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Bayesian approach

I Variables of interest x = (x1, . . . , xn). Prior p(x).

I Data y = (y1, . . . , yN). Likelihood p(y |x).

Common setting:

I Likelihood: p(y |x), for instance p(y |x) = Normal(g(x),Σe)

I Prior: p(x), for instance p(x) = Normal(µ,Σ)

I Posterior: p(x |y) ∝ p(y |x)p(x)
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Sequential data assimilation

I Structure data or variables in increasing order (’time’).

I Update variables recursively moving through the order (’time’).

Why do this?

I Structure natural for realistic modeling of variables over order
(’time’).

I Data arrive sequentially, and we want on-line decisions.

I Split and conquer for handling large problems.
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Waveform inversion
I The objective is to predict (background) velocity distribution from

raw seismic recordings.

I Use sequential updating (over shot data and receiver time).

Wavefield at time 400 msec.

Wavefield at time 750 msec.
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Prediction, filtering and smoothing

p(x t |y 1, ....y t−1) =

∫
p(x t−1|y 1, . . . , y t−1)p(x t |x t−1)dx t−1

p(x t |y 1, ....y t) =
p(x t |y 1, . . . , y t−1)p(y t |x t)

p(y t |y t−1, . . . , y 1)

p(x t |y 1, ....yT ), p(x |y 1, . . . , yT )

Exact closed-form solutions:

I Markov models (Forward-backward algorithm)

I Gaussian linear models (Kalman filter, smoother)

Not so easy for other models...
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Linear Gaussian model assumptions

Conditional independence in process (state) model:

p(x t |x t−1, y 1, ....y t−1) = N(F tx t−1,Qt)

Simplest setting (static model): x t = x t−1

Conditional independence in measurement model:

p(y t |y 1, ....y t−1, x t) = N(G tx t ,Rt)
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Kalman filter

Elegant form for building the Gaussian distribution for prediction and
filtering/analysis/assimilation:

p(x t |y 1, ....y t−1) =

∫
p(x t−1|y 1, . . . , y t−1)p(x t |x t−1)dx t−1

p(x t |y 1, ....y t−1) = N(µt|t−1,Σt|t−1)

p(x t |y 1, ....y t) ∝ p(x t |y 1, . . . , y t−1)p(y t |x t) = N(µt|t ,Σt|t)
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Kalman filter : Prediction step

With linear expectation and Gaussian additive noise, the models remain
Gaussian. Need mean and covariance.
δt ∼ N(0,R)

µt|t−1 = E (F tx t−1 + δt |y 1, . . . , y t−1) = F tµt−1|t−1

Σt|t−1 = Var(F tx t−1 + δt |y 1, . . . , y t−1) = F tΣt−1|t−1FT
t + Qt
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Kalman filter update : Joint Gaussian

p(x t |y 1, ....y t) ∝ p(x t |y 1, . . . , y t−1)p(y t |x t) = N(µt|t ,Σt|t)

The updating with data y t relies on this result for joint Gaussian
variables: (

xA

xB

)
∼ N

[(
µA

µB

)
,

(
ΣA ΣA,B

ΣB,A ΣB

)]

[xA|xB ] ∼ N(µA + ΣA,BΣ−1B (xB − µB),ΣA −ΣA,BΣ−1B ΣB,A)
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Kalman filter update : Joint Gaussian

p(x t , y t |y 1, ....y t−1) is joint Gaussian

(
x t

y t

)
|y 1, . . . , y t−1 ∼ N

[(
µt|t−1

G tµt|t−1

)
,

(
Σt|t−1 Σt|t−1GT

t

G tΣt|t−1 G tΣt|t−1GT
t + Rt

)]

[x t |y t , y t−1, . . . , y 1] ∼ N(µt|t−1+K t(y t−G tµt|t−1),Σt|t−1−K tG tΣt|t−1)

K t = Σt|t−1GT
t [G tΣt|t−1GT

t + Rt ]
−1



Ensemble Kalman Filter

Methods

Traditional example

Gained popularity in space missions. Satellite control. Tracking planes
and ships.
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Spatio-temporal Kalman filter

Autoregressive space-time process:

x t = φx t−1 + N(0,Q)

Measure at some or all locations:

y t = G tx t + N(0,R)
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Spatio-temporal Kalman filter

AUV sampling of temperature data
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Spatio-temporal Kalman filter

Predictions from dynamic exploration of ocean temperatures.
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Spatio-temporal Kalman filter

Prediction variance from dynamic exploration of ocean temperatures.
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Approximate algorithms

The Kalman filter is exact only under idealized conditions (linear,
Gaussian assumptions).
Approximations must be used in more complex settings.
- common to use linearized, Gaussian approaches, ensemble-based
methods or Markov chain Monte Carlo.
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Approximate algorithms

Approximations ; pros and cons.

Criterion EKF UKF EnKF PF

Closed-form updating V V V
MC based V V
Non-linear w V V V
Scales with dim. V V
Reliable UQ V w V

- focus on EnKF (ensemble-based) methods.
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Ensemble Kalman filter (EnKF)
I Monte Carlo based data assimilation

I Forecast using (non-linear) physical relations

I Assimilation based on linear update

(Evensen, 2009).

(Other approaches exist (exercise).)
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Ensemble-based Kalman approximation

I Ensemble size B.

I Realizations xb, b = 1, . . . ,B from p(x1) = Normal(µ1,Σ1).

I Recursively assimilate data over ’time’ t = 1, . . . ,T .

I Kalman update of bth ensemble member at step t

xb
t = xb

t + K̂ t(y t − yb
t )

I yb
t = g(xb

t ) + N(0,Rt).

I Kalman weight matrix K̂ t = Σ̂xy ,t

(
Σ̂yy ,t + Rt

)−1
determined

empirically from forecast ensembles (xb
t , yb

t ), b = 1, . . . ,B.
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EnKF properties

I Ensemble based approximation to filtering distribution.

I Exact for Gaussian linear systems when the ensemble size goes to
infinity.

I Unclear how it performs for nonlinear systems (no mathematical
results), but in practice ensemble-based KF versions are performing
really well.
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Univariate example - forecast samples

xb ∼ p(x), yb = xb + N(0, 52)
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Methods

Univariate example - regression fit
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Univariate example - observation
y = 9.
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Univariate example - analysis or update step
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Univariate example - prior and posterior
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Nonlinear examples

Geologic process models

Differential equation for sedimentation, corrected with data.
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Nonlinear examples

Time evolution of ensemble

Sea level parameter - constant: θ(t) = θ0, tstart ≤ t ≤ tend
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Nonlinear examples

Seismic inversion

m(x) z(x , t) d (x r , t)

Elastic parameters

Propagating Wavefield

Measurements
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Nonlinear examples

Seismic - prior model
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Nonlinear examples

Seismic - posterior model
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Nonlinear examples

Exercise : Data

50 55 60 65 70 75 80 85 90 95 100

Receiver layer

30

35

40

45

50

55

T
ra

v
e
lt
im

e
 [
m

s
e
c
]



Ensemble Kalman Filter

Nonlinear examples

Exercise : Prior ensemble
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Ensemble-based prior
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Nonlinear examples

Exercise : Posterior ensemble
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Ensemble-based solution
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