

#### TMA4267 Linear Statistical Models V2014 (18) Model transformations and Taylor expansion [7.2-7.4] Design of experiments (note): full $2^k$ experiment

Mette Langaas

To be lectured: March 4, 2014 wiki.math.ntnu.no/emner/tma4267/2014v/start/

#### Transformations [7.2-7.3]

- Multiplicative or additive model?
- BoxCox transform with profile likelihood.
- Stabilizing the variance.

[Fansformations [7.2-7.3] at the response a) Yester they : multiplication is additive model  $Y \sim N(\mu_1 \sigma^2)$  :  $Y = \mu t \in [E \sim N(0, \sigma^2) \leftarrow addition$ Y- M-E E multiplication log(Y)= leg M + log c b) the Box Cox transform (for strighty positive responses) [7.2] y -> ga(y) where  $g_{\lambda}(y) = \begin{cases} \frac{y^{\lambda} - 1}{\lambda} & \lambda \neq 0\\ \log & \lambda \neq 0 \end{cases}$ ) see book connection The best value of & may be chosen based on maximum likelihood the ony

using the profile  $\log - 1$  is likelihood (errors are normal)  $L(A) = -\frac{n}{2} \log \left( \frac{SSE_A}{n} \right) + (A-1) \sum \log g_i$ wher  $SSE_A$  is the SSE when  $g_A(y)$  is the reprove.

Popula: 1=0,05,-1

c) Variance stabilizing transformations [7.3] net  

$$\Rightarrow$$
 choose attransformation of y  
that makes  $Var(k) < E(y)$   
(e.g.  $Y \sim Poisson (\mu)$ ,  $E(Y) = \mu$ ,  $Var(Y) = \mu$ ).  
Which  $g(y)$  should we choose?  
Trick: Ath order Taylor expension of Y around  $\mu$ ,  $E(Y) = \mu$ .  
 $g(Y) \approx g(\mu) + g'(\mu) (Y-\mu)$   
 $\frac{dg}{dy}|_{y=\mu}$   
 $g(Y) \approx g(\mu) + g'(\mu) (E(Y) - \mu)$   
 $\approx g(\mu)$   
 $Var(g(Y)) \approx 0 + (g'(\mu)^2 Var(Y-\mu))$   
 $\approx (g'(\mu))^2 Var(Y)$ 

How to use this? We have (in general) 
$$Var(Y) = H(\mu)$$
  
and we want to find  $g(Y)$  so that  $Var(g(Y)) = \sigma^2 \in a$  cansilant.  
 $Var(g(Y)) = \sigma^2 \approx [g'(\mu)]^2 Var(Y)$   
 $T = H(\mu)$   
Solve for  $g$ 

Let 
$$H(\mu) = M$$
  
 $\sigma^{2} = [g^{1}(\mu)]^{2} \cdot \mu$   
 $g^{1}(\mu) = \sqrt{\frac{\sigma^{2}}{\mu}}$   
 $g(y) \propto \int \frac{1}{\sqrt{y}} dy = \frac{1}{\sqrt{y}}$   
i)  $Var(Y) \propto C(Y)^{2} \Rightarrow g(y) = hy$   
ii)  $Var(Y) \propto C(Y)^{4} \Rightarrow g(y) = \frac{1}{\sqrt{y}}$ 

## Approximation of E and Var for nonlinear functions

- Have RV X, with mean  $E(X) = \mu$  and some variance Var(X),
- Want to look at a nonlinear function of X, called g(X).
- Aim: find an approximation to E(g(X)) and Var(g(X)).
- And, the same for two RVs  $X_1$  and  $X_2$  with  $g(X_1, X_2)$ .
- Solution: first order Taylor approximation.

## Example 1: Exam TMA4255 V2011 1d (In of BMI)

Looking at residual plots from a one-way ANOVA the conclusion was to analyse data of *BMI* vs genotype (three groups) on the natural logaritmic scale.

In the genotype group 2 the average In(BMI) was 3.2151 and the empirical standard deviation was 0.1656.

Use approximate methods to arrive at an estimate of the mean and standard deviation for the *BMI* (that is, on the orginal scale,  $kg/m^2$ , and not on the logarithmic scale).

## E(g(X) and Var(g(X))): from earlier courses

- Let g(X) be a general function. When is E(g(X)) = g(E(X))?
  - When g(X) is a linear function of X.
- What can we do if this is not the case?
  - If g is monotone we can use the transformations formula to find the distribution of Y = g(X) and then calculate E(Y) and Var(Y), if possible.
- What if we only know  $E(X) = \mu$  and  $Var(X) = \sigma^2$  and not f(x)?
  - Use a Taylor series approximation of g(X) around g(μ). g need to be differentiable.

#### **Univariate function**

First order Taylor approximation of g(X) around  $\mu$ .

$$g(X) pprox g(\mu) + g'(\mu)(X-\mu)$$

This leads to the following approximations:

 $\mathrm{E}(g(X)) \approx g(\mu)$  $\mathrm{Var}(g(X)) \approx [g'(\mu)]^2 \mathrm{Var}(X)$ 

## Example 2: Exam TMA4255 V2012 3d (fraction)

Let  $\mu_A$  be the expected pain-free grip force for a population where the physiotherapy intervention treatment is used to treat tennis elbow, and  $\mu_C$  be the expected pain-free grip force for a population where the wait-and-see treatment is used. Define the relative difference between these two expected values as

$$\gamma = \frac{\mu_A - \mu_C}{\mu_C}$$

This can be interpreted as the expected relative gain by using physiotherapy instead of wait-and-see. Based on two independent random samples of size  $n_A$  and  $n_C$  from the physiotherapy and wait-and-see treatment groups, respectively, suggest an estimator,  $\hat{\gamma}$ , for  $\gamma$ .

Use approximate methods to find the expected value and variance of this estimator, that is,  $E(\hat{\gamma})$  and  $Var(\hat{\gamma})$ .

#### **Bivariate function: first order Taylor**

 $X_1$  is a RV with  $\mu = E(X_2)$  and  $X_2$  is a RV with  $\mu_2 = E(X_2)$ . Let *g* be a bivariate function of  $X_1$  and  $X_2$ , and define

$$g_{1}'(\mu_{1},\mu_{2}) = \frac{\partial g(x_{1},x_{2})}{\partial x_{1}} |_{x_{1}=\mu_{1},x_{2}=\mu_{2}}$$
$$g_{2}'(\mu_{1},\mu_{2}) = \frac{\partial g(x_{1},x_{2})}{\partial x_{2}} |_{x_{1}=\mu-1,x_{2}=\mu_{2}}$$

First order Taylor approximation:

$$g(X_1, X_2) \approx g(\mu_1, \mu_2) + g'_1(\mu_1, \mu_2)(X_1 - \mu_1) + g'_2(\mu_1, \mu_2)(X_2 - \mu_2)$$

#### **Bivariate function: first order Taylor**

$$\begin{split} & \mathbb{E}(g(X_1, X_2)) \approx g(\mu_1, \mu_2) \\ & \operatorname{Var}(g(X_1, X_2)) \approx [g_1'(\mu_1, \mu_2)]^2 \operatorname{Var}(X_1) + [g_2'(\mu_1, \mu_2)]^2 \operatorname{Var}(X_2) + \\ & 2 \cdot g_1'(\mu_1, \mu_2) \cdot g_2'(\mu_1, \mu_2) \operatorname{Cov}(X_1, X_2) \end{split}$$

#### **Multivariate version**

#### From Tabeller og formler i statistikk.

#### Rekkeutvikling

En første ordens Taylorutvikling av funksjonen  $g(X_1, \ldots, X_n)$ omkring  $g(\mu_1, \ldots, \mu_n)$ , der E $(X_i) = \mu_i$ ,  $i = 1, \ldots, n$ , gir approksimasjonene

$$\begin{split} \mathbf{E}[g(X_1,\ldots,X_n)] &\approx g(\mu_1,\ldots,\mu_n),\\ \mathbf{Var}[g(X_1,\ldots,X_n)] &\approx \sum_{i=1}^n \left(\frac{\partial g(\mu_1,\ldots,\mu_n)}{\partial \mu_i}\right)^2 \mathbf{Var}(X_i) + 2\sum_{i>j} \frac{\partial g}{\partial \mu_i} \frac{\partial g}{\partial \mu_j} \mathbf{Cov}(X_i,X_j). \end{split}$$

### Orthogonality

Mathematically: we look at  $\boldsymbol{X}^T \boldsymbol{X}$ , and remember that for the LS-regression  $Cov(\hat{\boldsymbol{\beta}}) = \sigma^2 (\boldsymbol{X}^T \boldsymbol{X})^{-1}$ .

- If two regressors have values independent of eachother they have zero correlation,
- and are said to be orthogonal.  $\mathbf{x}_{i}^{T}\mathbf{x}_{i} = 0$ .
- Then  $\mathbf{X}^T \mathbf{X}$  will be a diagonal matrix and the regression coefficients are independent of eachother.

$$(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})\boldsymbol{b} = \boldsymbol{X}^{\mathsf{T}}\boldsymbol{y}$$

$$\mathbf{A} = \mathbf{X'X} = \begin{bmatrix} n & \sum_{i=1}^{n} x_{ii} & \sum_{i=1}^{n} x_{ij} & \cdots & \sum_{i=1}^{n} x_{ij} \\ \sum_{i=1}^{n} x_{ij} & \sum_{i=1}^{n} x_{ij} & \sum_{i=1}^{n} x_{ij} x_{ij} & \cdots & \sum_{i=1}^{n} x_{ij} x_{ij} \\ \vdots & \vdots & \vdots & \vdots \\ \sum_{i=1}^{n} x_{ij} & \sum_{i=1}^{n} x_{ij} x_{ij} & \cdots & \sum_{i=1}^{n} x_{ij} x_{ij} \end{bmatrix} \text{ and } \mathbf{g} = \mathbf{X'y} = \begin{bmatrix} g_{ij} = \sum_{i=1}^{n} y_{ij} \\ g_{i} = \sum_{i=1}^{n} x_{ij} y_{ij} \\ g_{i} = \sum_{i=1}^{n} x_{ij} y_{ij} \end{bmatrix}$$

### Orthogonality

— The normal equations are then not coupled!

$$\hat{\beta}_{1} = \sum_{i=1}^{n} y_{i}/n$$
$$\hat{\beta}_{k} = (\sum_{i=1}^{n} x_{ki}y_{i})/(\sum_{i=1}^{n} x_{ki}^{2})$$

when we for simplicity assume that all covariates are centered (mean is zero).

— The estimate of  $\beta_2$  for  $x_2$  will not change if  $x_3$  is also included into the model. Interpretation is easy! Fitting is easy! Testing is easy!

### Multicollinearity

 $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{Y}, \text{ and } \operatorname{Cov}(\hat{\boldsymbol{\beta}}) = \sigma^2 (\boldsymbol{X}^T \boldsymbol{X})^{-1}.$ 

- If one covariate is correlated with another covariate then we have collinearity. (Not linearity - but a tendency of linear dependence.)
- With several correlated covariates we call this multicollinearity.
- This will make it difficult to know which variable to include in the model (several variables give much of the same information)
- and the covariance of  $\hat{\beta}$  may be large since  $\mathbf{X}^T \mathbf{X}$  may be nearly singular.
- And, the estimate of  $\beta_2$  in a model with only  $x_2$  will change if  $x_3$  is also included into the model.
- This will also make prediction difficult since the prediction error will explode.
- But, this is real life (unless you do DOE using an orthogonal

$$MLR: Y = X_{\beta+\epsilon} \qquad c \sim N(6, \sigma^2 I) \text{ and}$$

$$\hat{\beta} = (X_T X)^{-1} X^T Y \sim N_{\beta} (\beta, \sigma^2 (X^T X)^{-1})$$

What would we want to make optimal if we could choose X? - minimize Vor (p) = tr (de (XTX)-1) - minumize det (Car (\$)) - choose X with orthogonal columns to have massour intopreter billing T all of this can be done within the research topic DOE  $\int f(\mathbf{k}+1)$ Our focus: 2th factor al designs Hore the entries of the design matrix X are chosen to have two possible values {-1, 1] and each column is chosen orthogonal to the other columns.

#### **Outline DOE**

- The full  $2^k$  experiment.
  - Coding, standard order.
  - Main and interaction effects.
  - Simple formulas for effects and SSR (due to orthogonality).
  - Lenths method, and other strategies for estimating  $\sigma^2$ .
  - External effect present when performing repetitions?
- Blocking in full  $2^k$  experiments.
- Fractions of  $2^k$  experiments.

What does it mean to choose xij eh-1, 1]? If I stad with deta e.g. on chemical yield (y) and want to Study the effect of femperature (160°C, 180°C) and of chemical consentration (20%, 40%), I may recode temp & conc. to ease the mathematical presentation. Here I let temp 160 => -1 cono 20 => -1 (80 => 1 40 => 1 This will give me a regression model in the recorded variables. I my adways be able to transform the regression wall bech to original units.

#### Important remark

- We will here denote the intercept by  $\beta_0$ .
- We will look at k dichotomous covariates, so we estimate p = k + 1 regression parameters.

15

#### The pilot plant example - Version 1

At a pilot plant a chemical process is investigated.

- The outcome of the process is measured as chemical yield (in grams).
- Two quantitative variables (factors) were investigated:
  - Factor A: Temperature (in degrees C).
  - Factor B: Concentration (in percentage).

| Experiment no. | Temperature           | Concentration         | Yield |
|----------------|-----------------------|-----------------------|-------|
| 1              | 160                   | 20                    | 60    |
| 2              | 180                   | 20                    | 72    |
| 3              | 160                   | 40                    | 54    |
| 4              | 180                   | 40                    | 68    |
|                | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | у     |



Photo from Kathrine Frey Frøslie, http://www.facebook.com/photo.php?fbid=1775971247383

#### MLR with pilot plant data V1

x1 x2 y 1 160 20 60 2 180 20 72 3 160 40 54 4 180 40 68

>lm(formula = y ~ x1 + x2 + x1\*x2, data = ds)

Estimate (Intercept) -14.000 x1 0.500 x2 -1.100 x1:x2 0.005

18

#### MLR with pilot plant V1: coded variables

x1 x2 y z1 z2 1 160 20 60 -1 -1 2 180 20 72 1 -1 3 160 40 54 -1 1 4 180 40 68 1 1

#### MLR with original and coded factors

Original variables,  $x_1$  and  $x_2$ , gave estimated regression equation

$$\hat{y} = -14 + 0.5x_1 - 1.1x_2 + 0.005x_1 \cdot x_2$$

Coded variables,  $z_1 = (x_1 - 170)/10$  and  $z_2 = (x_2 - 30)/10$ , gave estimated regression equation

$$\hat{y} = 63.5 + 6.5z_1 - 2.5z_2 + 0.5z_1 \cdot z_2$$

Can you compare these two results?

#### MLR with original and coded factors

Substitute  $z_1 = (x_1 - 170)/10$  and  $z_2 = (x_2 - 30)/10$  into the equation to get a estimated regression equation based on  $x_1$  and  $x_2$ .

$$\hat{y} = 63.5 + 6.5z_1 - 2.5z_2 + 0.5z_1 \cdot z_2 
= 63.5 + 6.5\frac{x_1 - 170}{10} - 2.5\frac{x_2 - 30}{10} + 0.5\frac{x_1 - 170}{10} \cdot \frac{x_2 - 30}{10} 
= 63.5 - 6.5\frac{170}{10} + 2.5\frac{30}{10} + 0.5\frac{170 \cdot 30}{10 \cdot 10} 
+ x_1(6.5\frac{1}{10} - 0.5\frac{1}{10}\frac{30}{10}) + x_2(-2.5\frac{1}{10} - 0.5\frac{1}{10}\frac{170}{10}) 
+ 0.5\frac{1}{10}\frac{1}{10}x_1 \cdot x_2 
= -14 + 0.5x_1 - 1.1x_2 + 0.005x_1 \cdot x_2$$

# Design of experiments (DOE) terminology

- Variables are called factors, and denoted A, B, C, ...
- We will only look at factors with two levels
  - high, coded as +1 or just +, and
  - low, coded as -1 or just -.
- In the pilot plant example we had two factors with two levels, thus  $2 \cdot 2 = 4$  possible combinations. In general *k* factors with two levels gives  $2^k$  possible combinations.

|          | Experiment no. | Α          | В          | AB                     | Level code | Response   |  |  |
|----------|----------------|------------|------------|------------------------|------------|------------|--|--|
| -        | 1              | -1         | -1         | 1                      | 1          | <i>Y</i> 1 |  |  |
|          | 2              | 1          | -1         | -1                     | а          | <b>y</b> 2 |  |  |
|          | 3              | -1         | 1          | -1                     | b          | <b>y</b> 3 |  |  |
| _        | 4              | 1          | 1          | 1                      | ab         | <i>Y</i> 4 |  |  |
| <u> </u> |                | <i>Z</i> 1 | <i>Z</i> 2 | <i>Z</i> <sub>12</sub> |            | У          |  |  |

Standard notation for 2<sup>2</sup> experiment: