood
I Use pairs of joints, not full joint.

lcl(Y ;β,θ) =
∑
i

∑
j>i

log f (Y (si ),Y (sj);β,θ)

I Fast calculations & Quantify loss in efficiency & Allows parallel
computing.

M blocks.

lCL(Y ;β,θ) =
M−1∑
k=1

∑
l>k

log f (Y k ,Y l ;β,θ)

=
M−1∑
k=1

∑
l>k

{−1

2
log |Σkl | −

1

2
Z ′klQklZ kl},

Z kl = (Y k ,Y l)
′ − (X k ,X l)

′β
Σkl = Σkl(θ) block-pair covariance. Size (nk + nl)× (nk + nl)
Qkl = Σ−1kl

n =
∑M

k=1 nk
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Computation

Asymptotic properties: Godambe sandwich

θ̂ ≈ N(θ,G−1)

G = G (θ̂) = H(θ̂)J−1(θ̂)H(θ̂),

H(θ̂) = −E
(
d2lCL

dθ2

)
, J(θ̂) = Var

(
dlCL
dθ

)
.
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Markov assumptions

Markov property

In the time domain, the Markov property holds if for any t > s > u,

p(y(t)|y(s), y(u)) = p(y(t)|y(s)).

The exponential correlation function gives a Markov process.
(Proof by trivariate distribution, and conditioning.)
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Markov assumptions

Precision matrix Q : inverse covariance matrix

Σ−1 = Q =

[
QA QA,B

QB,A QB

]
.

Q holds the conditional variance structure.
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Markov assumptions

Interpretation of precision

Q−1A = Var(Y A|Y B),

E(Y A|Y B) = µA −Q−1A QA,B(Y B − µB),

(Proof by QΣ = I .
Or by writing out quadratic form and p(Y A|Y B) ∝ p(Y A,Y B).)
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Markov assumptions

Algebraically equivalent forms

E (Y A|Y B) = µA + ΣA,BΣ−1B (Y B − µB),

Var(Y A|Y B) = ΣA −ΣA,BΣ−1B ΣB,A.

E(Y A|Y B) = µA −Q−1A QA,B(Y B − µB),

Var(Y A|Y B) = Q−1A .
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Markov assumptions

Sparse precision matrix Q

I For graphs the precision matrix is sparse.
I Qij = 0 if nodes i and j are not neighbors. Conditionally

independent.
I Qi,i+2 = 0 for exponential covariance function on a regular grid in

time.
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Markov assumptions

Conditional independence via Q

All other variables than yi are denoted y−i .
Neighborhood of node i is denoted Ni .

p(yi |y−i ) = p(yi |yj ; j ∈ Ni )

The neighborhood structure is given by the non-zero entries in Q.
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Markov assumptions

Sparse precision matrix Q

This sparseness means that several techniques from numerical analysis
can be used. Solve Qb = a quickly for b.
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Markov assumptions

Cholesky factorization of Q
Common method for sampling and evalution:

Q =

 Q1,1 . . . Q1,n

. . . . . . . . .
Qn,1 . . . Qn,n

 = LQL′Q ,

Lower triangular matrix

LQ =


LQ,1,1 0 . . . 0
LQ,2,1 LQ,2,2 . . . 0
. . . . . . . . . 0

LQ,n,1 LQ,n,2 . . . LQ,n,n

 ,
The Cholesky factor is often sparse, but not as sparse as Q, because it
holds the partial (ordered) conditional structure, according to an
ordering. This gives ’fill in’.
The ordering matters in how the fill-in takes place.
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Markov assumptions

Sparse LQ

LQ is related to a recursion:

p(y) = p(yn)p(yn−1|yn) . . . p(y1|y2, . . . , yn)

Which can be removed in the conditioning? If LQ,i,j = 0, it can be
removed.
Sparsity is maintained for exponential covariance function in time
dimension (Markov).
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Markov assumptions

Sampling and evaluation using LQ

Q =

 Q1,1 . . . Q1,n

. . . . . . . . .
Qn,1 . . . Qn,n

 = LQL′Q ,

LQY = Z .

(Previously, for covariance we had Y = LZ .)

log |Q| = 2 log |LQ | = 2
∑
i

LQ,ii
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Markov assumptions

GMRF for spatial applications.

A Markovian model can be constructed for a spatial Gaussian processes
(Lindgren et al., 2011).
The spatial process is viewed as a stochastic partial differential equation
(SPDE), and the solution is embedded in a triagularized graph over a
spatial domain.
More later (23 Jan).
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