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Particle representation of model

x1, . . . , xB ∼ p(x)

Samples (independent) from prior model. Samples are equally weighted
wb = 1/B, b = 1, . . . ,B.
In many application the goal is to update this sample representation to
an approximate posterior sample.

x1, . . . , xB ∼ p(x |y)

Samples can have non-equal weights wb,
∑B

b=1 w
b = 1, or equal weights

1/B.
For some methods the approximation converges to samples from the true
posterior, under some regularity conditions.
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Filtering

Sequential Bayesian data assimilation

Methods like the particle filter or ensemble Kalman filtering methods
have been very useful in data assimilation problems.

I Particle filter - introduced in 1990s for target tracking in real time
and robotic applications.

I Ensemble Kalman filter - introduced in the 1990s for oceanography
or meteorological applications.
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Filtering

Sequential Bayesian assimilation

p(x1), p(x t |x t−1), p(y t |x t), t = 2, 3, . . . ,T .
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Dynamic model

Process model is described by:

p(x t |x t−1, . . . , x1) = p(x t |x t−1),

This could be a differential equation, or it could be a simple linear
process, or even a static process (x t = x t−1).

The data gathering process is described via the likelihood:

p(y t |x t , . . . , x1, y t−1, . . . , y 1) = p(y t |x t)

This could also be nonlinear, or it could represent picking a subset of
variables (with noise).
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Filtering

General formula

Filtering, solution:

p(x t |y 1, . . . , y t−1) =

∫
p(x t |x t−1)p(x t−1|y 1, . . . , y t−1)dx t−1.

p(x t |y 1, . . . , y t) =
p(x t |y 1, . . . , , y t−1)p(y t |x t)

p(y t |y 1, . . . , y t−1)

Note Markov assumption in process, and conditionally independent data.
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Filtering

Ensemble Kalman filter (EnKF)

I Monte Carlo based data assimilation

I Assimilation based on linear update

(Evensen, 1994, Evensen, 2009).
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Filtering

EnKF

I Initial: Independent prior samples xb,a
0 ∼ p(x0), b = 1, . . . ,B.

I Iterate for samples b = 1, . . . ,B and time steps t = 1, . . . ,T :
Forecast variables (could be non-linear, black-box solver):

xb,f
t = g(xb,a

t−1; εbt ),

Forecast data (could be non-linear, black-box solver):

yb
t = h(xb,f

t ; δbt ),

Assimilate:
xb,a
t = xb,f

t + K̂ t(y t − yb
t ).

K̂ t = Σ̂xy ,tΣ̂
−1

y ,t .
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Filtering

EnKF moves ensemble members

I No weights in the EnKF.

I All ensemble-members are shifted in the update.

I Ensemble-members are moved closer towards data.

I The move is linear and goes in along the same projection for all
ensemble-members.
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Filtering

EnKF update

xb,a
t = xb,f

t + Σ̂xy ,tΣ̂
−1

y ,t (y t − yb
t ).

This is a regression problem.

Σ̂y ,t =
1

B

B∑
b=1

(yb
t − ȳ t)(yb

t − ȳ t)
′, ȳ t =

1

B

B∑
b=1

yb
t

Σ̂xy ,t =
1

B

B∑
b=1

(xb,f
t − x̄ t)(yb

t − ȳ t)
′, x̄ t =

1

B

B∑
b=1

xb,f
t ,
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Filtering

Matrix equivalent EnKF updates

I The linear update has several equivalent forms.

I From Sherman-Woodbury-Morrison formula it can be done in data
domain.

I It can be regarded as a transform matrix from forecast to updated
anomalies around mean.

There are also iterative EnKF versions solving a near-quadratic
optimization problem. (We show only the standard solution to the
quadratic problem.)
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Univariate example

EnKF update in a univariate example

xb,a
t = xb,f

t + Σ̂xy ,tΣ̂
−1

y ,t (y t − yb
t ).

This is a regression problem, where the link between data mismatch and

analysis-forecast in ensemble is given by β = Σ̂xy ,tΣ̂
−1

y ,t

xb,a
t − xb,f

t = β(y t − yb
t ).

Σ̂y ,t =
1

B

B∑
b=1

(yb
t − ȳ t)(yb

t − ȳ t)
′, ȳ t =

1

B

B∑
b=1

yb
t

Σ̂xy ,t =
1

B

B∑
b=1

(xb,f
t − x̄ t)(yb

t − ȳ t)
′, x̄ t =

1

B

B∑
b=1

xb,f
t ,
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Univariate example - samples

xb ∼ p(x), yb = xb + N(0, 52)
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Univariate example

Univariate example - regression fit
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Univariate example

Univariate example - observation
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Univariate example

Univariate example - analysis or update step
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Univariate example

Univariate example - prior and posterior
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Univariate example

EnKF, Gauss-linear likelihood

I Initial: Independent samples xb,a
0 ∼ p(x0), b = 1, . . . ,B.

I Iterate for samples b = 1, . . . ,B and time steps t = 1, . . . ,T :
Forecast variables (could be non-linear, black-box solver):

xb,f
t = g(xb,a

t−1; εbt ),

Linear likelihood:
yb
t = Hxb,f

t + N(0,T )

Assimilate :

xb,a
t = xb,f

t + Σ̂tH
′
(HΣ̂tH

′
+ T )−1(y t − yb

t ).
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Kalman gain estimation

Estimation of Σt

Standard approach:

Σ̂t =
1

B

B∑
b=1

(xb,f
t − x̄ t)(xb,f

t − x̄ t)
′, x̄ t =

1

B

B∑
b=1

xb,f
t

Gives less Monte Carlo error than straightforward estimator for Kalman
gain.
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Kalman gain estimation

Gaussian random field

Use B = 100 ensembles (realizations) to estimate the covariance matrix.
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Kalman gain estimation

Estimation of covariance matrix

There is lots of Monte Carlo error in the estimated covariance matrix and
Kalman gain. Numerous tricks try to resolve this: inflation, localization,
etc. Also, since the Kalman gain is estimated from data, there is coupling
over many time steps which gives challenges. Resampling from a
Gaussian approximation might solve this.
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Kalman gain estimation

EnKF is an approximate filtering method

The EnKF is exact only under idealized conditions (linear, Gaussian
assumptions and sample size B goes to infinity).
For non-linear systems or non-Gaussian systems there are no asymptotic
results showing correctness. (It was hence criticized by statisticians
earlier.)
But experience shows that it works well for complex systems, so it is used
a lot.
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Autoregressive process example

Spatial AR(1) model

x0 ∼ N(0,Σ),

x t = ρx t−1 + N(0, (1− ρ2)Σ), t = 1, . . . ,T

y t = x t + N(0, τ 2I ), t = 1, . . . ,T

T = 10, 50× 50 grid.

EnKF is run with B = 5000 ensemble members.
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Autoregressive process example

Spatial AR(1): KF pred
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Autoregressive process example

Spatial AR(1): EnKF pred
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Autoregressive process example

Spatial AR(1): MSE and coverage

KF (o), EnKF (+).
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Autoregressive process example

Spatial AR(1): EnKF pred (B = 500)

(Average coverage for EnKF is 0.38 for nominal 0.90. This is not
uncommon for the EnKF to underestimate uncertainty.)
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Autoregressive process example

Problems with underestimation / ensemble collapse

I Localize the update. Only a subset of the variables are shifted. This
is usually achieved by a tapering of the estimated Kalman gain or
covariance matrices.

I Multiple data assimilation: Blows up variance of the update and
assimilated data many times. τ → τK .

I Inflation of ensemble after update (scalar factor can enter in various
ways (covariance or Kalman filter, or pull ensemble-members out
from mean after update). It is often tuned to match some statistics.)

I Resampling from a Gaussian approximation at certain steps.
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Autoregressive process example

Seismic data example

The posterior model for the subsurface variables conditional on seismic
data is computed by sequentially integrating data in blocks k = 1, . . . ,K .
From Bayes’ rule:

p(x |y 1, . . . , y k) ∝ p(y k |x)p(x |y 1, . . . , y k−1), (1)

At step k = K , the ensemble represents the posterior distribution.
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Autoregressive process example

Seismic data and blocks

In this case there is a well log near the location of the seismic data.
Ensemble-based solution is compared with the ’truth’.
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Autoregressive process example

Standard deviation over block assimilation

Standard deviation is naturally reduced top-down, as data in blocks are
assimilated.
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Autoregressive process example

Data assimilation results

Marginal ensemble-based 80 % intervals. Prior ensemble blue. Posterior
in red.
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Autoregressive process example

Geologic process models

Differential equation for sedimentation, corrected with data.
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Autoregressive process example

Time evolution of ensemble
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Autoregressive process example

Time evolution of ensemble
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Time evolution of ensemble
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Time evolution of ensemble
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Time evolution of ensemble
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Time evolution of ensemble
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Time evolution of ensemble
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Time evolution of ensemble
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Time evolution of ensemble
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Time evolution of ensemble
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Autoregressive process example

Time evolution of ensemble
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Autoregressive process example

Time evolution of ensemble

Sea level parameter - constant: θ(t) = θ0, tstart ≤ t ≤ tend
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