TMA4267 Linear Statistical Models V2014 (12) Multiple linear regression, normal equations [3.1-3.2]

Mette Langaas

To be lectured: February 11, 2014 wiki.math.ntnu.no/emner/tma4267/2014v/start/

Acid rain

occurs when emissions of sulfur dioxide (SO2) and oxides of nitrogen (NOx) react in the atmosphere with water, oxygen, and oxidants to form various acidic compounds. These compounds then fall to the earth in either dry form (such as gas and particles) or wet form (such as rain, snow, and fog).

http://www.eoearth.org/view/article/149814/

Acid rain in Norwegian lakes

Measured pH in Norwegian lakes explained by content of

- x1: SO_{4} : sulfate (the salt of sulfuric acid),
- x2: NO_{3} : nitrate (the conjugate base of nitric acid),
- x3: Ca: calsium,
- x4: latent Al: aluminium,
- x5: organic substance,
- x6: area of lake,
- x7: position of lake (Telemark or Trøndelag),
pH is a measure of the acidity of alkalinity of water, expressed in terms of its concentration of hydrogen ions. The pH scale ranges from 0 to 14. A pH of 7 is considered to be neutral. Substances with pH of less that 7 are acidic; substances with pH greater than 7 are basic.

http://www.eoearth.org/view/article/149814/

$0=$ Telemark, $\mathbf{1 = T r o n d e l a g}$

Acid rain data

Port 4: Multiple lineser regression
[Bingham Fry Chapter 3]
In coll we studied simple linear regression model

$$
Y_{i}=\alpha+\beta x_{i}+\varepsilon_{i} \text { whee is } 1, \ldots, n
$$

$$
\varepsilon_{i} \text { i.i.d } N\left(0, \sigma^{2}\right)
$$

We found

$$
\begin{aligned}
& \hat{\alpha}=\bar{Y}-\hat{\beta} \bar{x} \\
& \hat{\beta}=\frac{S_{x y}}{S_{x x}}=\frac{\sum_{i=1}^{n}\left(\varphi_{i}-\bar{y}\right)\left(x_{i}-\bar{x}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \\
& \text { (LS) }
\end{aligned}
$$

are the least square and maximum likelihood (ML) estimators of α and β, and $S^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}$
is the ML eotimeter for σ^{2}.
$\tau \hat{\alpha}+\hat{\beta} x_{i}$
We also sow that $\quad\left[\begin{array}{l}X \\ Y\end{array}\right] \sim N_{2}\left(\begin{array}{l}\mu_{1} \\ \mu_{y}\end{array} \int_{1}\left[\begin{array}{cc}\sigma_{x}^{2} & \rho \sigma_{x} \sigma_{y} \\ \rho \sigma_{y} \sigma_{y} & \sigma_{y}^{2}\end{array}\right]\right)$ then

$$
E(y \mid x=x)=\alpha+\beta x=\left(\mu y-\rho \frac{\sigma_{y}}{\sigma_{x}}\right)+\left(\rho \frac{\sigma_{y}}{\sigma_{x}}\right) x
$$

is a linear function i x.

Now: $x_{1 i}=1 \quad \forall i=1, . ., n$ number of observation
to treat the intercept in the sere way as the slope, and

$$
Y_{i}=\overbrace{\beta_{1} \cdot x_{h}}^{\text {dd } \alpha}+\overbrace{\beta_{2} \cdot x_{i 2}}^{\text {old } \beta x_{i}}+\ldots+\beta_{p} x_{i p}+\varepsilon_{i} \quad i=1, \ldots, n
$$

$$
\varepsilon_{i} \text { i.i.d } N\left(0, \sigma^{2}\right)
$$

We want vectro and metrics! $\operatorname{Cav}\left(\varepsilon_{i}, \varepsilon_{j}\right)=0 \quad \forall i \neq j$
Let

$$
Y=\left[\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{n}
\end{array}\right] \quad \begin{gathered}
\text { be a vector of Rvs } \\
n=\# \text { observations }
\end{gathered}
$$

$$
\underset{n \times p}{\underset{q}{X}} \underset{x}{X}=\left[\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 p} \\
x_{21} & & & \vdots \\
\vdots & & & \vdots \\
x_{n 1} & x_{n 2} & & x_{n p}
\end{array}\right]
$$

is a design matrix \uparrow
reflecting the design of the experiment.
The x 's may be set by design as we will see in Design of Experiments (DOE) or be observed togetherwith Y in an observational study (acid rain).
We look at X as a matrix of constants-nof RU's
$\beta=\left[\begin{array}{c}\beta_{1} \\ \vdots\end{array}\right]$ vector of regression paremetes

$\varepsilon_{n \times 1}=\left[\begin{array}{l}\varepsilon_{1} \\ \varepsilon_{2}\end{array}\right]$ is a random vector of errors, where $E(\varepsilon)=0$ and $\operatorname{Var}\left(\varepsilon_{i}\right)=\sigma^{2}$ and $\operatorname{Cov}\left(\varepsilon_{i}, \varepsilon_{j}\right)=0 \quad \forall i \neq j \Rightarrow \operatorname{Cuv}(c)=\sigma_{\substack{2}}^{\substack{\uparrow \\ n_{k n}}}$
The regression model:

Questions about X

1. Why do we want to assume that the design matrix \boldsymbol{X} has full rank?
2. Can we find \boldsymbol{X}^{-1} ?
Q : what are typical values of n and p ?

We assume that $n \gg p$, ie. the number of observations n is much larger than the number of coveriates P.
And we $\bar{w} l l$ assume that $\underset{n \times p}{\mathbb{X}}$ has full rent P.
Q: Why do we want to assume that X has full rash p ?
We don't wont to include covariales that are lear combinations of eachother - that adds no information.
Q: Can we find $X^{-1} ? \underset{n \times p}{X}$ is not quadrate when $n \gg p$
\Rightarrow proceed to estimate $\beta \& \sigma^{2}$

Multiple linear regression model

$$
Y_{i}=\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\cdots+\beta_{p} x_{i p}+\varepsilon_{i}, \text { for } i=1, \ldots, n
$$

Matrix formulation:

$$
\begin{aligned}
\underset{(n \times 1)}{\boldsymbol{Y}} & =\underset{(n \times p)}{\boldsymbol{X}} \underset{(p \times 1)}{\boldsymbol{\beta}}+\underset{(n \times 1)}{\boldsymbol{\varepsilon}} \\
E(\varepsilon)=\underset{(n \times 1)}{\boldsymbol{0}} \text { and } & \operatorname{Cov}(\varepsilon)=\underset{(n \times 1)}{\sigma^{2} \boldsymbol{I}}
\end{aligned}
$$

where

- $\boldsymbol{\beta}$ and σ^{2} are unknown parameters and
- the design matrix \boldsymbol{X} has i th row $\left[x_{i 1}, x_{i 2}, \ldots, x_{i p}\right]$.

Estimation of β
We have $Y=X_{\beta}+\varepsilon$, with dements

$$
Y_{i}=\underset{\eta_{\text {row vector: }} x_{i} \underset{p \times p}{\beta+\varepsilon_{i}} \quad \varepsilon_{i}\left(1 . \alpha N\left(0, \sigma^{2}\right)\right.}{ }
$$

and this Y_{i} 's ore independent and $N\left(X_{i} \beta, \sigma^{2}\right)$.
MLestimation

$$
\begin{array}{r}
L(\beta, \sigma)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi}} \frac{1}{\sigma} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(y_{i}-x_{i \beta}\right)^{2}\right\} \\
=\left(\frac{1}{2 \pi}\right)^{n / 2} \frac{1}{\sigma^{n}} \exp \{-\underbrace{\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-x_{i \beta}\right)^{2}}_{(\underbrace{\left(y-x_{\beta}\right)^{\top}\left(y-x_{\beta}\right)}_{Q(\beta)}}\}
\end{array}
$$

Maximizing L wot β in l be the sene as minimizing $Q(\beta)$ [as before...].

Remark: $e=y-x b$
$\begin{array}{ll}\text { residuals } \\ n \times 1 & \underset{n}{\text { response }} \\ n \times 1\end{array}$

$$
Q(b)=e^{\top} e=(y-X b)^{\top}(y-x b)
$$

Task: $\frac{\partial Q(b)}{\partial b}=0$ solve fo find b.
\sim set of p equations
$\partial Q(b)$
Need two simple rules for derivatives wot vector.
$\frac{\partial Q(b)}{\partial b_{2}}$
\vdots
$\frac{\partial(b)}{\partial b_{p}}$

$$
\begin{aligned}
\frac{\partial}{\partial b}\left(d^{\top} b\right) & =d \\
\sum_{i=1}^{p} d_{i} b_{i} & \\
\frac{\partial}{\partial b}\left(b^{\top} D b\right) & =\left(D+D^{\top}\right) b \\
\sum_{j=1}^{p} \sum_{k=1}^{p} b_{j} d_{j k} \cdot b_{k} \quad & \text { if } D=D^{\top} \\
& \Rightarrow 2 D b
\end{aligned}
$$

$$
\begin{aligned}
Q(b) & =(y-x b)^{\top}(y-x b) \\
& =y^{\top} y-\underbrace{y^{\top} x b-b^{\top} x^{\top} y}+b^{\top} x^{\top} x b \\
& =y^{\top} y-2 \underbrace{y^{\top} x}_{a^{\top}} b+b^{\top} \underbrace{x^{\top} x}_{D} b \quad\left(x^{\top} x\right)^{\top}=x^{\top} x \\
\frac{\partial Q(b)}{\partial b}= & 0-2\left(y^{\top} x\right)^{\top}+\left(x^{\top} x+\left(x^{\top} x\right)^{\top}\right) b=0 \\
& -2 x^{\top} y+2\left(x^{\top} x\right) b=0
\end{aligned}
$$

$$
{ }^{\prime \prime} A x=b^{\prime \prime} \frac{\left(x^{+} x\right) b=x^{\top} y}{\underbrace{p \times n n \times p}_{p \times p} \sqrt[p \times n+1]{p \times 1}}
$$

Normal equations (NE)

How can we solve this? Since X has full rank, then $X^{\top} X$ will also have full rent and $\left(X^{\top} X\right)^{-1}$ exists.

$$
b=\left(x^{\top} x\right)^{-1} x^{\top} y
$$

And the LS eskinetor

$$
\hat{\beta}=\left(\bar{X}^{\top} \underline{\underline{X}}\right)^{-1} \mathbb{Z}^{\top} \varphi^{\ell l}
$$

Bork: ($x^{\top} X$) called information onstrix.

Least squares estimation

- $\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$ with $E(\varepsilon)=\mathbf{0}$ and $\operatorname{Cov}(\varepsilon)=\sigma^{2} \boldsymbol{I}$.
- Let \boldsymbol{X} has full rank $p \leq n$.
- The Least Squares Estimate (LSE) of β is given by

$$
\hat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{Y}
$$

Since X has full rash $X^{\top} X$ is PD i.e.

$$
z^{+}\left(x^{\top} x\right) z>0 \quad \forall z \neq 0
$$

Proof: book p 64-65

Near linear dependence, called multicollinearity, will make multiple linear regression numerically unstable and the interpretation of $\hat{\beta} w l l$ be difficult.

