NTNU

Norwegian University of
Science and Technology

TMA4267 Linear Statistical Models V2014 (18)
Model transformations and Taylor expansion [7.2-7.4] Design of experiments (note): full 2^{k} experiment

Mette Langaas

To be lectured: March 4, 2014 wiki.math.ntnu.no/emner/tma4267/2014v/start/

Transformations [7.2-7.3]

- Multiplicative or additive model?
- BoxCox transform with profile likelihood.
- Stabilizing the variance.

Transformations $[7.2-7.3] \leftarrow$ the response
a) Yeolerdiy: multiplication is additive model

$$
\begin{aligned}
& Y \sim N\left(\mu, \sigma^{2}\right): Y=\mu+\varepsilon, \varepsilon \sim N\left(0, \sigma^{2}\right) \leftarrow a d d i d v \\
& Y=\mu \cdot \varepsilon \quad \leftarrow \text { multiplicative } \\
& \log (Y)=\log \mu+\log c
\end{aligned}
$$

b) The BoxCox transform (farstrighty positwercoponses) [7.2] $y \rightarrow g_{\lambda}(y)$ where

$$
g_{\lambda}(y)=\left\{\begin{array}{cc}
\frac{y^{\lambda}-1}{\lambda} & \lambda \neq 0 \\
\ln y & \lambda=0 \quad
\end{array} \begin{array}{l}
\text { see book } \\
\text { for } \lambda \rightarrow 0 \\
\text { connection }
\end{array}\right.
$$

The "best" value of λ may be chosen based on maximum likelihood the or using the profile log-likelihood (eros are normal)

$$
L(\lambda)=-\frac{n}{2} \log \left(\frac{\operatorname{SSE} \lambda}{n}\right)+(\lambda-1) \sum \log y_{i}
$$

when $S S \epsilon_{\lambda}$ is the SSE when $g_{\lambda}(y)$ is the roponse.

Prediclion: may we ony $\hat{\lambda}$
Interpretcion: round $\hat{\lambda}$ to the nezmest inbpretablevalue

$$
(0.46 \rightarrow 0.5 \Rightarrow \sqrt{y})
$$

We don't want to kensform if we don't reed to, becaue inleppetation mell be difficult.
Pay attention to the CI of λ when choosing $\hat{\lambda}$ for use.
$R:$ library (nASS), boxcox

sensibie to outlios

$$
\lambda=\operatorname{seq}(-2,2)
$$

Popular: $\lambda=0,0.5,-1$
C) Variance stabilizing trenoformations [7.3]
\rightarrow Choose a tronsformation of y that makes Var (y) constant.
i) We observe that $\operatorname{Var}(y) \propto E(y)$
 (eeg. $Y \sim$ Poisson $(\mu), E(Y)=\mu, \operatorname{Var}(Y)=\mu)$.
Which $g(y)$ should we choose?
Trick: 1th order Taylor expansion of Y around $\mu, E(Y)=\mu$.

$$
g(Y) \approx g(\mu)+g_{\lambda}^{\prime}(\mu)(Y-\mu)
$$

$$
\begin{aligned}
E(g(y)) & \approx g(\mu)+g^{\prime}(\mu) \cdot(\underbrace{E(Y)-\mu}_{0}) \\
& \approx g(\mu)
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var}(g(Y)) & \approx 0 \in[g^{\prime}(\mu)^{2} \operatorname{Var} \underbrace{(y-\mu)}_{\operatorname{Var}(Y)} \\
& \approx\left[g^{\prime}(\mu)\right]^{2} \operatorname{Var}(y)
\end{aligned}
$$

How to case this? We have (in general) $\operatorname{Var}(Y)=H(\mu)$ and we wont to find $g(Y)$ so that $\operatorname{Var}(g(Y))=\sigma^{2} \leftarrow a$ conslant.

$$
\operatorname{Var}(g(y))=\sigma^{2} \approx\left[g^{\prime}(\mu)\right]^{2} \cdot \underbrace{\operatorname{Var}(y)}_{H(\mu)}
$$

Solve for 9

Let $H(\mu)=\mu$

$$
\begin{aligned}
& \sigma^{2}=\left[g^{\prime}(\mu)\right]^{2} \cdot \mu \\
& g^{\prime}(\mu)=\sqrt{\frac{\sigma^{2}}{\mu}} \\
& g(y) \propto \int \frac{1}{\sqrt{y}} d y=\sqrt{y}
\end{aligned}
$$

ii) $\operatorname{Var}(y) \propto E(Y)^{2} \Rightarrow g(y)=\ln y$
iii) $\operatorname{Var}(y) \propto E(y)^{4} \Rightarrow g(y)=\frac{1}{y}$

Approximation of E and Var for nonlinear functions

- Have RV X, with mean $\mathrm{E}(X)=\mu$ and some variance $\operatorname{Var}(X)$,
- Want to look at a nonlinear function of X, called $g(X)$.
- Aim: find an approximation to $\mathrm{E}(g(X))$ and $\operatorname{Var}(g(X))$.
- And, the same for two RVs X_{1} and X_{2} with $g\left(X_{1}, X_{2}\right)$.
- Solution: first order Taylor approximation.

Example 1: Exam TMA4255 V2011 1d (In of BMI)

Looking at residual plots from a one-way ANOVA the conclusion was to analyse data of $B M I$ vs genotype (three groups) on the natural logaritmic scale.
In the genotype group 2 the average $\ln (B M I)$ was 3.2151 and the empirical standard deviation was 0.1656 .
Use approximate methods to arrive at an estimate of the mean and standard deviation for the BMI (that is, on the orginal scale, $\mathrm{kg} / \mathrm{m}^{2}$, and not on the logarithmic scale).

$\mathrm{E}(g(X)$ and $\operatorname{Var}(g(X))$: from earlier courses

- Let $g(X)$ be a general function. When is $\mathrm{E}(g(X))=g(\mathrm{E}(X))$?
- When $g(X)$ is a linear function of X.
- What can we do if this is not the case?
- If g is monotone we can use the transformations formula to find the distribution of $Y=g(X)$ and then calculate $\mathrm{E}(Y)$ and $\operatorname{Var}(Y)$, if possible.
- What if we only know $\mathrm{E}(X)=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$ and not $f(x)$?
- Use a Taylor series approximation of $g(X)$ around $g(\mu) . g$ need to be differentiable.

Univariate function

First order Taylor approximation of $g(X)$ around μ.

$$
g(X) \approx g(\mu)+g^{\prime}(\mu)(X-\mu)
$$

This leads to the following approximations:

$$
\begin{gathered}
\mathrm{E}(g(X)) \approx g(\mu) \\
\operatorname{Var}(g(X)) \approx\left[g^{\prime}(\mu)\right]^{2} \operatorname{Var}(X)
\end{gathered}
$$

Example 2: Exam TMA4255 V2012 3d (fraction)

Let μ_{A} be the expected pain-free grip force for a population where the physiotherapy intervention treatment is used to treat tennis elbow, and μ_{C} be the expected pain-free grip force for a population where the wait-and-see treatment is used. Define the relative difference between these two expected values as

$$
\gamma=\frac{\mu_{A}-\mu_{C}}{\mu_{C}}
$$

This can be interpreted as the expected relative gain by using physiotherapy instead of wait-and-see. Based on two independent random samples of size n_{A} and n_{C} from the physiotherapy and wait-and-see treatment groups, respectively, suggest an estimator, $\hat{\gamma}$, for γ.
Use approximate methods to find the expected value and variance of this estimator, that is, $\mathrm{E}(\hat{\gamma})$ and $\operatorname{Var}(\hat{\gamma})$.

Bivariate function: first order Taylor

X_{1} is a RV with $\mu=\mathrm{E}\left(X_{2}\right)$ and X_{2} is a RV with $\mu_{2}=\mathrm{E}\left(X_{2}\right)$. Let g be a bivariate function of X_{1} and X_{2}, and define

$$
\begin{aligned}
& g_{1}^{\prime}\left(\mu_{1}, \mu_{2}\right)=\left.\frac{\partial g\left(x_{1}, x_{2}\right)}{\partial x_{1}}\right|_{x_{1}=\mu_{1}, x_{2}=\mu_{2}} \\
& g_{2}^{\prime}\left(\mu_{1}, \mu_{2}\right)=\left.\frac{\partial g\left(x_{1}, x_{2}\right)}{\partial x_{2}}\right|_{x_{1}=\mu-1, x_{2}=\mu_{2}}
\end{aligned}
$$

First order Taylor approximation:

$$
g\left(X_{1}, X_{2}\right) \approx g\left(\mu_{1}, \mu_{2}\right)+g_{1}^{\prime}\left(\mu_{1}, \mu_{2}\right)\left(X_{1}-\mu_{1}\right)+g_{2}^{\prime}\left(\mu_{1}, \mu_{2}\right)\left(X_{2}-\mu_{2}\right)
$$

Bivariate function: first order Taylor

$$
\begin{array}{rl}
\mathrm{E}\left(g\left(X_{1}, X_{2}\right)\right) & \approx g\left(\mu_{1}, \mu_{2}\right) \\
\operatorname{Var}\left(g\left(X_{1}, X_{2}\right)\right) & \approx\left[g_{1}^{\prime}\left(\mu_{1}, \mu_{2}\right)\right]^{2} \operatorname{Var}\left(X_{1}\right)+\left[g_{2}^{\prime}\left(\mu_{1}, \mu_{2}\right)\right]^{2} \operatorname{Var}\left(X_{2}\right)+ \\
2 & 2 g_{1}^{\prime}\left(\mu_{1}, \mu_{2}\right) \cdot g_{2}^{\prime}\left(\mu_{1}, \mu_{2}\right) \operatorname{Cov}\left(X_{1}, X_{2}\right)
\end{array}
$$

Multivariate version

From Tabeller og formler i statistikk.

Rekkeutvikling

En første ordens Taylorutvikling av funksjonen $g\left(X_{1}, \ldots, X_{n}\right)$ omkring $g\left(\mu_{1}, \ldots, \mu_{n}\right)$, der $\mathrm{E}\left(X_{i}\right)=$ $\mu_{i}, i=1, \ldots, n$, gir approksimasjonene

$$
\begin{aligned}
& \mathrm{E}\left[g\left(X_{1}, \ldots, X_{n}\right)\right] \approx g\left(\mu_{1}, \ldots, \mu_{n}\right), \\
& \operatorname{Var}\left[g\left(X_{1}, \ldots, X_{n}\right)\right] \approx \sum_{i=1}^{n}\left(\frac{\partial g\left(\mu_{1}, \ldots, \mu_{n}\right)}{\partial \mu_{i}}\right)^{2} \operatorname{Var}\left(X_{i}\right)+2 \sum_{i>j} \frac{\partial g}{\partial \mu_{i}} \frac{\partial g}{\partial \mu_{j}} \operatorname{Cov}\left(X_{i}, X_{j}\right) .
\end{aligned}
$$

Orthogonality

Mathematically: we look at $\boldsymbol{X}^{\top} \boldsymbol{X}$, and remember that for the LS-regression $\operatorname{Cov}(\hat{\boldsymbol{\beta}})=\sigma^{2}\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1}$.

- If two regressors have values independent of eachother they have zero correlation,
- and are said to be orthogonal. $\boldsymbol{x}_{j}^{\top} \boldsymbol{x}_{l}=0$.
- Then $\boldsymbol{X}^{\top} \boldsymbol{X}$ will be a diagonal matrix and the regression coefficients are independent of eachother.

$$
\begin{aligned}
& \left(\boldsymbol{X}^{\top} \boldsymbol{X}\right) \boldsymbol{b}=\boldsymbol{X}^{\top} \boldsymbol{y}
\end{aligned}
$$

Orthogonality

- The normal equations are then not coupled!

$$
\begin{aligned}
& \hat{\beta}_{1}=\sum_{i=1}^{n} y_{i} / n \\
& \hat{\beta}_{k}=\left(\sum_{i=1}^{n} x_{k i} y_{i}\right) /\left(\sum_{i=1}^{n} x_{k i}^{2}\right)
\end{aligned}
$$

when we for simplicity assume that all covariates are centered (mean is zero).

- The estimate of β_{2} for x_{2} will not change if x_{3} is also included into the model. Interpretation is easy! Fitting is easy! Testing is easy!

Multicollinearity

$$
\hat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{Y} \text {, and } \operatorname{Cov}(\hat{\boldsymbol{\beta}})=\sigma^{2}\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} .
$$

- If one covariate is correlated with another covariate then we have collinearity. (Not linearity - but a tendency of linear dependence.)
- With several correlated covariates we call this multicollinearity.
- This will make it difficult to know which variable to include in the model (several variables give much of the same information)
— and the covariance of $\hat{\boldsymbol{\beta}}$ may be large since $\boldsymbol{X}^{\top} \boldsymbol{X}$ may be nearly singular.
- And, the estimate of β_{2} in a model with only x_{2} will change if x_{3} is also included into the model.
- This will also make prediction difficult since the prediction error will explode.
- But, this is real life (unless you do DOE using an orthogonal

Part 6: Design of Experiments (DOE) with 2^{k} factorial design
MIR: $\quad Y=X_{\beta}+\varepsilon \quad \varepsilon \sim N_{n}\left(0, \sigma^{2} I\right)$ and

$$
\hat{\beta}=\left(x^{\top} x\right)^{-1} x^{\top} Y \sim N_{p}\left(\beta, o^{2}\left(x^{\top} x\right)^{-1}\right)
$$

What would we want to make optimal if we could choose X ?

- minimize $\operatorname{Var}(\hat{\beta})=\operatorname{tr}\left(\sigma^{2}\left(x^{\top} x\right)^{-1}\right)$
- minimize $\operatorname{det}(\operatorname{Car}(\hat{\mathrm{p}}))$
- choose X with orthogonal column to have maximum intepreta bility
- - all of this can be dose within the research topiC DOE

Our focus: 2^{k} factorial designs $\alpha^{n} \times \underbrace{(k+1)}_{p}$
Here the entries of the design matrix X are chosen to have two possible values $\{-1,1\}$ and each column is chosen orthogonal to the other coluans.

Outline DOE

— The full 2^{k} experiment.

- Coding, standard order.
- Main and interaction effects.
- Simple formulas for effects and SSR (due to orthogonality).
- Lenths method, and other strategies for estimating σ^{2}.
- External effect present when performing repetitions?
- Blocking in full 2^{k} experiments.
- Fractions of 2^{k} experiments.

What does it mean to choose $x_{i j} \in\{-1,1\}$?
If I stat with data e.g. on chemical yield (y) and wat to study the effect of femperetwre $\left(160^{\circ} \mathrm{C}, 180^{\circ} \mathrm{C}\right)$ and of chemical consentration $(20 \%, 40 \%)$, I may recode temp \& conc. to ease the mathematical presentation. Here Ilet temp $160 \Rightarrow-1 \quad$ cons $20 \Rightarrow-1$

$$
180 \Rightarrow 1 \quad 40 \rightarrow 1
$$

This will give me a regression model in the recoded variables. I mu l always be alde to transform the regression model beck to original units.

Important remark

- We will here denote the intercept by β_{0}.
- We will look at k dichotomous covariates, so we estimate $p=k+1$ regression parameters.

The pilot plant example - Version 1

At a pilot plant a chemical process is investigated.

- The outcome of the process is measured as chemical yield (in grams).
- Two quantitative variables (factors) were investigated:
- Factor A: Temperature (in degrees C).
- Factor B: Concentration (in percentage).

Experiment no.	Temperature	Concentration	Yield
1	160	20	60
2	180	20	72
3	160	40	54
4	180	40	68
	x_{1}	x_{2}	y

Photo from Kathrine Frey Frøslie, http://www.facebook.com/photo.php?fbid=1775971247383

MLR with pilot plant data V1

```
\begin{tabular}{rrrr} 
& \(x 1\) & \(x 2\) & \(y\) \\
1 & 160 & 20 & 60 \\
2 & 180 & 20 & 72 \\
3 & 160 & 40 & 54 \\
4 & 180 & 40 & 68
\end{tabular}
```

```
>lm(formula = y ~ x1 + x2 + x1*x2, data = ds)
```

```
>lm(formula = y ~ x1 + x2 + x1*x2, data = ds)
```

	Estimate
(Intercept)	-14.000
x1	0.500
x2	-1.100
x1:x2	0.005

MLR with pilot plant V1: coded variables

MLR with original and coded factors

Original variables, x_{1} and x_{2}, gave estimated regression equation

$$
\hat{y}=-14+0.5 x_{1}-1.1 x_{2}+0.005 x_{1} \cdot x_{2}
$$

Coded variables, $z_{1}=\left(x_{1}-170\right) / 10$ and $z_{2}=\left(x_{2}-30\right) / 10$, gave estimated regression equation

$$
\hat{y}=63.5+6.5 z_{1}-2.5 z_{2}+0.5 z_{1} \cdot z_{2}
$$

Can you compare these two results?

MLR with original and coded factors

Substitute $z_{1}=\left(x_{1}-170\right) / 10$ and $z_{2}=\left(x_{2}-30\right) / 10$ into the equation to get a estimated regression equation based on x_{1} and x_{2}.

$$
\begin{aligned}
\hat{y} & =63.5+6.5 z_{1}-2.5 z_{2}+0.5 z_{1} \cdot z_{2} \\
& =63.5+6.5 \frac{x_{1}-170}{10}-2.5 \frac{x_{2}-30}{10}+0.5 \frac{x_{1}-170}{10} \cdot \frac{x_{2}-30}{10} \\
& =63.5-6.5 \frac{170}{10}+2.5 \frac{30}{10}+0.5 \frac{170 \cdot 30}{10 \cdot 10} \\
& +x_{1}\left(6.5 \frac{1}{10}-0.5 \frac{1}{10} \frac{30}{10}\right)+x_{2}\left(-2.5 \frac{1}{10}-0.5 \frac{1}{10} \frac{170}{10}\right) \\
& +0.5 \frac{1}{10} \frac{1}{10} x_{1} \cdot x_{2} \\
& =-14+0.5 x_{1}-1.1 x_{2}+0.005 x_{1} \cdot x_{2}
\end{aligned}
$$

Design of experiments (DOE) terminology

- Variables are called factors, and denoted A, B, C, \ldots
- We will only look at factors with two levels
- high, coded as +1 or just + , and
- low, coded as -1 or just -
- In the pilot plant example we had two factors with two levels, thus $2 \cdot 2=4$ possible combinations. In general k factors with two levels gives 2^{k} possible combinations.
Standard notation for 2^{2} experiment:

Experiment no.	A	B	$A B$	Level code	Response
1	-1	-1	1	1	y_{1}
2	1	-1	-1	a	y_{2}
3	-1	1	-1	b	y_{3}
4	1	1	1	$a b$	y_{4}
	z_{1}	z_{2}	z_{12}		y

General DOE $2^{\text {e }}$ set-up:

- factors (covoriatios) are called $A_{1} B_{1} C, \ldots$
- each factor has two (bels, coded as -1 end 1

In full 2^{k} experiments we val concluct all possible experiments, $n=2^{k}$ experiments.
All possible experiments are written in socalled standard order:

A	B	C
-1	-1	-1
1	-1	-1
-1	1	-1
1	1	-1
-1	-1	1
1	-1	1
-1	1	1
1	1	1

