

TMA4267 Linear Statistical Models V2014 (18) Model transformations and Taylor expansion [7.2-7.4] Design of experiments (note): full 2^k experiment

Mette Langaas

To be lectured: March 4, 2014 wiki.math.ntnu.no/emner/tma4267/2014v/start/

Transformations [7.2-7.3]

- Multiplicative or additive model?
- BoxCox transform with profile likelihood.
- Stabilizing the variance.

[Fansformations [7.2-7.3] at the response a) Yester they : multiplication is additive model $Y \sim N(\mu_1 \sigma^2)$: $Y = \mu t \in [E \sim N(0, \sigma^2) \leftarrow addition$ Y- M-E E multiplication log(Y)= leg M + log c b) the Box Cox transform (for strighty positive responses) [7.2] y -> ga(y) where $g_{\lambda}(y) = \begin{cases} \frac{y^{\lambda} - 1}{\lambda} & \lambda \neq 0\\ \log & \lambda \neq 0 \end{cases}$) see book connection The best value of & may be chosen based on maximum likelihood the ony

using the profile $\log - 1$ is likelihood (errors are normal) $L(A) = -\frac{n}{2} \log \left(\frac{SSE_A}{n} \right) + (A-1) \sum \log g_i$ wher SSE_A is the SSE when $g_A(y)$ is the reprove.

Popula: 1=0,05,-1

c) Variance stabilizing transformations [7.3] net

$$\Rightarrow$$
 choose attransformation of y
that makes $Var(k) < E(y)$
(e.g. $Y \sim Poisson (\mu)$, $E(Y) = \mu$, $Var(Y) = \mu$).
Which $g(y)$ should we choose?
Trick: Ath order Taylor expension of Y around μ , $E(Y) = \mu$.
 $g(Y) \approx g(\mu) + g'(\mu) (Y-\mu)$
 $\frac{dg}{dy}|_{y=\mu}$
 $g(Y) \approx g(\mu) + g'(\mu) (E(Y) - \mu)$
 $\approx g(\mu)$
 $Var(g(Y)) \approx 0 + (g'(\mu)^2 Var(Y-\mu))$
 $\approx (g'(\mu))^2 Var(Y)$

How to use this? We have (in general)
$$Var(Y) = H(\mu)$$

and we want to find $g(Y)$ so that $Var(g(Y)) = \sigma^2 \in a$ cansilant.
 $Var(g(Y)) = \sigma^2 \approx [g'(\mu)]^2 Var(Y)$
 $T = H(\mu)$
Solve for g

Let
$$H(\mu) = M$$

 $\sigma^{2} = [g^{1}(\mu)]^{2} \cdot \mu$
 $g^{1}(\mu) = \sqrt{\frac{\sigma^{2}}{\mu}}$
 $g(y) \propto \int \frac{1}{\sqrt{y}} dy = \frac{1}{\sqrt{y}}$
i) $Var(Y) \propto C(Y)^{2} \Rightarrow g(y) = hy$
ii) $Var(Y) \propto C(Y)^{4} \Rightarrow g(y) = \frac{1}{\sqrt{y}}$

Approximation of E and Var for nonlinear functions

- Have RV X, with mean $E(X) = \mu$ and some variance Var(X),
- Want to look at a nonlinear function of X, called g(X).
- Aim: find an approximation to E(g(X)) and Var(g(X)).
- And, the same for two RVs X_1 and X_2 with $g(X_1, X_2)$.
- Solution: first order Taylor approximation.

Example 1: Exam TMA4255 V2011 1d (In of BMI)

Looking at residual plots from a one-way ANOVA the conclusion was to analyse data of *BMI* vs genotype (three groups) on the natural logaritmic scale.

In the genotype group 2 the average In(BMI) was 3.2151 and the empirical standard deviation was 0.1656.

Use approximate methods to arrive at an estimate of the mean and standard deviation for the *BMI* (that is, on the orginal scale, kg/m^2 , and not on the logarithmic scale).

E(g(X) and Var(g(X))): from earlier courses

- Let g(X) be a general function. When is E(g(X)) = g(E(X))?
 - When g(X) is a linear function of X.
- What can we do if this is not the case?
 - If g is monotone we can use the transformations formula to find the distribution of Y = g(X) and then calculate E(Y) and Var(Y), if possible.
- What if we only know $E(X) = \mu$ and $Var(X) = \sigma^2$ and not f(x)?
 - Use a Taylor series approximation of g(X) around g(μ). g need to be differentiable.

Univariate function

First order Taylor approximation of g(X) around μ .

$$g(X) pprox g(\mu) + g'(\mu)(X-\mu)$$

This leads to the following approximations:

 $\mathrm{E}(g(X)) \approx g(\mu)$ $\mathrm{Var}(g(X)) \approx [g'(\mu)]^2 \mathrm{Var}(X)$

Example 2: Exam TMA4255 V2012 3d (fraction)

Let μ_A be the expected pain-free grip force for a population where the physiotherapy intervention treatment is used to treat tennis elbow, and μ_C be the expected pain-free grip force for a population where the wait-and-see treatment is used. Define the relative difference between these two expected values as

$$\gamma = \frac{\mu_A - \mu_C}{\mu_C}$$

This can be interpreted as the expected relative gain by using physiotherapy instead of wait-and-see. Based on two independent random samples of size n_A and n_C from the physiotherapy and wait-and-see treatment groups, respectively, suggest an estimator, $\hat{\gamma}$, for γ .

Use approximate methods to find the expected value and variance of this estimator, that is, $E(\hat{\gamma})$ and $Var(\hat{\gamma})$.

Bivariate function: first order Taylor

 X_1 is a RV with $\mu = E(X_2)$ and X_2 is a RV with $\mu_2 = E(X_2)$. Let *g* be a bivariate function of X_1 and X_2 , and define

$$g_{1}'(\mu_{1},\mu_{2}) = \frac{\partial g(x_{1},x_{2})}{\partial x_{1}} |_{x_{1}=\mu_{1},x_{2}=\mu_{2}}$$
$$g_{2}'(\mu_{1},\mu_{2}) = \frac{\partial g(x_{1},x_{2})}{\partial x_{2}} |_{x_{1}=\mu-1,x_{2}=\mu_{2}}$$

First order Taylor approximation:

$$g(X_1, X_2) \approx g(\mu_1, \mu_2) + g'_1(\mu_1, \mu_2)(X_1 - \mu_1) + g'_2(\mu_1, \mu_2)(X_2 - \mu_2)$$

Bivariate function: first order Taylor

$$\begin{split} & \mathbb{E}(g(X_1, X_2)) \approx g(\mu_1, \mu_2) \\ & \operatorname{Var}(g(X_1, X_2)) \approx [g_1'(\mu_1, \mu_2)]^2 \operatorname{Var}(X_1) + [g_2'(\mu_1, \mu_2)]^2 \operatorname{Var}(X_2) + \\ & 2 \cdot g_1'(\mu_1, \mu_2) \cdot g_2'(\mu_1, \mu_2) \operatorname{Cov}(X_1, X_2) \end{split}$$

Multivariate version

From Tabeller og formler i statistikk.

Rekkeutvikling

En første ordens Taylorutvikling av funksjonen $g(X_1, \ldots, X_n)$ omkring $g(\mu_1, \ldots, \mu_n)$, der E $(X_i) = \mu_i$, $i = 1, \ldots, n$, gir approksimasjonene

$$\begin{split} \mathbf{E}[g(X_1,\ldots,X_n)] &\approx g(\mu_1,\ldots,\mu_n),\\ \mathbf{Var}[g(X_1,\ldots,X_n)] &\approx \sum_{i=1}^n \left(\frac{\partial g(\mu_1,\ldots,\mu_n)}{\partial \mu_i}\right)^2 \mathbf{Var}(X_i) + 2\sum_{i>j} \frac{\partial g}{\partial \mu_i} \frac{\partial g}{\partial \mu_j} \mathbf{Cov}(X_i,X_j). \end{split}$$

Orthogonality

Mathematically: we look at $\boldsymbol{X}^T \boldsymbol{X}$, and remember that for the LS-regression $Cov(\hat{\boldsymbol{\beta}}) = \sigma^2 (\boldsymbol{X}^T \boldsymbol{X})^{-1}$.

- If two regressors have values independent of eachother they have zero correlation,
- and are said to be orthogonal. $\mathbf{x}_{i}^{T}\mathbf{x}_{i} = 0$.
- Then $\mathbf{X}^T \mathbf{X}$ will be a diagonal matrix and the regression coefficients are independent of eachother.

$$(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})\boldsymbol{b} = \boldsymbol{X}^{\mathsf{T}}\boldsymbol{y}$$

$$\mathbf{A} = \mathbf{X'X} = \begin{bmatrix} n & \sum_{i=1}^{n} x_{ii} & \sum_{i=1}^{n} x_{ij} & \cdots & \sum_{i=1}^{n} x_{ij} \\ \sum_{i=1}^{n} x_{ij} & \sum_{i=1}^{n} x_{ij} & \sum_{i=1}^{n} x_{ij} x_{ij} & \cdots & \sum_{i=1}^{n} x_{ij} x_{ij} \\ \vdots & \vdots & \vdots & \vdots \\ \sum_{i=1}^{n} x_{ij} & \sum_{i=1}^{n} x_{ij} x_{ij} & \cdots & \sum_{i=1}^{n} x_{ij} x_{ij} \end{bmatrix} \text{ and } \mathbf{g} = \mathbf{X'y} = \begin{bmatrix} g_{ij} = \sum_{i=1}^{n} y_{ij} \\ g_{i} = \sum_{i=1}^{n} x_{ij} y_{ij} \\ g_{i} = \sum_{i=1}^{n} x_{ij} y_{ij} \end{bmatrix}$$

Orthogonality

— The normal equations are then not coupled!

$$\hat{\beta}_{1} = \sum_{i=1}^{n} y_{i}/n$$
$$\hat{\beta}_{k} = (\sum_{i=1}^{n} x_{ki}y_{i})/(\sum_{i=1}^{n} x_{ki}^{2})$$

when we for simplicity assume that all covariates are centered (mean is zero).

— The estimate of β_2 for x_2 will not change if x_3 is also included into the model. Interpretation is easy! Fitting is easy! Testing is easy!

Multicollinearity

 $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{Y}, \text{ and } \operatorname{Cov}(\hat{\boldsymbol{\beta}}) = \sigma^2 (\boldsymbol{X}^T \boldsymbol{X})^{-1}.$

- If one covariate is correlated with another covariate then we have collinearity. (Not linearity - but a tendency of linear dependence.)
- With several correlated covariates we call this multicollinearity.
- This will make it difficult to know which variable to include in the model (several variables give much of the same information)
- and the covariance of $\hat{\beta}$ may be large since $\mathbf{X}^T \mathbf{X}$ may be nearly singular.
- And, the estimate of β_2 in a model with only x_2 will change if x_3 is also included into the model.
- This will also make prediction difficult since the prediction error will explode.
- But, this is real life (unless you do DOE using an orthogonal

$$MLR: Y = X_{\beta+\epsilon} \qquad c \sim N(6, \sigma^2 I) \text{ and}$$

$$\hat{\beta} = (X_T X)^{-1} X^T Y \sim N_{\beta} (\beta, \sigma^2 (X^T X)^{-1})$$

What would we want to make optimal if we could choose X? - minimize Vor (p) = tr (de (XTX)-1) - minumize det (Car (\$)) - choose X with orthogonal columns to have massour intopreter billing T all of this can be done within the research topic DOE $\int f(\mathbf{k}+1)$ Our focus: 2th factor al designs Hore the entries of the design matrix X are chosen to have two possible values {-1, 1] and each column is chosen orthogonal to the other columns.

Outline DOE

- The full 2^k experiment.
 - Coding, standard order.
 - Main and interaction effects.
 - Simple formulas for effects and SSR (due to orthogonality).
 - Lenths method, and other strategies for estimating σ^2 .
 - External effect present when performing repetitions?
- Blocking in full 2^k experiments.
- Fractions of 2^k experiments.

What does it mean to choose xij eh-1, 1]? If I stad with deta e.g. on chemical yield (y) and want to Study the effect of femperature (160°C, 180°C) and of chemical consentration (20%, 40%), I may recode temp & conc. to ease the mathematical presentation. Here I let temp 160 => -1 cono 20 => -1 (80 => 1 40 => 1 This will give me a regression model in the recorded variables. I my adways be able to transform the regression wall bech to original units.

Important remark

- We will here denote the intercept by β_0 .
- We will look at k dichotomous covariates, so we estimate p = k + 1 regression parameters.

15

The pilot plant example - Version 1

At a pilot plant a chemical process is investigated.

- The outcome of the process is measured as chemical yield (in grams).
- Two quantitative variables (factors) were investigated:
 - Factor A: Temperature (in degrees C).
 - Factor B: Concentration (in percentage).

Experiment no.	Temperature	Concentration	Yield
1	160	20	60
2	180	20	72
3	160	40	54
4	180	40	68
	<i>x</i> ₁	<i>x</i> ₂	у

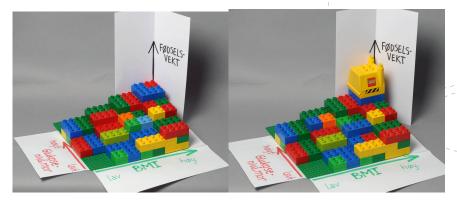


Photo from Kathrine Frey Frøslie, http://www.facebook.com/photo.php?fbid=1775971247383

MLR with pilot plant data V1

x1 x2 y 1 160 20 60 2 180 20 72 3 160 40 54 4 180 40 68

>lm(formula = y ~ x1 + x2 + x1*x2, data = ds)

Estimate (Intercept) -14.000 x1 0.500 x2 -1.100 x1:x2 0.005

18

MLR with pilot plant V1: coded variables

x1 x2 y z1 z2 1 160 20 60 -1 -1 2 180 20 72 1 -1 3 160 40 54 -1 1 4 180 40 68 1 1

MLR with original and coded factors

Original variables, x_1 and x_2 , gave estimated regression equation

$$\hat{y} = -14 + 0.5x_1 - 1.1x_2 + 0.005x_1 \cdot x_2$$

Coded variables, $z_1 = (x_1 - 170)/10$ and $z_2 = (x_2 - 30)/10$, gave estimated regression equation

$$\hat{y} = 63.5 + 6.5z_1 - 2.5z_2 + 0.5z_1 \cdot z_2$$

Can you compare these two results?

MLR with original and coded factors

Substitute $z_1 = (x_1 - 170)/10$ and $z_2 = (x_2 - 30)/10$ into the equation to get a estimated regression equation based on x_1 and x_2 .

$$\hat{y} = 63.5 + 6.5z_1 - 2.5z_2 + 0.5z_1 \cdot z_2
= 63.5 + 6.5\frac{x_1 - 170}{10} - 2.5\frac{x_2 - 30}{10} + 0.5\frac{x_1 - 170}{10} \cdot \frac{x_2 - 30}{10}
= 63.5 - 6.5\frac{170}{10} + 2.5\frac{30}{10} + 0.5\frac{170 \cdot 30}{10 \cdot 10}
+ x_1(6.5\frac{1}{10} - 0.5\frac{1}{10}\frac{30}{10}) + x_2(-2.5\frac{1}{10} - 0.5\frac{1}{10}\frac{170}{10})
+ 0.5\frac{1}{10}\frac{1}{10}x_1 \cdot x_2
= -14 + 0.5x_1 - 1.1x_2 + 0.005x_1 \cdot x_2$$

Design of experiments (DOE) terminology

- Variables are called factors, and denoted A, B, C, ...
- We will only look at factors with two levels
 - high, coded as +1 or just +, and
 - low, coded as -1 or just -.
- In the pilot plant example we had two factors with two levels, thus $2 \cdot 2 = 4$ possible combinations. In general *k* factors with two levels gives 2^k possible combinations.

	Experiment no.	Α	В	AB	Level code	Response		
-	1	-1	-1	1	1	<i>Y</i> 1		
	2	1	-1	-1	а	y 2		
	3	-1	1	-1	b	y 3		
_	4	1	1	1	ab	<i>Y</i> 4		
<u> </u>		<i>Z</i> 1	<i>Z</i> 2	<i>Z</i> ₁₂		У		

Standard notation for 2² experiment: