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Transformations [7.2-7.3]

— Multiplicative or additive model?
— BoxCox transform with profile likelihood.
— Stabilizing the variance.
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Approximation of E and Var
for nonlinear functions

— Have RV X , with mean E(X ) = µ and some variance Var(X ).
— Want to look at a nonlinear function of X , called g(X ).
— Aim: find an approximation to E(g(X )) and Var(g(X )).
— And, the same for two RVs X1 and X2 with g(X1,X2).
— Solution: first order Taylor approximation.
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Example 1: Exam TMA4255 V2011 1d (ln
of BMI)

Looking at residual plots from a one-way ANOVA the conclusion
was to analyse data of BMI vs genotype (three groups) on the
natural logaritmic scale.
In the genotype group 2 the average ln(BMI) was 3.2151 and the
empirical standard deviation was 0.1656.
Use approximate methods to arrive at an estimate of the mean and
standard deviation for the BMI (that is, on the orginal scale, kg/m2,
and not on the logarithmic scale).
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E(g(X ) and Var(g(X )): from earlier
courses

— Let g(X ) be a general function. When is E(g(X )) = g(E(X ))?
• When g(X ) is a linear function of X .

— What can we do if this is not the case?
• If g is monotone we can use the transformations formula to find

the distribution of Y = g(X ) and then calculate E(Y ) and
Var(Y ), if possible.

— What if we only know E(X ) = µ and Var(X ) = �2 and not
f (x)?

• Use a Taylor series approximation of g(X ) around g(µ). g need
to be differentiable.
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Univariate function

First order Taylor approximation of g(X ) around µ.

g(X ) ⇡ g(µ) + g

0(µ)(X � µ)

This leads to the following approximations:

E(g(X )) ⇡ g(µ)

Var(g(X )) ⇡ [g0(µ)]2Var(X )
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Example 2: Exam TMA4255 V2012 3d
(fraction)

Let µ
A

be the expected pain-free grip force for a population where
the physiotherapy intervention treatment is used to treat tennis
elbow, and µ

C

be the expected pain-free grip force for a population
where the wait-and-see treatment is used. Define the relative
difference between these two expected values as

� =
µ

A

� µ
C

µ
C

.

This can be interpreted as the expected relative gain by using
physiotherapy instead of wait-and-see. Based on two independent
random samples of size n

A

and n

C

from the physiotherapy and
wait-and-see treatment groups, respectively, suggest an estimator,
�̂, for �.
Use approximate methods to find the expected value and variance
of this estimator, that is, E(�̂) and Var(�̂).
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Bivariate function: first order Taylor

X1 is a RV with µ = E(X2) and X2 is a RV with µ2 = E(X2).
Let g be a bivariate function of X1 and X2, and define

g

0
1(µ1, µ2) =

@g(x1, x2)

@x1
|
x1=µ1,x2=µ2

g

0
2(µ1, µ2) =

@g(x1, x2)

@x2
|
x1=µ�1,x2=µ2

First order Taylor approximation:

g(X1,X2) ⇡ g(µ1, µ2) + g

0
1(µ1, µ2)(X1 � µ1) + g

0
2(µ1, µ2)(X2 � µ2)
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Bivariate function: first order Taylor

E(g(X1,X2)) ⇡ g(µ1, µ2)

Var(g(X1,X2)) ⇡ [g0
1(µ1, µ2)]

2
Var(X1) + [g0

2(µ1, µ2)]
2
Var(X2)+

2 · g

0
1(µ1, µ2) · g

0
2(µ1, µ2)Cov(X1,X2)
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Multivariate version

From Tabeller og formler i statistikk.
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Orthogonality

Mathematically: we look at X

T

X , and remember that for the
LS-regression Cov(�̂) = �2(X T

X )�1.
— If two regressors have values independent of eachother they

have zero correlation,
— and are said to be orthogonal. x

T

j

x

l

= 0.

— Then X

T

X will be a diagonal matrix and the regression
coefficients are independent of eachother.

(X T

X )b = X

T

y
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Orthogonality

— The normal equations are then not coupled!

�̂1 =
nX

i=1

y

i

/n

�̂
k

= (
nX

i=1

x

ki

y

i

)/(
nX

i=1

x

2
ki

)

when we for simplicity assume that all covariates are centered
(mean is zero).

— The estimate of �2 for x2 will not change if x3 is also included
into the model. Interpretation is easy! Fitting is easy! Testing is
easy!
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Multicollinearity
�̂ = (X T

X )�1
X

T

Y , and Cov(�̂) = �2(X T

X )�1.
— If one covariate is correlated with another covariate then we

have collinearity. (Not linearity - but a tendency of linear
dependence.)

— With several correlated covariates we call this multicollinearity.
— This will make it difficult to know which variable to include in

the model (several variables give much of the same
information)

— and the covariance of �̂ may be large since X

T

X may be
nearly singular.

— And, the estimate of �2 in a model with only x2 will change if x3
is also included into the model.

— This will also make prediction difficult since the prediction error
will explode.

— But, this is real life (unless you do DOE using an orthogonal
design).www.ntnu.no Mette.Langaas@math.ntnu.no, TMA4267V2014





14

Outline DOE

— The full 2k experiment.
• Coding, standard order.
• Main and interaction effects.
• Simple formulas for effects and SSR (due to orthogonality).
• Lenths method, and other strategies for estimating �2.
• External effect present when performing repetitions?

— Blocking in full 2k experiments.
— Fractions of 2k experiments.
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Important remark

— We will here denote the intercept by �0.
— We will look at k dichotomous covariates, so we estimate

p = k + 1 regression parameters.
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The pilot plant example - Version 1

At a pilot plant a chemical process is investigated.
— The outcome of the process is measured as chemical yield (in

grams).
— Two quantitative variables (factors) were investigated:

• Factor A: Temperature (in degrees C).
• Factor B: Concentration (in percentage).
Experiment no. Temperature Concentration Yield
1 160 20 60
2 180 20 72
3 160 40 54
4 180 40 68

x1 x2 y
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MLR with pilot plant data V1

x1 x2 y

1 160 20 60

2 180 20 72

3 160 40 54

4 180 40 68

>lm(formula = y ~ x1 + x2 + x1*x2, data = ds)

Estimate

(Intercept) -14.000

x1 0.500

x2 -1.100

x1:x2 0.005
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MLR with pilot plant V1: coded variables

x1 x2 y z1 z2

1 160 20 60 -1 -1

2 180 20 72 1 -1

3 160 40 54 -1 1

4 180 40 68 1 1

lm(formula = y ~ z1 + z2 + z1 * z2, data = ds)

Estimate

(Intercept) 63.5

z1 6.5

z2 -2.5

z1:z2 0.5
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MLR with original and coded factors

Original variables, x1 and x2, gave estimated regression equation

ŷ = �14 + 0.5x1 � 1.1x2 + 0.005x1 · x2

Coded variables, z1 = (x1 � 170)/10 and z2 = (x2 � 30)/10, gave
estimated regression equation

ŷ = 63.5 + 6.5z1 � 2.5z2 + 0.5z1 · z2

Can you compare these two results?
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MLR with original and coded factors
Substitute z1 = (x1 � 170)/10 and z2 = (x2 � 30)/10 into the
equation to get a estimated regression equation based on x1 and
x2.

ŷ = 63.5 + 6.5z1 � 2.5z2 + 0.5z1 · z2

= 63.5 + 6.5
x1 � 170

10
� 2.5

x2 � 30
10

+ 0.5
x1 � 170

10
· x2 � 30

10

= 63.5 � 6.5
170
10

+ 2.5
30
10

+ 0.5
170 · 30
10 · 10

+ x1(6.5
1

10
� 0.5

1
10

30
10

) + x2(�2.5
1
10

� 0.5
1
10

170
10

)

+ 0.5
1

10
1

10
x1 · x2

= �14 + 0.5x1 � 1.1x2 + 0.005x1 · x2
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Design of experiments (DOE)
terminology

— Variables are called factors, and denoted A, B, C, ...
— We will only look at factors with two levels

• high, coded as +1 or just +, and
• low, coded as �1 or just �.

— In the pilot plant example we had two factors with two levels,
thus 2 · 2 = 4 possible combinations. In general k factors with
two levels gives 2k possible combinations.

Standard notation for 22 experiment:
Experiment no. A B AB Level code Response

1 -1 -1 1 1 y1
2 1 -1 -1 a y2
3 -1 1 -1 b y3
4 1 1 1 ab y4

z1 z2 z12 y
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