
Exercise : Ensemble-based inversion

The problem described here is motivated by tomographic imaging using
for instance seismic wave data, ultrasound technology or sonar measurements.

We consider a layered earth model with n = 100 subsurface layers of 1m
thickness from 0m to 100m depth. Data are acquired by emitting sound
waves from a source located at the surface (0m) and at lateral location 40m.
The measurements consist of travel times from this source to receiver sensors.
There are 50 receivers located at the bottom of layers 51, . . . , 100, at lateral
location 0m.

The case is illustrated in Figure 1, where the seismic ray-paths are sketched
in black, assuming straight lines. (In practice these paths would bend ac-
cording to Snell’s law giving a non-linear problem - not considered here.)
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Illustration of layers and source-receiver design

Figure 1: Layered earth model (red) is observed through seismic travel time
data. The geometric acquisition design has a source (blue circle) at the
surface and receivers in a borehole (blue crosses). The measurements are
travel times [msec] from the source to receivers assuming straight ray-paths
(black).
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Figure 2 shows the travel time data of the seismic wave going from the
source to each of the 50 receivers in the borehole. The goal is to learn the
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Figure 2: Traveltime data from source to receivers.

subsurface properties from these travel time data, and we use a statistical
approach for this inverse problem.

The seismic wave slowness (the inverse of velocity) in layer i is denoted
by xi, and the length n vector of slownesses is x = (x1, . . . , xn). The prior
model for slownesses is Gaussian with mean µi = E(xi) = 0.5 − 0.001i,
i = 1, . . . , n, standard deviation σ = 0.05 and correlation Corr(xi, xi′) =
(1 + ηhi,i′) exp(−ηhi,i′), η = 0.1, h = |i − i′|. Denote the joint model by
x ∼ N(µ,Σ).

Assuming straight ray-paths, the travel time data tj, j = 1, . . . , 50, are
described by the following forward model

tj =

∑j
i=1 xi

cos(θj)
+ εj, θj = arctan(40/dj). (1)

Here, dj is the depth of receiver j (dj = 51, . . . , 100m), and the measurement
noise terms εj ∼ N(0, τ 2) are assumed independent and τ = 0.1.

(a)
We formulate an ensemble-based solution to the inverse problem by as-

similating data tj, j = 1, . . . , 50, sequentially.
Generate B = 200 independent realizations from the prior model for

slowness, denoted xb, b = 1, . . . , B. Use for instance Cholesky factorization
Σ = LLT and then add the mean µ: xb = µ+Lzb, zb ∼ N(0, I).

Go recursively through all data in a loop from j = 1 to j = 50 (try also
j = 50 to 1). At each step, use the following algorithm:
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• Forecast ensemble members of travel time data tj using eq (1), including
the noise term. Each forecast data corresponds to one of the slowness
ensemble members, so pairs are (xb, tbj), b = 1, . . . , B.

• Form the empirical covariances Σx,tj (size n × 1) and σ2
tj

(size 1 × 1),

and the Kalman gain K = Σx,tjσ
−2
tj .

• Assimilate each ensemble member for slowness using

xb = xb +K(tj − tbj).

Visualize the ensemble representation at an intermediate step (j = 25)
and at the final data assimilation step. This can be done by plotting all
ensembles or via the empirical 10 and 90 percentiles of slowness in each
layer, obtained by sorting the ensemble values.

(b)
Repeat the procedure above, now with a different ensemble size. First,

try reducing the ensemble size to B = 50. Then try increasing the ensemble
size to B = 400. Run the algorithm a few times for the different ensemble
sizes and comment on the results.

Vary the assimilation order in both: j = 1 to j = 50 or j = 50 to j = 1.
(c)
With the linear forward model, Gaussian prior and measurement noise

assumptions, the posterior solution for slowness is Gaussian. This can hence
be computed directly, or via a recursive formulation as in a Kalman filter.
Here, this exact solution is compared with the ensemble-based approach.

For a Kalman filter solution, starting with E(x) = µ = µ0 and Var(x) =
Σ = Σ0, update the conditional mean µj = E(x|t1, . . . , tj) and covariance
Σj = Var(x|t1, . . . , tj) as follows:

• Pick j first indices for sum in eq (1) gj = (1, . . . , 1, 0, . . . , 0)/ cos(θj)
(size 1× n vector)

• Kalman gain K = Σj−1g
T
j /(gjΣj−1g

T
j + τ 2) (size n× 1 vector)

• Update mean µj = µj−1 +K(tj − gjµj−1)

• Update covariance matrix Σj = Σj−1 −KgjΣj−1

Visualize the solution by plotting the mean and the marginal 80 percent
uncertainty intervals, and compare with the ensemble-based solutions in (a)
and (b).
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