TMA4267 Linear Statistical Models V2014 (13)

Multiple linear regression, properties of estimators [3.2-3.4]

Mette Langaas

To be lectured: February 17, 2014 wiki.math.ntnu.no/emner/tma4267/2014v/start/

Acid rain in Norwegian lakes

Measured pH in Norwegian lakes explained by content of

- x1: SO_{4} : sulfate (the salt of sulfuric acid),
- x2: NO_{3} : nitrate (the conjugate base of nitric acid),
- x3: Ca: calsium,
- x4: latent $A l$: aluminium,
- x5: organic substance,
— x6: area of lake,
- x7: position of lake (Telemark or Trøndelag),

TA 4267 : Lecture 13, Ch 3.2-3.3-3.4
Multiple linear regression (MLR)
i) whee ε_{i} are i.i.d with $E\left(\varepsilon_{i}\right)=0$ and $\operatorname{Var}\left(\varepsilon_{i}\right)=\sigma^{2}$.
ii) And add normality $\sum_{n \times 1} \sim N_{n}\left(0, \sigma^{2} \frac{I}{1} \frac{1}{n \times n}\right.$.

Normal equations: $\left(X^{+} x\right) \hat{\beta}=X^{\top} Y$
Estimator: $\quad \hat{\beta}=\left(x^{+} x\right)^{-1} X^{\top} Y$

Multiple linear regression model

$$
Y_{i}=\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\cdots+\beta_{p} x_{i p}+\varepsilon_{i}, \text { for } i=1, \ldots, n
$$

Matrix formulation:

$$
\begin{aligned}
\underset{(n \times 1)}{\boldsymbol{Y}} & =\underset{(n \times p)}{\boldsymbol{X}} \underset{(p \times 1)}{\boldsymbol{\beta}}+\underset{(n \times 1)}{\boldsymbol{\varepsilon}} \\
E(\varepsilon)=\underset{(n \times 1)}{\boldsymbol{0}} \text { and } & \operatorname{Cov}(\varepsilon)=\underset{(n \times 1)}{\sigma^{2} \boldsymbol{I}}
\end{aligned}
$$

where

- $\boldsymbol{\beta}$ and σ^{2} are unknown parameters and
- the design matrix \boldsymbol{X} has i th row $\left[x_{i 1}, x_{i 2}, \ldots, x_{i p}\right]$.

Performing aLL in practice
Numerical note:
The normal equations can in practice be solved by using the QR decomposition of X. See book p68-69 for decals.

$$
\begin{aligned}
& X=Q R
\end{aligned}
$$

Solved by
bachsubstitution
R : try out the LBS script to analyse acid rain Main function to we is "lm".
Finding: $\hat{\beta}=\left[\begin{array}{c}5.68 \\ -0.52 \\ \vdots \\ 0.09\end{array}\right]$

Least squares estimation

- $\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\varepsilon$ with $E(\varepsilon)=\mathbf{0}$ and $\operatorname{Cov}(\varepsilon)=\sigma^{2} \boldsymbol{I}$.
- Let \boldsymbol{X} has full rank $p \leq n$.
- The Least Squares Estimate (LSE) of β is given by

$$
\hat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{Y}
$$

Properties of $\hat{\beta}$ [3.3]
First, not assume normality, only assume

$$
E(\varepsilon)=0 \text { and } \operatorname{Car}(\varepsilon)=\sigma^{2} I .
$$

And, $Y=X \beta+\varepsilon$,

$$
E(Y)=X_{\beta} \quad C a r(Y)=0^{2} I
$$

The LS extinatar $\hat{\beta}=\frac{\left(x^{\top} X\right)^{-1} x^{\top}}{G} Y=G Y$

1) Observe that $\hat{\beta}$ is linear is the data Y.
2) Mean: $E(\hat{\beta})=E(G Y)=G \underbrace{E(Y)}_{X_{\beta}}=\underbrace{\underbrace{\top} X_{\beta}}_{\left.I_{1}^{\left(X^{\top} X\right.}\right)^{-1}}=\beta$
$\hat{\beta}$ is an unbiased estimator for β.
3) Covariance:

$$
\begin{aligned}
& \operatorname{Cov}(\hat{\beta})=\operatorname{Cov}(G Y)=G \underbrace{\operatorname{Cav}(Y)}_{\sigma^{2} I} G^{\top} \\
& =(x+x)^{-1} x^{\top} \sigma^{2} I\left[\left(x^{\top} x\right)^{-1} x^{\top}\right]^{\top} \\
& =\sigma^{2} \underbrace{\left(x^{\top} x\right)^{-1} x^{\top} x}_{I}\left(x^{\top} x\right)^{-1}=\underline{\sigma^{2}\left(x^{\top} x\right)^{-1}} \\
& =0^{2} \cdot C^{-1} \quad \text { (book notation) }
\end{aligned}
$$

Properties of LS-estimates

$$
\begin{aligned}
& \hat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{y} \text { has } \\
& \quad E(\hat{\boldsymbol{\beta}})=\boldsymbol{\beta} \text { and } \operatorname{Cov}(\hat{\boldsymbol{\beta}})=\sigma^{2}\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1}
\end{aligned}
$$

The matrix $C=X^{\top} x$ is called the infarmation matrix, end is SPD if X has full rank.
(symuetrix, porinvedehinte)
Note that in a designed experiment we may ourselves define \mathbb{Z}.
In the topic of Design of Experiments (DOE) X is designed to be optinal in some sense.
For example X may be chosen to minimize a function of $(X T X)^{-1}$, e. 9 make the variances or covariances small.

We will look at a scaled 2^{k} experiment, where X is chosen with orthogonal columns so that $\left(X^{\top} X\right)$ is a diagonal matrix x_{j} and thus all $\operatorname{Cov}\left(\hat{\beta}_{j}, \hat{\beta}_{k}\right)=0$.

Best linear unbiased estimator (BLUE) general matrix
Among all unbiased linear estimates $\hat{\beta}=B Y$
$\hat{\beta}=\left(X^{\top} X\right)^{-1} X^{\top} Y$ has the minimum valence in each component
$\Rightarrow \hat{\beta}$ is BLUE.
Prof: page 73 of BF.

Gauss' LS theorem

- $\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\varepsilon$ with $E(\varepsilon)=\mathbf{0}$ and $\operatorname{Cov}(\varepsilon)=\sigma^{2} \boldsymbol{I}$.
- And \boldsymbol{X} has full rank $p \leq n$.

$$
-\hat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{Y}
$$

Then, for any vector \boldsymbol{c}, the estimator

$$
c^{T} \hat{\boldsymbol{\beta}}
$$

of $\boldsymbol{c}^{\boldsymbol{T}} \boldsymbol{\beta}$ has the smallest possible variance among all linear estimators that are unbiased for $\boldsymbol{c}^{\boldsymbol{T}} \boldsymbol{\beta}$.

Maximum likelihood estimetar of σ
Assume Y_{i} indendent $N\left(X_{i} \beta, \sigma^{2}\right)$ row vector of X moth Y

Log-likelihood

$$
\begin{aligned}
& l\left(\beta, \sigma^{2}\right)=\ln L(\beta, \sigma) \\
& =\frac{n}{2} \ln (2 \pi)-n \log \sigma-\frac{1}{2 \sigma^{2}}\left(y-x_{\beta}\right)^{\top}\left(y-x_{\beta}\right) \\
& \frac{\partial l}{\partial \sigma}=0-\frac{n}{\sigma}+\frac{1}{\sigma^{3}}\left(y-x_{\beta}\right)^{\top}\left(y-x_{\beta}\right)=0
\end{aligned}
$$

At the likelihood maximum $\beta=\hat{\beta}$, so we nesert $\hat{\beta}$ and solve for σ^{2} to get $\hat{\sigma}^{2}$:

$$
\hat{\sigma}^{2}=\frac{1}{n} \underbrace{(Y-X \hat{\beta})^{\top}(Y-X \hat{\beta})}_{\text {SSE } \leftarrow a \text { RV and a statistic }}
$$

New notation
corer
$\hat{Y}=X \hat{\beta} \quad$ is called fitted values

$$
\begin{gathered}
e=Y-\hat{y}=Y-X \hat{\beta} \leftarrow \text { called residuals } \\
{\left[\begin{array}{c}
e_{1} \\
\vdots \\
e_{n}
\end{array}\right] \text { SSE }=(Y-X \hat{\beta})^{T}(Y-X \hat{\beta})=e^{T} e}
\end{gathered}
$$

sums of squared residuals

ML estimation of σ

The MLE for σ^{2} is

$$
\hat{\sigma}^{2}=\frac{1}{n}(\boldsymbol{Y}-\boldsymbol{X} \hat{\boldsymbol{\beta}})^{T}(\boldsymbol{Y}-\boldsymbol{X} \hat{\boldsymbol{\beta}})=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-X_{i} \hat{\boldsymbol{\beta}}\right)^{2}
$$

This may also be written in a slightly different way:

- First, fitted values of \boldsymbol{Y} :

$$
\hat{\boldsymbol{Y}}=\boldsymbol{X} \hat{\boldsymbol{\beta}}=\boldsymbol{X}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{Y}
$$

- The residuals:

$$
\boldsymbol{e}=\boldsymbol{Y}-\hat{\boldsymbol{Y}}=(\boldsymbol{Y}-\boldsymbol{X} \hat{\boldsymbol{\beta}})
$$

- and then the Sums-of-squares-of-error:

$$
\mathrm{SSE}=\boldsymbol{e}^{T} \boldsymbol{e}=(\boldsymbol{Y}-\boldsymbol{X} \hat{\boldsymbol{\beta}})^{T}(\boldsymbol{Y}-\boldsymbol{X} \hat{\boldsymbol{\beta}})
$$

— with leads to

$$
\hat{\sigma}^{2}=\frac{1}{n} \text { SSE }
$$

Projection metrices

$$
\begin{aligned}
& \hat{Y}=X \hat{\beta}=\underbrace{X\left(X^{\top} X\right)^{-1} X^{\top}}_{H} Y=H Y \quad \begin{array}{l}
\text { pulting a hat on } y \\
\text { (in book ine } P \text {-ourbooda) }
\end{array} \\
& e=Y-\hat{Y}=Y-H Y=(I-H) Y
\end{aligned}
$$

Observe:

1) $\int_{n \times n} 4 H=X(\underbrace{\left.x^{\top} x\right)^{-1} \underbrace{x^{\top}} x\left(x^{\top} x\right)^{-1} x^{\top}=x\left(x^{\top} x\right)^{-1} x^{\top}=H}_{I}$
2) Homewosh: $(I-H)(J-H)=(I-H)$

$$
A^{2}=A
$$

idempolent
3) $H \cdot(J-H)=H-H H=H-H=O$

In general: A linear transformation. A is a projection (into a vector space V) if $A^{2}=A A=A$ (idempotent).
Then $V=\underbrace{\operatorname{In}(A) ~} \oplus \operatorname{ker}(A)$
Image of A direct sum = subspace spanned by the colum of A
$=$ subspace spanned by the column vector x such that $A x=0$. Also called null space
any vector in V can be uniquely
written as a sum of a vector in $\operatorname{Im}(A)$
and a vector in $\operatorname{ke}(A)$
Also: $\operatorname{In}(A)=\operatorname{Ker}(J-A)$ and $\operatorname{ker}(A)=\operatorname{Im}(I-A)$

In ow care:

$$
\begin{aligned}
& H=x\left(x^{\top} x\right)^{-1} x^{\top} \\
& H^{\top}=H
\end{aligned}
$$

$$
\text { and }(I-H)^{\top}=(I-H)
$$

If a projection matrix A is ymonetric it is also orthogonal. That is, A is an orthogonal projection.
This means That $\operatorname{Im}(A)$ and her (A) are orthogonal vector spaces. And, thus are $\operatorname{Im}(A)$ and $\operatorname{In}(I-A)$ orthogonal vector spaces.

Back to H, (I-H), MLR:
$\hat{Y}=H Y$ is the projection of Y onto the space spanned by the columns of H. And, $H X=X\left(X^{\top} X\right)^{-1} X^{\top} X=X$ so the column space of H and X are the same.
Further: $e=(I-H) Y$ is the projection of Y onto the space orthogonal to the space spanned by the columns of H.

Geometry of Least Squares

— Mean response vector: $E(\boldsymbol{Y})=\boldsymbol{X} \boldsymbol{\beta}$

- As $\boldsymbol{\beta}$ varies, $\boldsymbol{X} \boldsymbol{\beta}$ spans the model plane of all linear combinations. l.e. the space spanned by the columns of \boldsymbol{X} : the column-space of \boldsymbol{X}.
- Due to random error (and unobserved covariates), \boldsymbol{y} is not exactly a linear combination of the columns of \boldsymbol{X}.
- LS-estimation chooses $\hat{\boldsymbol{\beta}}$ such that $\boldsymbol{X} \boldsymbol{\beta}$ is the point in the column-space of \boldsymbol{X} that is closes to \boldsymbol{y}.

Geometry of Least Squares (cont.)

- The residual vector $\mathbf{e}=\boldsymbol{Y}-\hat{\boldsymbol{Y}}$ is perpendicular to the column-space of \boldsymbol{X}.
- Multiplication by $\boldsymbol{H}=\boldsymbol{X}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T}$ projects a vector onto the column-space of \boldsymbol{X}.
— Multiplication by $\boldsymbol{I}-\boldsymbol{H}=\boldsymbol{I}-\boldsymbol{X}\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T}$ projects a vector onto the space perpendicular to the column-space of \boldsymbol{X}.

http://en.wikipedia.org/wiki/File:OLS_geometric_interpretation.svg

Properties of symmetric projection matrices

A projection \boldsymbol{A} matrice is idempotent, $\boldsymbol{A}^{2}=\boldsymbol{A}$. A symmetric projection matrix is orthogonal.

1. The eigenvalues of a projection matrix are 0 and 1.
2. The rank of a symmetric matrix (actually: a diagonalizable quadratic matrix) equals the number of nonero eigenvaluse of the matrix. Should be known from previous courses.
3. (Combining $1+2$). If a $(n \times n)$ symmetric projection matrix \boldsymbol{A} has rank r then r eigenvalues are 1 and $n-r$ are 0 .
4. The trace and rank of a symmetric projection matrix are equal: $\operatorname{tr}(\boldsymbol{A})=\operatorname{rank}(\boldsymbol{A})$.
