TMA4267 Linear Statistical Models V2014 (14)

 Multiple linear regression, properties of estimators [3.4-3.6]Mette Langaas

To be lectured: February 18, 2014 wiki.math.ntnu.no/emner/tma4267/2014v/start/

Multiple linear regression model

$$
Y_{i}=\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\cdots+\beta_{p} x_{i p}+\varepsilon_{i}, \text { for } i=1, \ldots, n
$$

Matrix formulation:

$$
\begin{aligned}
\underset{(n \times 1)}{\boldsymbol{Y}} & =\underset{(n \times p)}{\boldsymbol{X}} \underset{(p \times 1)}{\boldsymbol{\beta}}+\underset{(n \times 1)}{\boldsymbol{\varepsilon}} \\
E(\varepsilon)=\underset{(n \times 1)}{\boldsymbol{0}} \text { and } & \operatorname{Cov}(\varepsilon)=\underset{(n \times 1)}{\sigma^{2} \boldsymbol{I}}
\end{aligned}
$$

where

- $\boldsymbol{\beta}$ and σ^{2} are unknown parameters and
- the design matrix \boldsymbol{X} has i th row $\left[x_{i 1}, x_{i 2}, \ldots, x_{i p}\right]$.

Properties of LS-estimator

$\hat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}$ has

$$
E(\hat{\boldsymbol{\beta}})=\boldsymbol{\beta} \text { and } \operatorname{Cov}(\hat{\boldsymbol{\beta}})=\sigma^{2}\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1}
$$

And, the LS estimator is BLUE.

ML estimation of σ

The MLE for σ^{2} is

$$
\hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}=\frac{1}{n}(\boldsymbol{Y}-\hat{\boldsymbol{Y}})^{T}(\boldsymbol{Y}-\hat{\boldsymbol{Y}})=\frac{1}{n} \text { SSE }
$$

where

$$
\begin{aligned}
\hat{\boldsymbol{Y}} & =\boldsymbol{X} \hat{\boldsymbol{\beta}}=\boldsymbol{X}\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{Y}=\boldsymbol{H} \boldsymbol{Y} \\
\boldsymbol{e} & =\boldsymbol{Y}-\hat{\boldsymbol{Y}}=(\boldsymbol{I}-\boldsymbol{H}) \boldsymbol{Y} \\
\mathrm{SSE} & =\boldsymbol{e}^{T} \boldsymbol{e}=(\boldsymbol{Y}-\hat{\boldsymbol{Y}})^{T}(\boldsymbol{Y}-\hat{\boldsymbol{Y}})=\boldsymbol{Y}^{T}(\boldsymbol{I}-\boldsymbol{H}) \boldsymbol{Y}
\end{aligned}
$$

Plan MLR

1. E of SSE and the trace formula.
2. Normality. $\hat{\beta}$ and SSE properties, t-test.
3. Confidence interval for the regression plane and prediction interval for new response.
4. $\operatorname{SST}=\mathrm{SSR}+\mathrm{SSE}$, notation and distribution
5. F and partial F tests.
6. R^{2} and $R_{a d j}^{2}$.

TMA4267: lecture 14 (out of planned 26 with "new" material)
"half way" today!
Aim now: $E(S S E)$
The trace formula [p78]
Let $Y_{n=1}$ be a random vector with $E(Y)=\mu$ and $\operatorname{Cov}(Y)=\Sigma$, and $A_{n \times n}$ a constant matrix. Then

$$
E\left(Y^{\top} A Y\right)=\operatorname{tr}(A \Sigma)+\mu^{\top} A \mu
$$

(look kind of like a generalization of $E\left(x^{2}\right)=\operatorname{Var}(x)+\mu^{2}$)
Proof:

$$
\begin{aligned}
& E\left(Y^{\top} A Y\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} E\left(Y_{i} \cdot Y_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}\left(\operatorname{cor}\left(Y_{i}, Y_{j}\right)+E\left(Y_{i}\right) \cdot E\left(Y_{j}\right)\right) \\
& \operatorname{Cov}\left(Y_{i}, Y_{j}\right)=\underbrace{E\left(Y_{i} Y_{j}\right)}-E\left(Y_{i}\right) \cdot E\left(Y_{j}\right) \\
& E\left(Y^{\top} A Y\right)=\underbrace{\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} \sum_{i j}}_{\mu^{\top} A \mu}+\underbrace{\sum_{i=1}^{n}}_{\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} \mu_{i} \mu_{j}}=\operatorname{tr}(A \Sigma)+\mu^{\top} A_{\mu} \\
& \operatorname{tr}(A \Sigma)=\sum_{j=1}^{n} a_{i j}\left(\sum_{j j}\right)=\sum_{i j}^{n}=\sum_{j=1}^{n} a_{i j} \sum_{i j} \\
& \text { symmetric } \sum
\end{aligned}
$$

A closer look at SSE

$$
\begin{aligned}
& S S E=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}=(Y-\hat{Y})^{\top}(Y-\hat{Y}) \\
& Y-\hat{Y}=Y-H Y=(I-H) Y \\
& S S E=Y^{\top} \underbrace{(I-H)^{\top}(I-H) Y}_{(I-H)}=Y^{\top}(I-H) Y \\
& E(S S E)=E\left(Y Y^{\top}(I-H) Y\right)=\operatorname{tr}\left((I-H) \sigma^{2} I\right)+\beta^{\top} X^{\top}(I-H) X_{\beta}
\end{aligned}
$$

Need $E(Y)=X_{\beta} \leftarrow \mu$

$$
\operatorname{Ca}(Y)=\operatorname{Car}(\varepsilon)=\sigma^{2} I \leftarrow \Sigma \quad A=(J-H)
$$

$$
\left\{\begin{array}{l}
E(\varepsilon)=0, \operatorname{Car}(\varepsilon)=0^{2} I \\
Y=X_{\beta}+\varepsilon
\end{array}\right.
$$

$$
=n-p
$$

New unbiased estimator for σ^{2}

$$
S^{2}=\frac{1}{n-p} S S E
$$

$$
\begin{aligned}
& E(S S E)=\sigma^{2} \underbrace{\operatorname{tr}(I-H)}+\beta^{\top} X^{\top} X_{\beta}-\beta^{\top} X^{\top} \widetilde{H X \beta} \\
& \operatorname{tr}(I-H)=\operatorname{tr}(I)-\operatorname{tr}(H) \\
& \underbrace{\uparrow \underbrace{}_{\text {equal }}{ }^{\lambda}}_{0} \\
& =n-\operatorname{tr}\left(X(X X)^{-1} X^{\top}\right) \varepsilon_{\tan (B C)=w(C B)} \\
& =n-r(\underbrace{X^{\top} x}_{\sum_{\text {exp }}}(\underbrace{\left.x^{\top} x\right)^{-1}}) \\
& E(S S E)=(n-p) \cdot \sigma^{2}
\end{aligned}
$$

MLR - not assuming normality of errors

Assumptions:

$$
\begin{aligned}
\boldsymbol{Y} & =\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon} \\
\mathrm{E}(\varepsilon) & =\mathbf{0} \text { and } \operatorname{Cov}(\varepsilon)=\sigma^{2} \boldsymbol{I} \text { and } \varepsilon_{i} \text { are independent } i=1, \ldots, n
\end{aligned}
$$

Unbiased estimators:

$$
\hat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{y} \text { and } S^{2}=\frac{1}{n-p} \text { SSE }
$$

And, we found that $\operatorname{Cov}(\hat{\boldsymbol{\beta}})=\sigma^{2}\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1}$.
For inference we need to assume a distribution for the errors, to then give us distributions for the estimators (and other statistics).
Then we may construct hypothesis tests, confidence intervals and prediction intervals.

Assume normality

$$
\begin{aligned}
Y & =X_{\beta}+\varepsilon \quad \text { where } \varepsilon \sim N_{n}\left(0, \sigma^{2} I\right) \\
\Rightarrow & Y \sim N_{n}(X_{\beta}, \underbrace{\sigma^{2} I}_{\Sigma})
\end{aligned}
$$

1) Homework:

$$
\begin{aligned}
& \hat{Y}=H Y \sim N_{n}\left(X_{\beta}, H \sigma^{2}\right) \\
& e=(1-H) Y \sim N_{n}\left(0,(I-H) \sigma^{2}\right)
\end{aligned}
$$

and $\hat{Y}_{\text {and }} e$ are independent.
2) $\hat{\beta}, 85 t$
a) $\hat{\beta}=\left(X^{+} X\right)^{-1} X^{\top} Y=G Y$ is a linear comb. of muN $Y^{\prime} s$, so $\hat{\beta}$ is muN. $\quad \hat{\beta} \sim N_{p}\left(\beta, \sigma^{2}\left(X^{\top} X\right)^{-1}\right)$
b) SSE

First theorem 3.26
If A is a symmetric end idempotent matrix of rank r and $z_{n \times 1} \cup W_{n}\left(0, \sigma^{2} I\right)$. Then

$$
z^{\top} A z \sim \sigma^{2} X_{r}^{2}
$$

Because:

$$
\begin{aligned}
& =z_{1}^{n^{2}}+z_{2}^{n^{2}}+\cdots+z_{r}^{+^{2}}+0 \cdot z_{r+1}^{2}+\cdots+0 \cdot z_{n}^{* 2} \\
& z^{\prime}= \\
& p^{\top} z \sim N_{n}\left(0, p^{\top} \sigma^{2} I P\right)=N_{n}\left(0, \sigma^{2} I\right) \\
& \\
& N_{n}\left(0,0^{2} I\right) \\
& \text { This } \underline{Z}_{i}^{-2} \sim X_{1}^{2} \text { and independent } \quad P=\left[e_{1} e_{2} \cdots e_{n}\right] \\
& e_{1}^{\top} e_{2}=0 \\
& e_{1}^{\top} e_{1}=1
\end{aligned}
$$

How can this be used when SSE $=Y^{\top}(I-f f) Y$?

$$
\text { SSE }=\zeta^{\top}(I-H) Y\left(=\zeta^{\top}(I-H)^{\top}(I-H) Y\right)
$$

To use Th. 3.26 we reed $Z \sim N_{n}\left(0, \sigma^{2} I\right)$ but we have $Y \sim N_{n}\left(X_{\beta}, \sigma^{2} \pm\right)$. What if we use $Y^{*}=(Y-X \beta) \sim N_{n}\left(0, \sigma^{2} I\right)$

$$
\begin{gathered}
(I-H) Y^{*}=(I-H)\left(Y-X_{\beta}\right]=(I-H) Y-(I-H) X_{\beta} \\
=(I-H) Y-\underbrace{[X_{\beta}-\underbrace{H}_{X}}_{0}]=(I-H) Y
\end{gathered}
$$

SSE $=Y^{* T}(I-H) Y^{*}$ where $Y \sim \sim N_{n}\left(0, \sigma^{2} I\right)$
Using $J 3.26$ we only reed to find $\operatorname{rank}(I-H)$.
E4P4 show that $\operatorname{renh}(A)=\operatorname{tr}(A)$ for A symmetric end idem potent.

$$
\Rightarrow \operatorname{ranh}(I-H)=\operatorname{fr}(I-H)=n-p
$$

Finally: $\frac{S S E}{\sigma^{2}} \sim X_{n-p}^{2}$

Properties of symmetric projection matrices

A projection \boldsymbol{A} matrice is idempotent, $\boldsymbol{A}^{2}=\boldsymbol{A}$. A symmetric projection matrix is orthogonal.

1. The eigenvalues of a projection matrix are 0 and 1.
2. The rank of a symmetric matrix (actually: a diagonalizable quadratic matrix) equals the number of nonero eigenvaluse of the matrix. Should be known from previous courses.
3. (Combining $1+2$). If a $(n \times n)$ symmetric projection matrix \boldsymbol{A} has rank r then r eigenvalues are 1 and $n-r$ are 0 .
4. The trace and rank of a symmetric projection matrix are equal: $\operatorname{tr}(\boldsymbol{A})=\operatorname{rank}(\boldsymbol{A})$.
c) SSE and $\hat{\beta}$:

$$
\operatorname{Car}(Y)=\Sigma
$$

Let $A Y=\left(X^{\top} X\right)^{-1} x^{\top} y=\hat{\hat{\beta}}$

$$
B Y=(I-H) Y \text { or }(I-H)\left(Y-X_{\beta}\right)
$$

We know from $C h y$ that if $A \Sigma B=O$ then $A Y$ and $B Y$ ore independent, and with $\Sigma=\sigma^{2} I$ then $A B=0$ implies independence.

$$
\begin{aligned}
A B & =\left(x^{\top} x\right)^{-1} x^{\top}(I-H)=\left(x^{\top} x\right)^{-1} x^{\top}\left(I-x\left(x^{\top} x\right)^{-1} x^{\top}\right) \\
& =\left(x^{\top} x\right)^{-1} x^{\top}-\underbrace{\left(x^{\top} x\right)^{-1} x^{\top} x}_{I}\left(x^{\top} x\right)^{-1} x^{\top}=0
\end{aligned}
$$

Thus: $\underbrace{A Y}_{\hat{\beta}}$ and $\underbrace{B Y}_{(J-H) Y}$ are independent, and $\underbrace{A Y}_{\hat{\beta}}$ and $\underbrace{Y T R^{\top} B Y}_{\text {SSE }}$ must also be independent $\Rightarrow \hat{\beta}$ and SSE are independent.
d) $\hat{\beta} \sim N_{p}\left(\beta, \sigma^{2}\left(x^{\top} x\right)^{-1}\right)$
and

$$
\begin{aligned}
& \frac{S S E}{\sigma^{2}} \sim x_{n-p}^{2} \\
& \frac{(n-p) s^{2}}{\sigma^{2}} \sim x_{n-p}^{2}
\end{aligned}
$$

and independent.
$\hat{\beta}_{c}$ is th element of $\hat{\beta}$
C_{i}^{-1} is element (i, c) of $\left(X^{\top} x\right)^{-1}$
Then (TMAY245)

$$
\frac{\hat{\beta}_{i}-\beta}{\sqrt{c_{i i}^{-1}} \cdot s} \sim t_{n-p}
$$

can be used to perform inference.

MLR - assuming normality of errors

Assumptions:

$$
\begin{aligned}
\boldsymbol{Y} & =\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon} \\
\varepsilon & =N_{n}\left(\mathbf{0}, \sigma^{2} \boldsymbol{I}\right)
\end{aligned}
$$

Findings

1. $\hat{\boldsymbol{Y}}$ and \boldsymbol{e}. Both normally distributed, and independent of eachother.
2. $\hat{\boldsymbol{\beta}}$ and SSE. $\hat{\boldsymbol{\beta}}$ normally distributed, SSE/ σ^{2} chi-squared distributed, and independent of eachother.
