TMA4267 Linear Statistical Models V2014 (20)
Design of experiments (note): significant effects (p 7-12) and blocking (p 15-20)

Mette Langaas

To be lectured: March 11, 2014 wiki.math.ntnu.no/emner/tma4267/2014v/start/

Plan DOE today

— The full 2^{k} experiment: significance of effects ($\mathrm{p} 7-12$)
— Blocking in full 2^{k} experiments ($\mathrm{p} 15-20$)

Lima beans example

Experiment from Box, Hunter, Hunter, Statistics for Experimenters, page 321.

- A: depth of planting (0.5 inch or 1.5 inch)
- B: watering daily (once or twice)
- C: type of lima bean (baby or large)
- Y: yield

A	B	C	AB	AC	BC	ABC	Level code	Response
-	-	-	+	+	+	-	1	6
+	-	-	-	-	+	+	a	4
-	+	-	-	+	-	+	b	10
+	+	-	+	-	-	-	ab	7
-	-	+	+	-	-	+	c	4
+	-	+	-	+	-	-	ac	3
-	+	+	-	-	+	-	bc	8
+	+	+	+	+	+	+	abc	5
x_{1}	x_{2}	x_{3}	x_{12}	x_{13}	x_{23}	x_{123}		y

DoE 2^{k} full factorial : Significant effect?

If we have s^{2} effect as estimator for δ^{2} effect

$$
H_{0} \text { : Effect j }=0 \text { vs } H_{i} \text { : Effectij} \neq 0
$$

$$
T=\frac{E_{f f e c t,}-0}{\text { Seffect }} \sim t_{v} e^{d} \text { from estimator sefkect }
$$

Reject t_{0} when $\left.|t|>t_{\frac{\alpha}{2}, v} \Leftrightarrow \right\rvert\,$ Effectij $\left\lvert\,>t_{\frac{\alpha}{2}, v} \cdot S_{\text {effect }}\right.$

$$
\begin{aligned}
& Y=X_{\beta}+\varepsilon \quad \varepsilon \sim N_{n}\left(0, \sigma^{2} I\right) \\
& {\left[\begin{array}{cccc}
1 & -1 & -1 & -1+\text { + nleraction } \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & 1 & 1 & -1 \\
\vdots & -1 & -1 & 1 \\
1 & -1 & 1 \\
8 \times 8
\end{array}\right]} \\
& E_{f f e c t j}^{j}=2 \cdot \beta_{j} \\
& \text { Effeodj }=2 \hat{\beta}_{j} \\
& \hat{E f f e c t j}=2 \hat{\beta}_{j}=\frac{2}{n} \sum_{i=1}^{n} x_{i j} y_{i} \\
& \operatorname{Vor}(E \hat{E f f e c t, j})=\frac{4}{n} \sigma^{2} \equiv \sigma_{\text {effect }}^{2} \\
& \hat{E} f f e c t ; \sim N\left(E f f e c t j, \sigma^{2}\right. \text { effect) }
\end{aligned}
$$

Significant effect?

$$
H_{0}: \text { Effect }_{j}=0 \text { vs } \text { Effect }_{j} \neq 0
$$

or equivalently

$$
H_{0}: \beta_{j}=0 \text { vs } \beta_{j} \neq 0
$$

If $\sigma_{\text {effect }}$ is estimated by $S_{\text {effect }}$, respectively, then we reject H_{0} and say that Effect ${ }_{j}$ is significant if

$$
\left|\widehat{\text { Effect }}_{j}\right|>t_{\alpha / 2, \nu} s_{\text {effect }}
$$

where ν is the number of degrees of freedom connected to the estimates of $\sigma_{\text {effect }}$ that are used.

R: DOE set-up

```
> summary(lm3)
Call:
lm.default(formula = y ~ (.)^3, data = plan)
Residuals:
ALL 8 residuals are 0: no residual degrees of freedom!
Coefficients:
\begin{tabular}{|c|c|c|c|c|}
\hline & Estimate & Std. Error & t value & \(\operatorname{Pr}(>|t|)\) \\
\hline (Intercept) & 5.875 & NA & NA & NA \\
\hline A1 & -1.125 & NA & NA & NA \\
\hline B1 & 1.625 & NA & NA & NA \\
\hline C1 & -0.875 & NA & NA & NA \\
\hline A1: B1 & -0.375 & NA & NA & NA \\
\hline A1: C1 & 0.125 & NA & NA & NA \\
\hline B1: C1 & -0.125 & NA & NA & NA \\
\hline A1: B1: C1 & -0.125 & NA & NA & NA \\
\hline
\end{tabular}
Residual standard error: NaN on 0 degrees of freedom Multiple R-squared: 1,Adjusted R-squared: NaN F-statistic: NaN on 7 and 0 DF , p-value: NA
```


Estimation of σ^{2}

1. Lenth's Pseudo Standard Error (PSE).
2. Assuming specified higher order interactions are zero (changing the MLR model).
3. Perform replicates, estimate the full model and use s^{2} from MLR.

Lenth's PSE

Let $C_{1}, C_{2}, \ldots, C_{m}$ be estimated effects, e.g. $\hat{A}, \hat{B}, \widehat{A B}$, etc.

1. Order absolute values $\left|C_{j}\right|$ in increasing order.
2. Find the median of the $\left|C_{j}\right|$ and compute preliminary estimate

$$
s_{0}=1.5 \cdot \operatorname{median}_{j}\left|C_{j}\right|
$$

3. Take out the effects C_{j} with $\left|C_{j}\right| \geq 2.5 \cdot s_{0}$ and find the median of the rest of the $\left|C_{j}\right|$. Then PSE is this median multiplied by 1.5, i.e.

$$
\text { PSE }=1.5 \cdot \operatorname{median}\left\{\left|C_{j}\right|:\left|C_{j}\right|<2.5 s_{0}\right\}
$$

and this is Lenth's estimate of $\sigma_{\text {effect }}$.
4. Lenth has suggested empirically that the degrees of freedom to be used with PSE is $m / 3$ where m is the initial number of effects in the algorithm (intercept not included). Thus we claim as significant the effects for which $\left|C_{j}\right|>t_{\alpha / 2, m / 3} \cdot P S E$.

Methods for eolimsting Defect

1) Lenth's method: PSE is a conservative (toolarge) eilmete for effect.

Idea: many factors have zero or near zero effect \Rightarrow use a function of the median of the absolute value of trimmed effect to estmake effect.
Lima beans: PSE $=0.75, m=7, \nu=\frac{m}{3}=\frac{7}{3}, \alpha=0.05$

$$
\begin{aligned}
t_{0.025}, 7 / 3 & =3.76 \\
t_{0.025,7 / 3} \cdot \text { PS } & =2.823
\end{aligned}
$$

Only $|\hat{B}|>2.823 \Rightarrow$ significant with Leith's method.
Pareto plot : ordered histogram of $|E \hat{f f e c t} j|$.

R: Pareto plot for Lima beans

Pareto plot: ordered histogram of absolute value of estimated effects, Length sign line added.

Assuming specified higher order interactions are zero

- In general

$$
{\widehat{\text {Effect }_{j}} \sim N\left(\text { Effect }_{j}, \sigma_{\text {effect }}^{2}\right), ~}_{2}
$$

- If we assume that the effect is zero ($\beta_{j}=0$), then $\mathrm{E}\left(\right.$ Effect $\left._{j}\right)=0$ and

$$
\mathrm{E}\left(\widehat{\mathrm{Effec}}_{j}^{2}\right)=\sigma_{\text {efteot }}^{2}
$$

- Thus $\widehat{\text { Effect }}_{j}^{2}$ is an unbiased estimator of $\sigma_{\text {effoct }}^{2}$ if $\beta_{j}=0$.
- If several effects are assumed to be 0 , we use the average of the $\widehat{\text { Effect }}_{j}^{2}$ to estimate $\sigma_{\text {effect }}^{2}$.

2) Assuming higher order interactions are zero \Rightarrow changing the MLR model

We may assume that interactions are zero, and fit a simpler model.
Here (Lima beans) we reduce ow model to only contain main effects.
MLR: just fit a model with $Y_{i}=\underset{A}{\beta_{0}}+\beta_{1} \beta_{14}+\beta_{2} x_{12}+\beta_{3} x_{13}+\varepsilon$
C
and automatically we have s^{2} and significant values
For interpretation: DOE "S2effect is estimeled as the mean of (Effect) ${ }^{2}$ that we think ere zero". Why?
Remember: Effectij $\sim N\left(\right.$ Effect;, σ^{2} effect $\left.=\frac{4}{n} \sigma^{2}\right)$
We assume that Effect $=0$, then

$$
\sigma_{\text {effect }}^{2}=\operatorname{Var}\left(\hat{E_{f f e c t j j}}\right)=E\left(\hat{E f f e c t, j}^{2}\right)-\underbrace{E\left(E \hat{f f e c t j}_{j}\right.}_{0})^{2}=E\left(\hat{E f f e c t_{j}^{2}}\right)
$$

seffect $^{2}=\operatorname{mezn}\left(\hat{E f f e c t}{ }^{2}\right)$ for the effects assured to be zero.
Lima beans:

1) In with dally main effects: printout show

Std.ercor: 0.2165 for coeffs, so Seffect $=2 \cdot 0.2165=0.433$
2)

$$
\begin{aligned}
\text { Seffect }= & \frac{1}{4}\left(\hat{A B}^{2}+\hat{A C}^{2}+\hat{B C}^{2}+\hat{A B C}^{2}\right)=\ldots=0.1875 \\
& -0.75 \text { 0.25 0.25-0.25 } \\
\text { Seffet }= & \sqrt{0.1875}=0.433
\end{aligned}
$$

To do interence: $v=$ \# effects in on $\operatorname{mean}\left(E \hat{E} \hat{f} d_{j}\right)$
Limabezno: $\nu=4$
$t_{0.025,4}=2.78$
Cut-of: 2.78. $\underbrace{0.433}_{\text {safrut }}=1.2$
If $\left(E_{(\hat{f} \text { ed, }}\right)>1.2 \Rightarrow$ assume signilicant
Conclusion: A, B, C significent.
Warning: it may be vory confusing to look at Soffware outent:

$$
\text { MSE , } S \text {, Seftct, Std. } E_{r}=\operatorname{SO}\left(\hat{\beta}_{j}\right)
$$

Lima beans estimated effects: full model

Estimated effects ($2 *$ coeff) :							
(Intercept)) A 1	B1	C1	A1: B1	A1: C1	B1: C1	A1: B1: C1
11.75	-2.25	3.25	-1.75	-0.75	0.25	-0.25	-0.25
Analysis of Variance Table							
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$							
A	$110.125 \quad 10.125$						
B	$121.125 \quad 21.125$						
C	16.1256 .125						
A: B	$11.125 \quad 1.125$						
A: C	$10.125 \quad 0.125$						
B: C	10.1250 .125						
A:B:C	10.1250 .125						
Residuals	00.000						

Lima beans: only main effects

```
> lm1 <- lm(y~.,data=plan)
> summary(lm1)
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
\begin{tabular}{lrrrll} 
(Intercept) & 5.8750 & 0.2165 & 27.135 & \(1.1 \mathrm{e}-05{ }^{* * *}\) \\
A1 & -1.1250 & 0.2165 & -5.196 & \(0.00653^{* *}\) \\
B1 & 1.6250 & 0.2165 & 7.506 & \(0.00169^{* *}\) \\
C1 & -0.8750 & 0.2165 & -4.041 & \(0.01559^{*}\)
\end{tabular}
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 , , 1
Residual standard error: 0.6124 on 4 degrees of freedom
Multiple R-squared: 0.9614,Adjusted R-squared: 0.9325
F-statistic: 33.22 on 3 and 4 DF, p-value: 0.002755
> anova(lm1)
Analysis of Variance Table
Response: y
    Df Sum Sq Mean Sq F value Pr(>F)
\begin{tabular}{lrrrrrr} 
A & 1 & 10.125 & 10.125 & 27.000 & \(0.006533^{* *}\) \\
B & 1 & 21.125 & 21.125 & 56.333 & \(0.001686^{* *}\) \\
C & 1 & 6.125 & 6.125 & 16.333 & \(0.015585^{*}\)
\end{tabular}
16.3330 .015585 *
```


Three factors in three full replicates

- Lima beans experiment from Box, Hunter, Hunter page 321.
- A: depth of planting (0.5 inch or 1.5 inch)
- B: watering daily (once or twice)
- C: type of limabean (baby or large)
- Y: yield
$-r=3$: Performed in three full replicate experiments, i.e. three measurements for each combination of A, B and C.
— We then have $(r-1) 2^{3}=2 \cdot 8=16$ degrees of freedom for estimating the error variance.
- Estimates follow automatically. Perform this for yourself. Data from course www-page with title "limabeans.r".

Normal Q-Q Plot

ANOVA output: R

Analysis of Variance Table
Response: y
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
A $\quad 128.167 \quad 28.16752 .0000 \quad 2.075 \mathrm{e}-06$ ***

B $\quad 137.500 \quad 37.50069 .2308 \quad 3.319 \mathrm{e}-07$ ***
C $\quad 124.000 \quad 24.00044 .3077 \quad 5.517 \mathrm{e}-06$ ***

A:B	1	0.667	0.667	1.2308	0.2837
A:C	1	0.167	0.167	0.3077	0.5868
B:C	1	0.167	0.167	0.3077	0.5868
A:B:C	1	0.000	0.000	0.0000	1.0000

Residuals 168.6670 .542

Which ν ?

From the previous slide, connection between ν and your chosen estimation method for σ and $\sigma_{\text {effect }}$.

1. When Lenth's PSE is used, the degrees of freedom is

$$
\nu=\frac{2^{k}-1}{3}
$$

where $2^{k}-1$ is the number of effects in the model, while the 3 in the denominator has been found empirically by Lenth.
2. If m effects (preferrable higher order interactions) are assumed to be zero, then $\nu=m$.
3. If you have performed the 2^{k} experiment r times, then $\nu=(r-1) 2^{k}$.
3) Perform replicate: ordinary MLR \rightarrow no fuzz 7!

But beware!
Hens and Erna want to perform a 2^{3} experiment together, end to get 16 observations they will both conduct the same 2^{3} exporment.
Should then a cavarsle ($x=-1$ Erna, $x=+1$ Fens) telung who did the experiment beaded to the regression model?
pule

If the above figive gives a correct pictive of the experiment NOT including a person covar.zle will mene SSE very large, end therefore you may get the result the no factor is significant.

Randomize: $B 71.6$
D 29%

Q: Randomization

Why do you need to randomize the order in which you perform the experiments?
To make the experiments

- A: random.
- B: robust to external factors.
— C: have constant variance.
- D: independent.

Vote at clicker.math.ntnu.no, TMA4267 classroom.

Pilot plant: A, B and C

$\mathrm{A}=$ Temperature, $\mathrm{B}=$ Concentration, $\mathrm{C}=$ Catalyst, $\mathrm{Y}=$ yield.

A	B	C	AB	AC	BC	ABC	Level code	Response
-	-	-	+	+	+	-	1	60
+	-	-	-	-	+	+	a	72
-	+	-	-	+	-	+	b	54
+	+	-	+	-	-	-	ab	68
-	-	+	+	-	-	+	c	52
+	-	+	-	+	-	-	ac	83
-	+	+	-	-	+	-	bc	45
+	+	+	+	+	+	+	abc	80
x_{1}	x_{2}	x_{3}	x_{12}	x_{13}	x_{23}	x_{123}		y

DOE workflow

1. Set up full factorial design with k factors in R, and
2. randomize the runs.
3. Perform experiments, and enter data into R.
4. Fit a full model (all interactions).
5. If you do not have replications, look at Pareto plots and estimate variability with Lenths metod, use this to suggest at reduced model (if possible). Refit the reduced model.
6. Assess model fit (residual plots, need transformations?).
7. Assess significance.
8. Interpret you results (main and interaction plots).

Genuine run replicates

"When genuine run replicates are made under a given set of experimental conditions, the variation between the associated observations may be used to estimate the standard deviation of the effects. By genuine run replicated we mean that variation between runs made at the same experimental conditions is a reflection of the total variability afflicting runs made at different experimental conditions. This point requires careful consideration."
From Box, Hunter, Hunter $(1978,2005)$: "Statistics for Experimenters", Ch.10.6.

Genuine run replicates

Randomization of run order usually ensures that replicates are genuine. Pilot plant example: each run consists of

1. cleaning the reactor
2. inserting the appropriate catalyst carge
3. running the apparatus at at given temperature and a given feed concentration for 3 hrs to allow the process to settle down at the chosen experimental conditions, and
4. combining chemical analyses made on these samples.

A genuine run replicate must involve the taking of all these steps again. In particular, several chemical analyses from a single run would provide only an estimate of analytical variance, usually only a small part of the run-to-run variance.
From Box, Hunter, Hunter (1978, 2005): "Statistics for Experimenters", Ch.10.6.

Performing a full 2^{k} factorial expermant
two important ancepto:

1) Each experiment is a genuine un replicate, that is, reflects the total vacisality of the experiment.
2) The run order is rendom, so that potential external factors are not confused (confounded) with experimental factors.

Blocking
Pilot plant, 2^{3} in two blichs: We will perform a 2^{3} experiment, but must use two batches of raw material.
Solution: use the $A B C$ coluran to define the blocks.
$A B C$ is the bloch genestor.
What could you consider a bloch in your DoE experiment? 2^{4} in two days: use $A B C D$ as bloch genezter Reed yourself: more than two blocks!

Blocking on ABC

Block 1 consists of experiments with $A B C=-1$.
Block 2 consists of experiments with $A B C=1$.

C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	1
StdOrder	RunOrder	CenterPt	Blocks	A	B	C	ABC		Y	block effect	
1	1	1	1	-1	-1	-1	-1	1	60	60	
4	4	1	1	-1	1	1	-1	7	45	45	
3	3	1	1	1	-1	1	-1	6	83	83	
2	2	1	1	1	1	-1	-1	4	68	68	
7	7	1	2	-1	-1	1	1	5	52	62	
6	6	1	2	-1	1	-1	1	3	54	64	
5	5	1	2	1	-1	-1	1	2	72	82	
8	8	1	2	1	1	1	1	8	80	90	

Blocking on ABC

C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	
StdOrder	RunOrder	CenterPt	Blocks	A	B	C	ABC		Y	block effect	
1	1	1	1	-1	-1	-1	-1	1	60	60	
4	4	1	1	-1	1	1	-1.	7	45	45	
3	3	1	1	1	-1	1	-1	6	83	83	
2	2	1	1	1	1	-1	-1	4	68	68	
7	7	1	2	-1	-1	1	1	5	52	62	
6	6	1	2	-1	1	-1	1	3	54	64	
5	5	1	2	1	-1	-1	1	2	72	82	
8	8	1	2	1	1	1	1	8	80	90	

- ABC is counfunded with the block effect. We can not separate these two effects from eachother.
- Suppose all values in block 2 is increased by 10 units.
- Then the estimated effect of ABC will increase by 10.
- But all other estimated effects remain unchanged - and these are the most important to estimate.

Original data

Factorial Fit:
Y versus
Block A B C
Term Effect Coef

			Term	Effect	Coef
Constant		64,250	Constant		69,250
Block		$-0,250$	Block		$-5,250$
A	23,000	11,500	A	23,000	11,500
B	$-5,000$	$-2,500$	B	$-5,000$	$-2,500$
C	1,500	0,750	C	1,500	0,750
A*B	1,500	0,750	A*B	1,500	0,750
A*C	10,000	5,000	A*C	10,000	5,000
B*C	0,000	0,000	B*C	0,000	0,000

2^{3} with four blocks

We need two generators (columns) to define four blocks: the optimal choice is $A B$ and $A C$

- Block 1: $A B=A C=-1$ (--)
- Block 2: $\mathrm{AB}=-1, \mathrm{AC}=1(-+)$
- Block 3: $\mathrm{AB}=1, \mathrm{AC}=-1(+-)$
- Block 4: $\mathrm{AB}=\mathrm{AC}=1(++)$

Std order	A	B	C	AB	AC	BC	ABC
1	-	-	-	+	+	+	-
2	+	-	-	-	-	+	+
3	-	+	-	-	+	-	+
4	+	+	-	+	-	-	-
5	-	-	+	+	-	-	+
6	+	-	+	-	+	-	-
7	-	+	+	-	-	+	-
8	+	+	+	+	+	+	+

2^{3} with $A B$ and $A C$ as generators

Std order	A	B	C	AB	AC	BC	ABC	Block
2	+	-	-	-	-	+	+	1
7	-	+	+	-	-	+	-	1
3	-	+	-	-	+	-	+	2
6	+	-	+	-	+	-	-	2
4	+	+	-	+	-	-	-	3
5	-	-	+	+	-	-	+	3
1	-	-	-	+	+	+	-	4
8	+	+	+	+	+	+	+	4

2^{3} with $A B$ and $A C$ as generators

- Interaction effects $A B$ and $A C$ are confounded with the block effect, since they are the generators.
- Their product, $A B * A C=A^{2} B C=B C$, is alco confounded with the block effect (see that $B C$ is constant within each block).
- Adding h_{2} to block 2, h_{3} to block 3 and h_{4} to block 4 does not change the estimated main effects A, B, or C, and not the interaction effect ABC.
- However, AB will change with $2 \cdot h_{3}+2 \cdot h_{4}-2 \cdot h_{2}$, and we will NOT be able to separate the true $A B$ effect from the block effect.

How to choose which blocks to be used for blocking?

- Idea: try to leave estimates for main effects and low order interaction unchanged by the blocking.
- Note: $I=A A=B B=C C$, where I is a column of 1 's.
- How NOT to do this:
- Find the blocks for a 2^{3} experiment using generators $A B C$ and AC.
- The interaction between $A B C$ and $A C$ is $A B C * A C=B$.
- This means chosing $A B C$ and $A C$ is not a good idea since then we can not trust our estimate of B.

Questions

Should you use a blocking factor in your compulsory project?
Do you understand the difference between blocking and repetition?

