

TMA4267 Linear Statistical Models V2014 (20) Design of experiments (note): significant effects (p 7-12) and blocking (p 15-20)

Mette Langaas

To be lectured: March 11, 2014 wiki.math.ntnu.no/emner/tma4267/2014v/start/

Plan DOE today

- The full 2^k experiment: significance of effects (p 7-12)
- Blocking in full 2^k experiments (p 15-20)

Lima beans example

Experiment from Box, Hunter, Hunter, Statistics for Experimenters, page 321.

- A: depth of planting (0.5 inch or 1.5 inch)
- B: watering daily (once or twice)
- C: type of lima bean (baby or large)
- Y: yield

Α	В	С	AB	AC	BC	ABC	Level code	Response
-	-	-	+	+	+	-	1	6
+	-	-	-	-	+	+	а	4
-	+	-	-	+	-	+	b	10
+	+	-	+	-	-	-	ab	7
-	-	+	+	-	-	+	с	4
+	-	+	-	+	-	-	ac	3
-	+	+	-	-	+	-	bc	8
+	+	+	+	+	+	+	abc	5
<i>x</i> ₁	x ₂	<i>x</i> 3	x ₁₂	x ₁₃	x ₂₃	x ₁₂₃		У

DOE 2" full factorial : Significant effect?

$$\begin{array}{c} Y = X_{F} + \varepsilon & \varepsilon \sim V_{n} \left(0, \sigma^{2} I \right) \\ \begin{pmatrix} 1 & -1 - 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & 1 & -1 \\ \vdots & -1 & -1 & 1 \\ \vdots & 1 & -1 & 1 \\ \vdots & 1 & -1 & 1 \\ \vdots & 1 & -1 & 1 \\ \end{array}$$

$$\begin{array}{c} \text{Effect}_{j} = 2 \\ \text{Effect}_{j} = 2 \\ \text{Figure}_{j} \end{array}$$

Effect; = 2, f; = = = = = = = x ; y; $\forall \alpha \in (\mathcal{E} \text{ flect}_j) = \frac{4}{n} \mathcal{O}^2 \equiv \mathcal{O}_{\text{effect}}^2$ \hat{E} ffed; ~ N (Effect, J'effect) If we have seffect new estimator for sreffect Ho: Effectj = 0 Ha: Effect = 0 vs T= Effect, - 0 Seffect ~ t, e' def from exhansiver seffect

Reject to when $|t| > t \leq v \iff (Effecty) > t \leq v$. Seffect

Significant effect?

$$H_0$$
: *Effect*_j = 0 vs *Effect*_j \neq 0

or equivalently

$$H_0: \beta_j = 0 \text{ vs } \beta_j \neq 0$$

If σ_{effect} is estimated by s_{effect} , respectively, then we reject H_0 and say that $Effect_i$ is significant if

$$\widehat{\textit{Effect}_j}| > t_{lpha/2,
u} s_{\textit{effect}}$$

where ν is the number of degrees of freedom connected to the estimates of $\sigma_{\textit{effect}}$ that are used.

R: DOE set-up

> summary(1m3)

```
Call:
lm.default(formula = y ~ (.)^3, data = plan)
```

Residuals: ALL 8 residuals are 0: no residual degrees of freedom!

Coefficients:

	Estimate	Std.	Error	t	value	Pr(> t)
(Intercept)	5.875		NA		NA	NA
A1	-1.125		NA		NA	NA
B1	1.625		NA		NA	NA
C1	-0.875		NA		NA	NA
A1:B1	-0.375		NA		NA	NA
A1:C1	0.125		NA		NA	NA
B1:C1	-0.125		NA		NA	NA
A1:B1:C1	-0.125		NA		NA	NA

Residual standard error: NaN on O degrees of freedom Multiple R-squared: 1,Adjusted R-squared: NaN F-statistic: NaN on 7 and 0 DF, p-value: NA

Estimation of σ^2

- 1. Lenth's Pseudo Standard Error (PSE).
- 2. Assuming specified higher order interactions are zero (changing the MLR model).
- 3. Perform replicates, estimate the full model and use s^2 from MLR.

Lenth's PSE

Let C_1, C_2, \ldots, C_m be estimated effects, e.g. $\hat{A}, \hat{B}, \widehat{AB}$, etc.

- 1. Order absolute values $|C_i|$ in increasing order.
- 2. Find the median of the $|C_j|$ and compute preliminary estimate

 $s_0 = 1.5 \cdot \text{median}_j |C_j|$

3. Take out the effects C_j with $|C_j| \ge 2.5 \cdot s_0$ and find the median of the rest of the $|C_j|$. Then PSE is this median multiplied by 1.5, i.e.

 $PSE = 1.5 \cdot median\{|C_j| : |C_j| < 2.5s_0\}$

and this is Lenth's estimate of $\sigma_{\rm effect}$.

4. Lenth has suggested empirically that the degrees of freedom to be used with PSE is m/3 where m is the initial number of effects in the algorithm (intercept not included). Thus we claim as significant the effects for which $|C_j| > t_{\alpha/2,m/3} \cdot PSE$.

Methods for colomolog Deflect

1) Lonth's method : PSE is a conservative (too longe) as make for Jeffert. I dea: many factors have zero or near zero effect -> use a function of the median of the absolute value of trimmed effects to estimate Jeffect. Lina beans: PSE = Q75 m = 7, $v = \frac{m}{3} = \frac{2}{3}$, d = 0.05+ 0.025, 7/3 = 3.76 fo.ozr, 3/3. PSE = 2,828 Only (B) > 2.823 as significant with Lenth's method. Pareto plut : ordered histogram of leffecty !.

R: Pareto plot for Lima beans

Pareto plot: ordered histogram of absolute value of estimated effects, Length sign line added.

Assuming specified higher order interactions are zero

In general

$$\widehat{\textit{Effect}}_j \sim \textit{N}(\textit{Effect}_j, \sigma^2_{\textit{effect}})$$

— If we assume that the effect is zero ($\beta_j = 0$), then $E(Effect_j) = 0$ and

$$\mathbb{E}(\widehat{\textit{Effect}}_{j}^{2}) = \sigma_{\textit{effect}}^{2}$$

— Thus $\widehat{\textit{Effect}}_{j}^{2}$ is an unbiased estimator of $\sigma_{\textit{effect}}^{2}$ if $\beta_{j} = 0$.

— If several effects are assumed to be 0, we use the average of the \widehat{Effect}_i^2 to estimate σ_{effect}^2 .

To do instruct : V = # effects in an mean (Effect) Limaberno. V= 4 to.ors,4 = 2.76 Cut-off: 2,78, 6,433 = 1.2 If (Effect,) > 1.2 > assume significant Conclusion. A, B, C significant. Warning: "I may be very confusing to look at software output: MSE, S, Setter, Std. Gr = SD(Bi)

Lima beans estimated effects: full model

Estimated	effects	(2*co	eff):				
(Intercept) A1	B1	C1	A1:B1	A1:C1	B1:C1	A1:B1:C1
11.75	-2.25	3.25	-1.75	-0.75	0.25	-0.25	-0.25

Analysis of Variance Table Df Sum Sq Mean Sq F value Pr(>F) 1 10.125 10.125 А в 1 21.125 21.125 С 1 6.125 6.125 1 1.125 1.125 A · B A:C 1 0.125 0.125 B:C 1 0.125 0.125 A · B · C 1 0.125 0.125 Residuals 0 0.000

10

Lima beans: only main effects

```
> lm1 <- lm(y~.,data=plan)</pre>
> summarv(lm1)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
           5.8750
                        0.2165 27.135 1.1e-05 ***
(Intercept)
            -1.1250 0.2165 -5.196 0.00653 **
A 1
B1
            1.6250 0.2165 7.506 0.00169 **
C1
            -0.8750
                        0.2165 -4.041 0.01559 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.6124 on 4 degrees of freedom
Multiple R-squared: 0.9614, Adjusted R-squared: 0.9325
F-statistic: 33.22 on 3 and 4 DF. p-value: 0.002755
> anova(lm1)
Analysis of Variance Table
Response: y
         Df Sum Sq Mean Sq F value Pr(>F)
          1 10.125 10.125 27.000 0.006533 **
А
          1 21.125 21.125 56.333 0.001686 **
R
          1 6.125 6.125 16.333 0.015585 *
Besiduals 4 1.500 0.375
```

Three factors in three full replicates

- Lima beans experiment from Box, Hunter, Hunter page 321.

- A: depth of planting (0.5 inch or 1.5 inch)
- B: watering daily (once or twice)
- C: type of limabean (baby or large)
- Y: yield
- r = 3: Performed in three full replicate experiments, i.e. three measurements for each combination of A, B and C.
- We then have $(r 1)2^3 = 2 \cdot 8 = 16$ degrees of freedom for estimating the error variance.
- Estimates follow automatically. Perform this for yourself. Data from course www-page with title "limabeans.r".

Mette.Langaas@math.ntnu.no, TMA4267V2014

ANOVA output: R

Analysis of Variance Table

```
Response: y
```

	\mathtt{Df}	Sum Sq	Mean Sq	${\tt F}$ value	Pr(>F)	
А	1	28.167	28.167	52.0000	2.075e-06	***
В	1	37.500	37.500	69.2308	3.319e-07	***
С	1	24.000	24.000	44.3077	5.517e-06	***
A:B	1	0.667	0.667	1.2308	0.2837	
A:C	1	0.167	0.167	0.3077	0.5868	
B:C	1	0.167	0.167	0.3077	0.5868	
A:B:C	1	0.000	0.000	0.0000	1.0000	
Residuals	16	8.667	0.542			

Which ν ?

From the previous slide, connection between ν and your chosen estimation method for σ and σ_{effect} .

1. When Lenth's PSE is used, the degrees of freedom is-

$$\nu = \frac{2^k - 1}{3}$$

where $2^k - 1$ is the number of effects in the model, while the 3 in the denominator has been found empirically by Lenth.

- 2. If *m* effects (preferrable higher order interactions) are assumed to be zero, then $\nu = m$.
- 3. If you have performed the 2^k experiment *r* times, then $\nu = (r-1)2^k$.

3) Perform replicates: ordinary NLR → no fuzz?! But beware! Jens end Erna want to perform a 2³ experiment together, end to get lo observations they will both conduct the same 2³ experiment. Should then a covariste (x=-1 Erna, x=+1 Jens) telling who did the experiment be added to the regression model?

If the above figure gives a correct picture of the experiment NOT including a person cover. The will make SEE very large, and therefore you may get the result that no factor is significant.

Randomin: B 71.6 D 29.6

Q: Randomization

Why do you need to randomize the order in which you perform the experiments?

To make the experiments

- A: random.
- B: robust to external factors.
- C: have constant variance.
- D: independent.

Vote at clicker.math.ntnu.no, TMA4267 classroom.

Pilot plant: A, B and C

A=Temperature, B=Concentration, C=Catalyst, Y=yield.

						,	, , ,	·
A	B	С	AB	AC	BC	ABC	Level code	Response
-	-	-	+	+	+	-	1	60
+	-	-	-	-	+	+	а	72
-	+	-	-	+	-	+	b	54
+	+	-	+	-	-	-	ab	68
-	-	+	+	-	-	+	с	52
+	-	+	-	+	-	-	ac	83
-	+	+	-	-	+	-	bc	45
+	+	+	+	+	+	+	abc	80
<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₂₃	<i>x</i> ₁₂₃		У

DOE workflow

- 1. Set up full factorial design with k factors in R, and
- 2. randomize the runs.
- 3. Perform experiments, and enter data into R.
- 4. Fit a full model (all interactions).
- 5. If you do not have replications, look at Pareto plots and estimate variability with Lenths metod, use this to suggest at reduced model (if possible). Refit the reduced model.
- 6. Assess model fit (residual plots, need transformations?).
- 7. Assess significance.
- 8. Interpret you results (main and interaction plots).

Genuine run replicates

"When genuine run replicates are made under a given set of experimental conditions, the variation between the associated observations may be used to estimate the standard deviation of the effects. By *genuine* run replicated we mean that variation between runs made at the same experimental conditions is a reflection of the total variability afflicting runs made at different experimental conditions. This point requires careful consideration."

Genuine run replicates

Randomization of run order usually ensures that replicates are genuine. Pilot plant example: each run consists of

- 1. cleaning the reactor
- 2. inserting the appropriate catalyst carge
- 3. running the apparatus at at given temperature and a given feed concentration for 3 hrs to allow the process to settle down at the chosen experimental conditions, and
- 4. combining chemical analyses made on these samples.

A genuine run replicate must involve the taking of all these steps again. In particular, several chemical analyses from a single run would provide only an estimate of *analytical* variance, usually only a small part of the run-to-run variance. From Box, Hunter, Hunter (1978, 2005): "Statistics for Experimenters", Ch.10.6.

- two importent ancepto:
 - 1) Each experiment is a genuine run replicable ; that is, reflects the fotal variability of the experiment.

Blocking

Pilot plant, 23 in two blocks: We vill perform a 23 exporment, but must use two betches of row meteral. Solution: use the ABC column to define the blocks. ABC is the block generator. What could you consider a bloch is your DOE experiment? 24 in two days = use ABCD as bloch generator Reed your self: more than two blocks -

Blocking on ABC

Block 1 consists of experiments with ABC=-1. Block 2 consists of experiments with ABC=1.

C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	
StdOrder	RunOrder	CenterPt	Blocks	Α	В	С	ABC		Y	block effect	
1	1	1	1	-1	-1	-1	-1	1	60	60	
4	4	1	1	-1	1	1	-1	7	45	45	
3	3	1	1	1	-1	1	-1	6	83	83	
2	2	1	1	1	1	-1	-1	4	68	68	
7	7	1	2	-1	-1	1	1	5	52	62	
6	6	1	2	-1	1	-1	1	3	54	64	
5	5	1	2	1	-1	-1	1	2	72	82	
8	8	1	2	1	1	1	1	8	80	90	

Blocking on ABC

C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	
StdOrder	RunOrder	CenterPt	Blocks	А	В	С	ABC		Y	block effect	
1	1	1	1	-1	-1	-1	-1	1	60	60	
4	4	1	1	-1	1	1	-1	7	45	45	
3	3	1	1	1	-1	1	-1	6	83	83	
2	2	1	1	1	1	-1	-1	4	68	68	
7	7	1	2	-1	-1	1	1	5	52	62	
6	6	1	2	-1	1	-1	1	3	54	64	
5	5	1	2	1	-1	-1	1	2	72	82	
8	8	1	2	1	1	1	1	8	80	90	

- ABC is counfunded with the block effect. We can not separate these two effects from eachother.
- Suppose all values in block 2 is increased by 10 units.
 - Then the estimated effect of ABC will increase by 10.
 - But all other estimated effects remain unchanged and these are the most important to estimate.

Original data

Factorial	Fit:								
Y versus									
Block A B C									
Term	Effect	Coef							
Constant		64,250							
Block		-0,250							
Α	23,000	11,500							
В	-5,000	-2,500							
С	1,500	0,750							
A*B	1,500	0,750							
A*C	10,000	5,000							
B*C	0,000	0,000							

Added 10 to all obs in Block 2.

Factorial Fit: "block effect" versus Block A B C

Term	Effect	Coef
Constant		69,250
Block		-5,250
А	23,000	11,500
В	-5,000	-2,500
C	1,500	0,750
A*B	1,500	0,750
A*C	10,000	5,000
B*C	0,000	0,000

2³ with four blocks

We need two generators (columns) to define four blocks: the optimal choice is AB and AC

- Block 2: AB=-1, AC=1 (- +)
- Block 3: AB=1, AC=-1 (+ -)

— Block 4: AB=AC=1 (+ +)

Std order	À	B	С	AB	AC	BC	ABC
1	-	-	-	+	+	+	-
2	+	-	-	-	-	+	+
3	-	+	-	-	+	-	+
4	+	+	-	+	-	-	-
5	-	-	+	+	-	-	+
6	+	-	+	-	+	-	-
7	-	+	+	-	-	+	-
8	+	+	+	+	+	+	+

2³ with AB and AC as generators

Std order	Α	В	С	AB	AC	BC	ABC	Block
2	+	-	-	-	-	+	+	1
7	-	+	+	-	-	+	-	1
3	-	+	-	-	+	-	+	2
6	+	-	+	-	+	-	-	2
4	+	+	-	+	-	-	-	3
5	-	-	+	+	-	-	+	3
1	-	-	-	+	+	+	-	4
8	+	+	+	+	+	+	+	4

26

2³ with AB and AC as generators

- Interaction effects AB and AC are confounded with the block effect, since they are the generators.
- Their product, $AB * AC = A^2BC = BC$, is also confounded with the block effect (see that BC is constant within each block).
- Adding h_2 to block 2, h_3 to block 3 and h_4 to block 4 does not change the estimated main effects A, B, or C, and not the interaction effect ABC.
- However, AB will change with $2 \cdot h_3 + 2 \cdot h_4 2 \cdot h_2$, and we will NOT be able to separate the true AB effect from the block effect.

How to choose which blocks to be used for blocking?

- Idea: try to leave estimates for main effects and low order interaction unchanged by the blocking.
- Note: I=AA=BB=CC, where I is a column of 1's.
- How NOT to do this:
 - Find the blocks for a 2³ experiment using generators ABC and AC.
 - The interaction between ABC and AC is ABC*AC=B.
 - This means chosing ABC and AC is not a good idea since then we can not trust our estimate of B.

Questions

Should you use a blocking factor in your compulsory project? Do you understand the difference between blocking and repetition?