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Background - Bayesian updating

Bayes formula

p(x |y) =
p(x , y)

p(y)
=

p(x)p(y |x)∫
p(x)p(y |x)dx

∝ p(x)p(y |x)

p(x) is prior.
p(y |x) is likelihood.
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Background - Bayesian updating

Example of such a model

x ∼ N(µx ,Σx)

y |x ∼ N(Hx ,T ), y = Hx + ε, ε ∼ N(0,T )

p(x |y) is Gaussian with

E (x |y) = µx + ΣxH ′[HΣxH ′ + T ]−1(y −Hµx),

Var(x |y) = Σx −ΣxH ′[HΣxH ′ + T ]−1HΣx .

Mean is linear in conditioning variable.
Variance is not dependent on conditioning variable, only correlations and
variances.
In most other models the step from prior-posterior is not obvious
(non-conjugate).
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Background - Bayesian updating

Particle representation of model

x1, . . . , xB ∼ p(x)

Samples (independent) from prior model. Samples are equally weighted
wb = 1/B, b = 1, . . . ,B.
In many application the goal is to update this sample representation to
an approximate posterior sample.

x1, . . . , xB ∼ p(x |y)

Samples can have non-equal weights wb,
∑B

b=1 w
b = 1, or equal weights

1/B.
For some methods the approximation converges to samples from the true
posterior, under some regularity conditions.
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Filtering

Sequential Bayesian data assimilation

Methods like the particle filter or ensemble Kalman filtering methods
have been very useful in data assimilation problems.

I Particle filter - introduced in 1990s for target tracking in real time
and robotic applications.

I Ensemble Kalman filter - introduced in the 1990s for oceanography
or meteorological applications.
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Filtering

Sequential Bayesian assimilation

p(x1), p(x t |x t−1), p(y t |x t), t = 2, 3, . . . ,T .
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Filtering

Dynamic model

Process model is described by:

p(x t |x t−1, . . . , x1) = p(x t |x t−1),

This could be a differential equation, or it could be a simple linear
process, or even a static process (x t = x t−1).

The data gathering process is described via the likelihood:

p(y t |x t , . . . , x1, y t−1, . . . , y 1) = p(y t |x t)

This could also be nonlinear, or it could represent picking a subset of
variables (with noise).
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Filtering

General formula

Filtering, solution:

p(x t |y 1, . . . , y t−1) =

∫
p(x t |x t−1)p(x t−1|y 1, . . . , y t−1)dx t−1.

p(x t |y 1, . . . , y t) =
p(x t |y 1, . . . , , y t−1)p(y t |x t)

p(y t |y 1, . . . , y t−1)

Note Markov assumption in process, and conditionally independent data.
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Filtering

Kalman filter

For a Gaussian prior x1 ∼ N(µ1,Σ1), linear Gaussian dynamic model
x t |x t−1 ∼ N(G tx t−1,Q), and linear Gaussian likelihood
y t |x t ∼ N(H tx t ,R), there exists an exact recursion for the filtering
distribution: p(x t |y 1, . . . , y t) = N(mt ,V t).

I Initialization:
µ1 = µ1, Σ1 = Σ1,

I Recursive updating for j = 1, . . . ,T :

S t = H tΣtH t
t + R,

K t = ΣtH t
tS
−1
t ,

mt = µt + K t(y t −H tµt),

V t = Σt −K tH tΣt .

Σj+1 = G tV tG t
t + Q

µj+1 = G tmt
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Filtering

Non-Gaussian or non-linear

In other situations there is usually no exact solution to the filtering
distribution. Approximations:

I Extended Kalman filter (EKF) : linearization

I Unscented Kalman filter (UKF) : design points and ’numerical’
integration

I Ensemble Kalman filter (EnKF) : Monte Carlo samples and linear
updates

I Particle filter (PF) : Simulation and likelihood weighting.
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Filtering

Algorithms

Summary of some filtering methods ; pros and cons.

Criterion EKF UKF EnKF PF

Analytic conditioning V V V
MC based V V
Non-linear w V V V
Scales with dim. V V
Reliable UQ w w
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Filtering

Sequential Monte Carlo methods for static problems

Most of the methods have also been used for static problems;

p(x |y 1, . . . , y t) =
p(x |y 1, . . . , y t−1)p(y t |x)

p(y t |y 1, . . . , y t−1)

∝ p(x |y 1, . . . , y t−1)p(y t |x)

Data are gradually incorporated in the model.
(Could also be done with same data many times: Multiple data

assimilation / likelihood increase: p(y |x) =
∏T

i=1[p(y |x)1/T ] )
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Filtering

Particle filtering

Sample representation (xb,wb), b = 1, . . . ,B.

The sample approximation is asymptotically exact, meaning that
functional estimators of the sample converge to the theoretical
counterpart, and that a central limit theorem holds for these estimators
under certain regularity conditions.

Gordon et al. (1993), Doucet et al. (2000)
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Filtering

Recall general formula

Filtering, solution:

p(x t |y 1, . . . , y t−1) =

∫
p(x t |x t−1)p(x t−1|y 1, . . . , y t−1)dx t−1.

p(x t |y 1, . . . , y t) =
p(x t |y 1, . . . , , y t−1)p(y t |x t)

p(y t |y 1, . . . , y t−1)

The original particle filter propagates samples in the prediction step and
re-weights them in the updating step.
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Filtering

Simulated Importance resampling : part I

Prediction:

p(x t |y 1, . . . , y t−1) =

∫
p(x t |x t−1)p(x t−1|y 1, . . . , y t−1)dx t−1.

For each (equally weighted) propagate or sample x t−1 from
p(x t−1|y 1, . . . , y t−1), draw xb

t ∼ p(x t |xb
t−1).

The samples xb
t , b = 1, . . . ,B are from the one-step predictive model.

p(x t |y 1, . . . , y t−1).
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Filtering

Simulated Importance resampling : part II

Updating:

p(x t |y 1, . . . , y t) ∝ p(x t |y 1, . . . , y t−1)p(y t |x t).

For each sample xb
t ∼ p(x t |xb

t−1), evaluate vb = p(y t |xb
t ) and the weight

wb =
vb∑B
c=1 v

c

.
Resample B times from the probability vector defined by (w1, . . . ,wB),
to get samples xbt , b = 1, . . . ,B from the filtering model.
p(x t |y 1, . . . , y t).
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Filtering

Particle filter representation

At each time t, the filtering distribution is approximated by (weighted)
samples.

I Weighted samples {xb
t ,w

b}, b = 1, . . . ,B.
∑B

b=1 w
b = 1.

I Equally likely samples: {xb
t }, wb = 1/B.

Monte Carlo approximation of a function

E (f (x t)|y 1, . . . , y t) =

∫
f (x t)p(x t |y 1, . . . , y t)dx t ≈

B∑
b=1

wbf (xb
t )

.
With convergence in probability and in Gaussian asymptotic distribution,
under some regularity condition on function f .
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Filtering

Illustration
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Filtering

Application: target tracking

B = 1000 samples. 4 dimensional system, positions and velocities.
Submarine measures bearings only (non-linear), and so must move in
pattern to determine states.
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Filtering

Variants of the Particle filter / Sequential Monte Carlo

I Re-sampling from wb, b = 1, . . . ,B, brings random error to the
system. Not always required, but can also add robustness to the
system.

I Proposals from the ’prior’ p(x t |y 1, . . . , y t−1) are inefficient. Can
improve this by importance sampling (or MCMC sampling within the
particle filter).

Efficient implementation must balance effective approximation (fast and
easy) and yet avoid degeneracy of samples meaning that one weight has
all probability mass: w (1) ≈ 1, w (2) ≈ 0, . . ., w (B) ≈ 0.
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Filtering

Sampling weights in particle filters

Proposals from xb
t ∼ p(x t |y 1, . . . , y t−1). (Unnormalized) weights

become:
vb ∝ p(y t |xb

t )

No re-sampling is done, and next time, (unnormalized) weights become:

vb ∝ p(y t+1|xb
t+1)vb

Resampling is introducing random error in the filter. Weights wb can
instead be computed sequentially.
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Filtering

Sampling weights degeneracy

Even though this procedure works for B →∞, in practice the weights
get very small and one weights dominates over the others (degeneracy).
Resampling is then required.

ESS =
1

Var(wb)

Resampling when the effective sample size (ESS) is small. Then the
weights are 1/B again.

The optimal strategy for resampling depends on the model. If there is
much noise in the dynamic model, there is less need for resampling. For
static models, resampling is required, often with some kernel to add
variability in samples.
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Filtering

Importance sampling in particle filters

Proposal density xb
t ∼ q(x t). Weights become:

wb ∝
p(y t |xb

t )p(xb
t |y 1, . . . , y t−1)

q(xb
t )

Often, the proposal density approximates the dynamics or likelihood part.
This will focus particles in interesting regions.
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Filtering

Idea of Importance sampling

Monte Carlo approximation of a function

E (f (x)) =

∫
f (x)p(x)dx =

∫
f (x)p(x)

q(x)
q(x)dx ≈

B∑
b=1

wbf (xb)

.

xb ∼ q(xb), wb ∝ p(xb)

q(xb)

Optimal proposal density q(x) ∝ f (x)p(x). Gives minimal Monte Carlo
variance. (But hard to sample from this in general.)
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Filtering

Practical Importance sampling in dynamic problems

It is often useful to account for data y t in the proposal q:

q(x t) ∝ p̂(y t |x t)p(x t |y 1, . . . , y t−1)

This guides the samples to interesting regions much more than ’prior’
sampling from q(x t) = p(x t |y 1, . . . , y t−1).

Improvements can be made by using MCMC in the sampling, at each
time step (rather computationally demanding).
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Filtering

Application: telemetric fish tracking

Data are presence / absence of fish over time at sensors placed in buoys
along the fjord. Each fish has a code.

(Kaia A Høyheim, MSc proj.)
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Filtering

Application: telemetric fish tracking

Gaussian proposal density (for entire path/velocity) using presence data
only:

q(x |y 1, . . . , y t) = Normal(µ̂, Σ̂)

Absence / presence data (at time t only) for sequential correction in the
weight

vb =

∏
j pj(x

b
t )I (yt,j=1)(1− pj(xb

t ))I (yt,j=0)

q(xb|y 1, . . . , y t)
.
pj(xb

t ) is detection probability of a sensor j , when true position is xb
t at

time t.
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Filtering

Application: telemetric fish tracking
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Application: telemetric fish tracking
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Filtering

Application: telemetric fish tracking
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Filtering

Application: fiber optic ship traffic monitoring

Dark fiber channels can measure vibrations caused by natural (earth
quakes, landslides, etc) or man-made source (ships, sea-bed activity, etc).

(Maia H Tømmerbakk, MSc proj.)
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Filtering

Application: fiber optic ship traffic monitoring
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Application: fiber optic ship traffic monitoring


	Background - Bayesian updating
	Filtering

