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Bayesian model 

• All the currently available information is contained in the 
prior model for the variables: 
 

 
 

• New data (and the data gathering scheme) is represented 
by a likelihood model: 
 

 
 
• If we collect data, the model is updated to the posterior, 

conditional on the new observations: 
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Bayesian updating 

 
• What data is valuable?  

 
• Study the expected effect of data, 

before it is collected.  
 

• We gather data not only to reduce 
uncertainty, but to make better 
decisions. We have a goal, a clear 
question we want to answer.  

 p x

 |p x y



Value of information (VOI) 

In many Earth science applications we consider purchasing 
more data before making difficult decisions under uncertainty.  
The value of information (VOI) is useful for quantifying the 
value of the data, before it is acquired and processed. 

This pyramid of conditions  - VOI is different from other information criteria (entropy, 
variance, prediction error, etc.) 

ECONOMIC 



What if several projects or treasures? 

Relatively easy for univariate 
situations.  



What if several projects or treasures? 

P 

B 

C 
A 

Where to dig?  
All or none? Free to choose as many 
as profitable? One at a time, then 
choose again? 
 
  
Where should one collect data? All or 
none? One only? Or two? One first, 
then maybe another? 



Gaussian projects results 
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VOI and spatial models 

• Uncertainties are multivariate (spatial). Dependence.  
 

• Alternatives are multivariate (spatial): select sites for drilling, 
development, conservation, harvesting, etc. 
 

• Value function (spatial). Flow simulation. «physics» and 
economic attributes.  
 

• Data are multivariate (spatial). And variety of spatial tests 
(seismic, electromagnetic, etc.) 

 1,..., Na aa

 1,..., nx xx

 ,v x a

 1,..., my yy



Decision analysis – Prior value 

 1,..., Na aa

 1,..., nx xx

 ,v x a

• Uncertain variables: 
 
 
• Alternatives (Where? How? When?) 
 
• Value function is revenues, subtracted costs. 
 
 
• Risk neutral decision maker will maximize expected value: 

      max ( , ) ( , ) ( , ),E EPV v v v p a

x
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VOI 

Prior value: 

Posterior value: 

   VOI PoV PV y y

x

a

- Uncertainties 
 
 

- Alternatives 

y - Data 

 ,v x a - Value function 

VOI    =   Expected posterior value    –   Prior value 

  max ( , )PV vE a A x a

       max , |PoV E v p d  a Ay x a y y y



VOI workflow for spatial applications 

Alternatives are 
spatial! 

Data are 
spatial! 

Random 
variables 
are spatial! 

Computations 
are demanding! 



Information gathering 
.  

  Perfect Imperfect 

Total Exact observations are gathered for all 
locations. This is rare, occurring when 
there is extensive coverage and highly 
accurate data gathering. 

Noisy observations are gathered for all 
locations. This is common in situations with 
remote sensors with extensive coverage, e.g. 
seismic, radar, satellite data. 

Partial Exact observations are gathered at 
some locations. This might occur, for 
instance, when there is careful analysis 
of rock samples along boreholes in a 
reservoir or a mine. 

Noisy observations are gathered at some 
locations. Examples include hand-held (noisy) 
meters to observe grades in mine boreholes, 
electromagnetic testing along a line, biological 
surveys of species, etc. 

y x  y x 

,  subsety x ,  subset y x 



Illustration – forestry example 
.  

Where to put survey lines for timber volumes  information? 
Typically partial, imperfect information. 

Farmer must decide whether to harvest 
forest units, or not.  
 
Another decision is whether to collect 
data before making these decisions.  
If so, how and where should data be 
gathered. 



Decision situations and values 
.  

Assumption: Decision Flexibility Assumption: Value Function 

Low decision flexibility; 
Decoupled value 

Alternatives are easily 
enumerated  

Total value is a sum of value at every unit 

High decision flexibility; 
Decoupled value 

None  Total value is a sum of value at every unit 

Low decision flexibility; 
Coupled value 

Alternatives are easily 
enumerated  

None 

High decision flexibility; 
Coupled value 

None None  

a A

a A

a A

a A

 ,v x a

 ,v ax

   , ,j j

j

v v x ax a

   , ,j

j

v a v x ax



Decoupling – values are sums 
.  

Assumption: Decision Flexibility Assumption: Value Function 

Low decision flexibility; 
Decoupled value 

Alternatives are easily 
enumerated  

Total value is a sum of value at every unit 

High decision flexibility; 
Decoupled value 

None  Total value is a sum of value at every unit 

Low decision flexibility; 
Coupled value 

Alternatives are easily 
enumerated  

None 

High decision flexibility; 
Coupled value 

None None  

a A

a A

a A

a A

 ,v x a

 ,v ax

   , ,j j

j

v v x ax a

   , ,j

j

v a v x ax

Profit is sum of timber volumes from units. 



Decoupled versus coupled value 
.  

Value decouples to sum over units. 

Value involves complex coupling of 
drilling strategies, and reservoir 

properties. 

Petroleum company must decide how to 
produce a reservoir.  

Farmer must decide whether to harvest at 
forest units, or not.  



Low versus high flexibility 
.  

High flexibility:  
Can select individual units. 

Low flexibility:  
Must select all units, or none. 



    max ( , ) max ( , )P v p dEV v 

  
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Computation - Formula for VOI 

       max , |PoV E v p d  a Ay x a y y y

Computations : 
• Easier with low decision flexibility ( less alternatives).  
• Easier if value decouples (sums or integrals split). 
• Easier for perfect, total, information (upper bound on VOI).  
• Sometimes analytical solutions. Otherwise approximations and Monte Carlo. 



    max ( , ) max ( , )P v p dEV v 

  
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a A a A

x

x a x a x x

Formula for total perfect information 

      max ,PoV v p d  a Ax x a x x

    .VOI PoV PV x x

Upper bound on any 
information gathering scheme. 



.  
Gaussian process example 

• Analytical solution.  
• Decoupled value.  

 
• Compare high-low decision flexibility.  
• Compare different data gathering opportunities. 
• Study sensitivity of VOI for different parameter settings. 



Gaussian process for value 

   , 1 , , 0 0i i i

i i

v v x a x v x a     

Motivation, uncertainties on a grid - model profits directly. 

   , 1 , , 0 0i i i i iv x a x v x a   

Forest units.  
Uncertainty is value in 
each cell.  

Global alternatives 

Local alternatives 



.  
Gaussian process 
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Matern covariance. 



Formulas for Gaussian models 
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   ,p Nx  Prior for values.  
Uncertainties are timber values.  

Likelihood,  
design matrix, picks 
data locations. 

Motivation, uncertainties on a grid – forest units. 



Conditioning – Gaussian models 
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Prediction, Kriging. 



VOI – Gaussian models 
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Low flexibility:  
Must select all units, or 

none. 

   ,z z  standard Gaussian density and cumulative function 

1 1

max 0, max 0,
n n

i i

i i

E xPV 
 

    
    

    
  

Value decouples to sum. 



VOI – Gaussian models 
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High flexibility:  
Can select individual units. 

   ,z z  standard Gaussian density and cumulative function 
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Forestry example - information 
.  

Farmer must decide whether to harvest 
forest units, or not.  

Survey lines for timber volumes  information? 



.  
Forestry example - information 

Survey lines for timber volumes  information? 

Three data designs: 
• Total (all cells) 
• Partial (all cells along 

center lines) 
• Aggregate partial (sums 

along the two center 
lines). 



.  
VOI - Forestry example 

Total: all cells. Partial: Every cell along center lines. Aggregated partial: sums along center lines. 

Low flexibility:  
Must select all units, or none. 



.  
VOI - Forestry example 

Total: all cells. Partial: Every cell along center lines. Aggregated partial: sums along center lines. 

High flexibility:  
Free to select units. 



.  
Insight in VOI – Gaussian example 

• Higher decision flexibility gives larger VOI.  
 

• Total test does not neccessarily give much higher VOI than a partial test. It depends 
on the spatial design of experiment as well as the prior model (mean and 
dependence). 
 

 
 

• VOI increases with larger dependence in spatial uncertainties.  
 

• VOI is largest when we are most indifferent in prior (mean near 0 and large prior 
uncertainty. 
 

• VOI increases with higher accuracy of measurements.  
 



Bayesian networks and Markov chains 



.  
Bivariate petroleum prospects example 

Conditional 
independence between 
prospect A and B, given 
outcome of parent! 

Similar network models 
have been used in 
medicine/genetics, and 
testing for heritable 
diseases. 

 0,1 , 1,2,3ix i 



Bivariate petroleum prospects example 
.  

Joint  Failure prospect B Success prospect B Marginal probability 

Failure prospect A 0.85 0.05 0.9 

Success prospect A 0.05 0.05 0.1 

Marginal probability 0.9 0.1 1 



.  
Example - Bivariate petroleum prospects 



VOI workflow 



.  

Need to frame the decision situation:  
• Can one freely select (profitable) prospects, or must both be selected.  
• Does value decouple?  
• Can one do sequential selection?  

 
 

Need to study information gathering options:  
• Imperfect (seismic), or perfect (well data)?  
• Can one test both prospects, or only one (total or partial)?  
• Can one perform sequential testing?  

Bivariate petroleum prospects 



.  

Need to frame the decision situation:  
• Can one freely select (profitable) prospects, or must both be selected. Free selection. 
• Does value decouple? Yes, no communication between prospects. 
• Can one do sequential selection? Non-sequential. 

 
 

Need to study information gathering options:  
• Imperfect (seismic), or perfect (well data)?  Study both. 
• Can one test both prospects, or only one (total or partial)? Study both. 
• Can one perform sequential testing? Not done here. 

Bivariate petroleum prospects 



Bivariate prospects example - perfect 
.  

Assume we can freely select (develop) prospects, if profitable. 

  
 
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 
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   VOI PoV PV x x

Total clairvoyant 
information 



Bivariate prospects example - perfect 
.  

Assume we can freely select (develop) prospects, if profitable. 
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.  

 |j jp y k x k k      

Bivariate prospects example - imperfect 

Define sensitivity of seismic test (imperfect): 



Bivariate prospects example - imperfect 
.  

Assume we can freely select (develop) prospects, if profitable. 
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Total imperfect 
information 

Can also purchase imperfect partial information i.e. about one of the prospects? 



.  
VOI for bivariate prospects example 

Imperfect total better then partial perfect. Partial perfect is better than imperfect total.  



.  
VOI for bivariate prospects example 

Imperfect total better then partial perfect. Partial perfect is better than imperfect total.  

Price of test is 0.3 



.  
Insight in VOI – Bivariate prospects 

• VOI of partial testing is always less than total testing, with same accuracy.  
 

• Total imperfect test can give less VOI than a partial perfect test. Difference depends 
on the accuracy, prior mean for values, and correlation in spatial model.  

 
 

• VOI is small for low costs (easy to start development) and for high cost (easy to avoid 
development). We do not need more data in these cases. We can make decisions 
right away. 



Martinelli, G., Eidsvik, J., Hauge, R., and Førland, M.D., 2011, Bayesian networks for prospect 
analysis in the North Sea, AAPG Bulletin, 95, 1423-1442. 

Larger networks - computation 

Algorithms have been developed for efficient 
marginalization, conditioning. 



VOI workflow 

• Develop prospects separately. 
Shared costs for segments within 
one prospect.  

• Gather information by exploration 
drilling. One or two wells. No 
opportunities for adaptive testing. 

• Model is a Bayesian network 
model elicited from expert 
geologists in this area. 

• VOI analysis done by exact 
computations for Bayesian 
networks (Junction tree algorithm 
– efficient marginalization and 
conditioning).  
 



.  
Bayesian network , Kitchens 

Model elicited from experts.  
Migration from kitchens. 
Local failure probability of migration. 



.  
Prior marginal probabilities 

Three possible 
classes at all 
nodes: 
• Dry 
• Gas 
• Oil 



.  
Prior values 

 
13
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Development fixed cost. 
Infrastructure at prospect r. 

Revenues of oil/gas, 0 
otherwise. 

Cost if dry, 0 
otherwise. 

Cost of drilling 
segment i. 



.  
Values 

Most lucrative. But might not 
be most informative. 



.  
Posterior values and VOI 

     
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 

Data acquired at single well. 

   VOI x PoV x PV 



.  
VOI single wells 

Development fixed cost. 



.  
VOI for different costs 

Development fixed cost. 



.  
VOI for different costs 

• For each segment VOI starts at 0 (for 
small costs), grows to larger values, 
and decreases to 0 (for large costs). 

• VOI is smooth for segments 
belonging to the same prospect. 
Correlation and shared costs. 

• VOI can be multimodal as a function 
of cost, because the information 
influences neighboring segments, at 
which we are indifferent at other 
costs.  



.  Insight from this example: 

• VOI is not largest at the most lucrative prospects.  
• VOI is largest where more data are likely to help us make better decisions. 
• VOI also depends on whether the data gathering can influence neighboring 

segments – data propagate in the Bayesian network model. 
 

• Compare with price? Or compare different data gathering opportunities, and provide 
a basis for discussion.  



Markov chains   

Markov chains are special graphs, defined by 
initial probabilities and transition matrices. 
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Independence Absorbing 

2d 



Avalanche decisions and sensors 
Suppose that parts along a road are at risk of avalanche.  
- One can remove risk by clearing roads, at a cost. 
- Otherwise, the repair cost depends on the unknown risk class: 1) low, 2) high. 

 
Data, sensor at a particular location, can help classify the risk class and hence improve 
the decisions made regarding cleaning / wait and see. 
 

 
 



VOI workflow 

• Clear entire road up front (fixed 
cost), or wait and see (uncertain 
cost at each location).  

• Gather information by sensor at 
one location, perfect information 
about risk class at that location.  

• Model is a Markov chain with 
increasing probability of high risk 
for later indeces (altitude). 

• VOI analysis done by Markov chain 
calculations. Conducted for all 
possible sensor locations. 
 



Avalanche decisions - risk analysis 
n=50 identified locations along railroad track, at increasing altitude and risk of avalanche.  
One can remove risk entirely by cost 100 000. 
If it is not removed, the repair cost, at each location, depends on the unknown risk class: 
 

 
 

 
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Decision maker must choose whether to  
i) clean tracks up front, with fixed price. 
ii) wait and see, with the uncertain price at each location.  
 
The decision is based on the minimization of expected costs.  
 
Prior value: 

Clean up front Expected value when 
wait and see.  



Markovian model for risk of avalanche 
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Risk tends to start in lower class (1), and then move to higher class (2).  
If risk class 2 is reached, it will stay there until location 50 (absorbing state).  

Absorbing! 



Results – marginals 
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Sensor – perfect risk information at one 
location 

 
 

 
- Install a sensor at one location, getting perfect information at that node.  
- Compute conditional probabilities.  

 

 | , 1, ,50i jp x k x l i  



Results – conditionals (forward) 
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Results – conditionals (backward) 
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Results – conditional probabilities 
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Learning risk of avalanche 

 
 

 
- Plan to install a sensor at one location, getting perfect information at that location.  

 

- Compute the posterior value, with sensor location at one location. 
Compute the VOI. 

- What is the optimal sensor location, if the goal is to improve risk decisions? 

 1, ,50j



Results – VOI 
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Best location near j=30.  
The VOI is about 13000 



Project : HMM (imperfect data) 
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