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The note is adapted from the note
Tyssedal: “To-niv̊a faktorielle forsøk og blokkdeling”.

Example

The connection between yield of a chemical process and the two factors temper-
ature and concentration is to be investigated. Four experiments are conducted,
where two values of each factor are used. This gives 4 possible level combina-
tions of the two factors to investigate the yield. The experiment is given in the
table below, where the observed responses (yield) are also given:

Experiment no. Temperature Concentration Yield

1 160 20 60
2 180 20 72
3 160 40 54
4 180 40 68

x1 x2 y

The appropriate linear regression model is

y = β0 + β1x1 + β2x2 + β12x1x2 + ε,

where the product term x1x2 is included in order to model a possible interaction
between the two factors temperature and concentration.

The design matrix X of this model is obviously:

X =




1 160 20 3200
1 180 20 3600
1 160 40 6400
1 180 40 7200




MINITAB fits the following model:

Regression Analysis: y versus x1; x2; x1x2

The regression equation is

y = - 14,0 + 0,500 x1 - 1,10 x2 + 0,00500 x1x2

Predictor Coef

Constant -14,0000

x1 0,500000

x2 -1,10000

x1x2 0,00500000
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Let us now recode the factors by introducing new independent variables

z1 =
x1 − 170

10

z2 =
x2 − 30

10
z12 = z1 · z2

The regression model is now

y = β0 + β1z1 + β2z2 + β12z12 + ε (1)

with design matrix

X =




1 −1 −1 1
1 1 −1 −1
1 −1 1 −1
1 1 1 1


 (2)

and MINITAB finds the following model:

Regression Analysis: y versus z1; z2; z12

The regression equation is

y = 63,5 + 6,50 z1 - 2,50 z2 + 0,500 z12

Predictor Coef

Constant 63,5000

z1 6,50000

z2 -2,50000

z12 0,500000

To see that we have the same fitted model, we can substitute the expressions
for z1, z2, z12 in terms of the x1, x2, to get:

ŷ = 63.5 + 6.5 · x1 − 170

10
− 2.5 · x2 − 30

10
+ 0.5 · x1 − 170

10
· x2 − 30

10
= −14 + 0.5x1 − 1.1x2 + 0.005x1x2

Design of Experiments (DOE) terminology

In the example we consider two factors, A=temperature, B=concentration, and
the response y=yield.

Each factor has two levels:

Factor low high

A 160o (-1) 180o (+1)
B 20o (-1) 40o (+1)

We have thus 2 factors which each can be on 2 levels, making 22 = 4 possible
combinations. The following is standard notation of such an experiment, a so
called 22 experiment:
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A B AB Level code Response

-1 -1 1 1 y1

1 -1 -1 a y2

-1 1 -1 b y3

1 1 1 ab y4

z1 z2 z12

The level code shows the factor(s) at high level for the corresponding level
combination.

Multivariate regression with orthogonal design matrix X

(Chapter 12.7 in book)

Consider the vector/matrix setup y = Xβ + ε, or written out,



y1

y2

...
yn




=




1 x11 x21 · · · xk1

1 x12 x22 · · · xk2

...
1 x1n x2n · · · xkn







β0

β1

...
βk




+




ε1
ε2
...
εn




We say that X has orthogonal columns if the product-sum of any two columns
is 0. This means here that:

n∑

i=1

xjix`i = 0 when j 6= ` (j, ` = 1, . . . , k)

n∑

i=1

x`i = 0 for ` = 1, . . . , k

The last equality, which says that each of the column sums for ` = 1, . . . , k are
0, follows since the left column has only 1s).

A remarkable fact about the estimated regression coefficients in the above model
is that each bj depends on X only via the corresponding column for xj , and
that the estimated coefficients hence do not change when we look at submodels
(i.e. take out variables from the model). The formulas are:

b0 = ȳ

bj =

∑n
i=1 xjiyi∑n
i=1 x2

ji

for j = 1, 2, . . . , k (3)

from which we get in particular

V ar(bj) =
σ2

∑n
i=1 x2

ji

(prove it!)

We also have:

SSR = b2
1

n∑

i=1

x2
1i + b2

2

n∑

i=1

x2
2i + · · · + b2

k

n∑

i=1

x2
ki (4)

so that

SSE = SST − SSR =
n∑

i=1

(yi − ȳ)2 − b2
1

n∑

i=1

x2
1i − · · · − b2

k

n∑

i=1

x2
ki
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Back to the 2
2 experiment

We see that the columns of X in (2) are orthogonal (check!) This simplifies
the estimation of the regression coefficients. Here we can use the formulas (3).
Note that all the xji are now equal to ±1, so

∑n
i=1 x2

ji = n(= 4), and the
numerators are all of the form

∑n
i=1 ±yi where + or − are determined from the

corresponding colums. Such expressions are called contrasts.

We get, using the formula in (3):

b0 =
y1 + y2 + y3 + y4

4
= 63.5

b1 =
−y1 + y2 − y3 + y4

4
=

y2 + y4

4
− y1 + y3

4
= 6.5

b2 =
−y1 − y2 + y3 + y4

4
=

y3 + y4

4
− y1 + y2

4
= −2.5

b12 =
y1 − y2 − y3 + y4

4
=

y4 − y3

4
− y2 − y1

4
= 0.5

These estimators can be given an interpretation using Design of Experiments
(DOE) terminology:

First, b0 is named mean response.

Note that when factor A goes from low level (-1) to high level (+1), the mean
response of y increases by 2β1 (see the regression model (1)). This is interpreted
as the main effect of A. Therefore, the estimate 2b1 will be interpreted as the
estimated main effect of A, denoted Â. The following gives a nice and intuitive
interpretation of Â, where the last line is used as a general definition of the
main effect of a factor in DOE.

Â = 2b1

=
y2 + y4

2
− y1 + y3

2
= mean response when A is high − mean response when A is low

Similarly, the estimated effect of B is:

B̂ = 2b2

=
y3 + y4

2
− y1 + y2

2
= mean response when B is high − mean response when B is low

Now what is the DOE interpretation corresponding to b12? The answer is that
2b12 is denoted ÂB and called the estimated interaction effect between A and

B. We have the following motivation for this, where the last line is the general
definition of a two-factor interaction:

ÂB = 2b12

=
y4 − y3

2
− y2 − y1

2

=
estimated main effect of A when B is high

2

− estimated main effect of A when B is low

2
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Note that we also have the symmetric interpretation:

ÂB = 2b12

=
y4 − y2

2
− y3 − y1

2

=
estimated main effect of B when A is high

2

− estimated main effect of B when A is low

2

From this we compute:

Â =
72 + 68

2
− 60 + 54

2
= 13

B̂ =
54 + 68

2
− 60 + 72

2
= −5

ÂB =
68 − 54

2
− 72 − 60

2
= 1

Figure 1 illustrates the estimates.

Three factors

The standard setup is as follows, where + corresponds to high level and -
corresponds to low level of the factors.

A B C AB AC BC ABC Level code Response

- - - + + + - 1 60
+ - - - - + + a 72
- + - - + - + b 54

+ + - + - - - ab 68
- - + + - - + c 52

+ - + - + - - ac 83
- + + - - + - bc 45

+ + + + + + + abc 80

z1 z2 z3 z12 z13 z23 z123

The corresponding regression model is:

y = β0 + β1z1 + β2z2 + β3z3 + β12z12 + β13z13 + β23z23 + β123z123 + ε

where z12 = z1z2, z13 = z1z3, z23 = z2z3, z123 = z1z2z3 and the design matrix
is given by putting −1 instead of −, +1 instead of + and adding a column of
1s to the left in the table above.

Estimated effects using the above data are given on slides from the lectures.
While the main effects Â, B̂ are straightforward to compute, we now have, for
example,

ÂB = 2b12

=
estimated main effect of A when B is high

2
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Figure 1: Graphical representation of estimated main effects and interaction in
22 experiment
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− estimated main effect of A when B is low

2

=
68+80

2
− 45+54

2

2
−

83+72

2
− 52+60

2

2
= 1.5

A brand new concept is the estimated third order interaction between A, B and
C. This is defined and interpreted as follows:

ÂBC = 2b123

=
estimated interaction between A and B when C is high

2

− estimated interaction between A and B when C is low

2

You should check yourself that this is the same as computing 2b123 by using
the + and - in the column of ABC in the given table. Also check that we may
write “A and C when B is high/low” or “B and C when A is high/low” and get
the same result for ÂBC.

General full factorial 2
k experiment

In general there are k factors, usually named A,B,C,D,E,... which each can be
at two levels. The regression model can be written

y = β0 + β1z1 + β2z2 + · · · + βkzk

+ β12z12 + β13z13 + · · · + βk−1,kzk−1,k3

+ β123z123 + · · · + βk−2,k−1,kzk−2,k−1,k

+ · · ·
+ β123···kz123···k

+ ε

Here 1 corresponds to A, 2 corresponds to B, 12 corresponds to AB, etc. There

are k main effects (single indices),

(
k
2

)
two-factor interactions,

(
k
3

)
third

order interactions, etc. Hence there are altogether (including β0)

1 +

(
k
2

)
+

(
k
2

)
+ · · ·

(
k
2

)
= 2k

coefficients in the model. It can be shown that the design matrix is, for any k,
orthogonal. Thus we have the simple estimates of the coefficients given by

bj =

∑n
i=1 xjiyi∑n
i=1 x2

ji

=

∑n
i=1 ±yi

n

so that the corresponding effect is given by

̂Effect j = 2bj =

∑n
i=1 ±yi

n
2
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where the + and − in front of the yi are determined from the corresponding
column in the factor table, and n is the number of observations. Here and later
we will use ̂Effect j to denote a generic estimated effect, which in practice can be

any of Â, ÂB, ÂBC etc. The index j may also correspond to interactions, for
example j = (123) for interaction between A,B and C. It will also sometimes be
convenient to define Effect j without hat to mean simply 2βj (for main effects
or interactions).

It follows, since the y all have the same variance σ2, that for any estimated
effect:

V ar( ̂Effect j) = V ar(

∑n
i=1 ±yi

n
2

) =
nσ2

n2

4

=
4σ2

n
≡ σ2

effect

The quantity σ2
effect has here been introduced for convenience. We will use it

interchangeably with σ2. The two should not be confused.

Estimation of σ
2

In multiple regression we used

s2 =
SSE

n − r − 1

where r is the number of independent variables. In a full factorial 2k experiment
we have r = 2k − 1 while n is 2k. This means that n− r− 1 = 0, and the above
s2 therefore has no meaning. The reason is that we estimate 2k parameters
(including β0) while we have the same number of observations. This turns out
to be too few observations to estimate σ2. For intuition, this is similar to the
fact that we cannot estimate σ2 in the one-sample case if we have just one
observation. (We can, however, estimate µ in this case. How?) We therefore
need an alternative method for estimating σ2.

For a full factorial experiment, MINITAB uses the so called Lenth’s method (see
Appendix of this note - the theory is not in the required syllabus of TMA4255).
This method is based on an assumption that not all effects are non-zero, but
one needs not specify which effects one suspects are zero.

In some cases a 2k experiment is conducted with replicates, leading to two or
more independent observations for each combination of low/high for the factors.
In a case with r replicates of the experiment, we will have n = r · 2k, so SSE
will have r · 2k − 2k = (r − 1) · 2k degrees of freedom. In this case the usual s2

from regression can be used.

Without replicates, we can either use Lenth’s method mentioned above, and
being the default in MINITAB, or use the following method:

Estimation of σ
2 by assuming specified higher order interactions

are 0

We have in general
̂Effect j ∼ N(Effect j , σ

2
effect)
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This follows directly from bj ∼ N(βj , σ
2/n) (from the regression results), and

then using that ̂Effect j = 2bj .

It is sometimes reasonable to assume that higher order effects are 0, i.e. that
the theoretical Effect j = 0 when j represents such interactions, for example the
interactions ABC, ABD, ACD, BCD, ABCD in a case with four factors. For
such j we have

̂Effect j ∼ N(0, σ2
effect)

and hence
E( ̂Effect

2

j ) = σ2
effect

Thus ̂Effect
2

j is an unbiased estimator of σ2
effect if Effect j = 0 or equivalently

βj = 0. Usually several effects are assumed to be 0, and we then use the

average of the ̂Effect
2

j to estimate σ2
effect . In the example with four factors and

third and fourth order interactions assumed to be 0, we get:

s2
effect =

ÂBC
2
+ ÂBD

2
+ ÂCD

2
+ B̂CD

2
+ ̂ABCD

2

5
(5)

Example: Consider the setup and data in Figure 2. The effects (and coeffi-
cients) are estimated in the following output from MINITAB:

Factorial Fit: Y versus A; B; C; D

Estimated Effects and Coefficients for Y (coded units)

Term Effect Coef

Constant 72,250

A -8,000 -4,000

B 24,000 12,000

C -2,250 -1,125

D -5,500 -2,750

A*B 1,000 0,500

A*C 0,750 0,375

A*D -0,000 -0,000

B*C -1,250 -0,625

B*D 4,500 2,250

C*D -0,250 -0,125

A*B*C -0,750 -0,375

A*B*D 0,500 0,250

A*C*D -0,250 -0,125

B*C*D -0,750 -0,375

A*B*C*D -0,250 -0,125

S = *

If we assume third and fourth order interactions are 0, we can estimate σ2
effect

by (5), and get

s2
effect =

(−0.75)2 + 0.52 + (−0.25)2 + (−0.75)2 + (−0.25)2

5
= 0.3 (6)
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Figure 2: MINITAB worksheet for a 24 experiment
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so seffect =
√

0.3 = 0.55. Note that Lenth’s PSE (see slides) is 1.125 and hence
seems to overestimate σeffect . It is in fact well known that Lenth’s PSE is usually
conservative.

Alternatively, we can use the ANOVA table from this experiment to compute
the estimates s and seffect .

Analysis of Variance for Y (coded units)

Source DF Seq SS Adj SS Adj MS F P

Main Effects 4 2701,25 2701,25 675,313 * *

2-Way Interactions 6 93,75 93,75 15,625 * *

3-Way Interactions 4 5,75 5,75 1,438 * *

4-Way Interactions 1 0,25 0,25 0,250 * *

Residual Error 0 * * *

Total 15 2801,00

From the earlier formula (4),

SSR = b2
1

n∑

i=1

x2
1i + b2

2

n∑

i=1

x2
2i + · · · + b2

k

n∑

i=1

x2
ki,

we can see that each estimated effect contributes to the SSR by the amount

b2
j

n∑

i=1

x2
ji = nb2

j = (n/4) · ̂Effect
2

j

Further, from

SSE = SST − SSR =
n∑

i=1

(yi − ȳ)2 − b2
1

n∑

i=1

x2
1i − · · · − b2

k

n∑

i=1

x2
ki

we can see that each time a βj is assumed to be 0, the term b2
j

∑n
i=1 x2

ji is moved
from SSR to SSE. Thus, looking at the ANOVA table above, by assuming third
and fourth order interactions are 0, we obtain

SSE = 5.75 + 0.25 = 6

with 4+1 = 5 degrees of freedom. The estimate for σ2 is hence s2 = SSE/df =
6/5 = 1.2, which implies since n = 16,

s2
effect = (4/n)s2 = s2/4 = 1.2/3 = 0.3

which we already have found in (6) using a slightly different (but equivalent)
argument.

Statistical inference in full factorial experiments

We want to find the main effects or interactions which are significantly dif-
ferent from 0. This is of course equivalent to finding the coefficients βj in
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the corresponding regression model which are different from 0, since we have
Effect j = 2βj . More precisely we want to test hypotheses of the form

H0 : Effect j = 0 vs Effect j 6= 0

or equivalently
H0 : βj = 0 vs βj 6= 0

The standard test statistic is, if σ, and hence σeffect , is known:

Zj =
bj

SE(bj)
=

bj

σ2

n

∼ N(0, 1) under H0

or equivalently

Zj =
̂Effect j

SE( ̂Effect j)
=

̂Effect j

σeffect

∼ N(0, 1) under H0

We reject H0 and say that Effect j is significant if

| ̂Effect j | > zα/2σeffect ≡ zα/2 ·
2σ√

n

If σ and hence σeffect are estimated by s and seffect , respectively, then we reject
H0 and say that Effect j is significant if

| ̂Effect j | > tα/2,νseffect ≡ tα/2,ν · 2s√
n

(7)

where ν is the number of degrees of freedom connected to the estimates of σ
and σeffect that are used. When Lenth’s PSE is used, the degrees of freedom is

df =
2k − 1

3

where 2k−1 is the number of effects in the model, while the 3 in the denominator
has been found empirically by Lenth.

Graphics in MINITAB

The slides show Pareto plots and normal plots obtained from MINITAB.

The Pareto plots are graphs of the | ̂Effect j |, displayed in decreasing order of
magnitude. The indicated critical value is the right hand side of (7).

The normal plot in MINITAB is constructed in the same manner as the normal
plot that was considered earlier in the course. The straight line corresponds to
the distribution N(0, s2

effect . Thus, effects that are not significant are supposed
to fall close to the line, while significant effects will fall outside the line (positve
effects to the right, negative effects to the left).

MINITAB also provides cube plots like the one depicted in Figure 3 for the
Three factors data.
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Figure 3: Cube plot of data in the table for Three factors

Blocking in 2
k experiments

The individual experiments of a 2k experiment should always be done in ran-
domized order. (MINITAB does this randomization for us). Randomization is
our best guarantee for independent observations, and implies less chances that
external factors influence the response, which may lead to wrong conclusions.
It is also important to check and adjust all level combinations between each
individual experiment. This is to assure as much as possible equal variances.

If many experiments are to be performed it may still happen that external
conditions vary from beginning to end of the total experiment. Such changes of
conditions may affect responses and hence again lead to wrong conclusions. To
avoid such effects we may perform the experiment in blocks. Sometimes there
are also other concerns, for example shortage of raw material, that forces one
to block divide an experiment. When an experiment is divided into blocks, we
should randomize within the blocks.

Example: 23 experiment in two blocks

The idea is to use the column for ABC to define the blocks. Block I corresponds
to the combinations with − in ABC, while Block II has + in this column. Thus
we get:
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St. order A B C AB AC BC Block ABC

1 - - - + + + I -
4 + + - + - - I -
6 + - + - + - I -
7 - + + - - + I -

2 + - - - - + II +
3 - + - - + - II +
5 - - + + - - II +
8 + + + + + + II +

We observe that if an amount h is added to the responses of all single exper-
iments in Block II, while nothing is added to the responses of Block I, then
computation of main effects and two factor interactions is not affected. This is
not the case for the three-factor interaction, however, which will be so-called
confounded with the block effect.

Example: 23 experiment in four blocks

We will now need two columns of the full experiment to define the four blocks.
Suppose we use the two-factor interactions AB and BC to define the blocks.
The blocks are determined as follows:

Block I AB has −, BC has −

Block II AB has −, BC has +

Block III AB has +, BC has −

Block IV AB has +, BC has +

This gives:

St. order A B C AB AC BC Block ABC

3 - + - - + - I +
6 + - + - + - I -

2 + - - - - + II +
7 - + + - - + II -

4 + + - + - - III -
5 - - + + - - III +

1 - - - + + + IV -
8 + + + + + + IV +

It is clear that the interactions AB, BC, AC are all confounded with the block
effect (and can therefore not be estimated). The three main effects, may how-
ever be estimated, and in fact the third order interaction ABC is also not
confounded with the blocks.

How can we decide which columns to use for blocking?

We will always try to block in such a manner that we may estimate main
effects and possibly low-order interactions. Let I be a column of only +. (Do
not confuse it with the roman number I used in the tables above). Then

I = AA = BB = CC
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where columns are multiplied elementwise (++ is +, +- is - etc.)

Assume that a 23 experiment is block divided following the columns D = ABC
and E = AC. The interaction between D and E is DE = ABCAC =
AABCC = B. It follows that the main effect of B is confounded with the
block effect, in addition to ABC and BC. It is therefore better to divide ac-
cording to AB and BC as we did above. This is because then the interaction
between AB and BC is AC (which is not a main effect!)

Appendix

Estimation of σeffect by Lenth’s method:
The Pseudo Standard Error

Let C1, C2, . . . , Cm be estimated effects, e.g. Â, B̂, ÂB, etc.

1. Order absolute values |Cj | in increasing order.

2. Find the median of the |Cj | and compute preliminary estimate

s0 = 1.5 · medianj |Cj |

3. Take out the effects Cj with |Cj | ≥ 2.5 ·s0 and find the median of the rest
of the |Cj |. Then PSE is this median multiplied by 1.5, i.e.

PSE = 1.5 · median{|Cj | : |Cj | < 2.5s0}
and this is Lenth’s estimate of σeffect .

4. Lenth has suggested empirically that the degrees of freedom to be used
with PSE is m/3 where m is the initial number of effects in the algorithm.
Thus we claim as significant the effects for which |Cj | > tα/2,m/3 · PSE.

Example with Three factors

There are m = 7 estimated effects.

1. Ordered estimated absolute effects:

0, 0.5, 1.5, 1.5, 5, 10, 23

2. Median is 1.5 so s0 = 1.5 · 1.5 = 2.25.

3. Throw out large effects, i.e. the ones that are

≥ 2.5 · 2.25 = 5.625

leaving us with 0, 0.5, 1.5, 1.5, 5 for which median is still 1.5, so

PSE = 1.5 · 1.5 = 2.25

4. Lenth’s degrees of freedom is m/3 = 7/3 = 2.33, so we claim effects to be
significant at 5% level when

|Cj | > t0.025,2.33 · 2.25 = 3.765 · 2.25 = 8.47.
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Some theoretical considerations

• The basic underlying idea is that many of the true effects are zero, and
that (most of) the ones that are not zero are thrown out in the last step
of the algorithm.

• The reason for 1.5 is that if C ∼ N(0, σ2
effect) then the median of the

distribution of |C| is 0.675σeffect , so that the median of the distribution of
1.5 · |C| is

1.5 · 0.675σeffect ≈ σeffect .
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