

TMA4267 Linear Statistical Models V2014 (21) Design of experiments (note): fractions of 2^k experiments (pages 20-29)

Mette Langaas

To be lectured: March 17, 2014 wiki.math.ntnu.no/emner/tma4267/2014v/start/

Box, Hunter, Hunter: Reactor example

- A=feed rate (liters/min).
- B=Catalyst (%).
- C=Agitation rate (rpm).
- D=Temperature (deg C).
- E=Concentration (%).
- Response= (%) reacted.

Full factorial with $2^5 = 32$ experiments.

From Box, Hunter, Hunter (1978, 2005): "Statistics for Experimenters", Ch.12.2.

Reactor data: standard order

	А	в	C	D	Ľ	У	
1	-1	-1	-1	-1	-1	61	
2	1	-1	-1	-1	-1	53	
3	-1	1	-1	-1	-1	63	
4	1	1	-1	-1	-1	61	
5	-1	-1	1	-1	-1	53	
6	1	-1	1	-1	-1	56	
7	-1	1	1	-1	-1	54	
8	1	1	1	-1	-1	61	
9	-1	-1	-1	1	-1	69	
10	1	-1	-1	1	-1	61	
11	-1	1	-1	1	-1	94	
12	1	1	-1	1	-1	93	
13	-1	-1	1	1	-1	66	
14	1	-1	1	1	-1	60	
15	-1	1	1	1	-1	95	
16	1	1	1	1	-1	98	

17	-1	-1	-1	-1	1	56
18	1	-1	-1	-1	1	63
19	-1	1	-1	-1	1	70
20	1	1	-1	-1	1	65
21	-1	-1	1	-1	1	59
22	1	-1	1	-1	1	55
23	-1	1	1	-1	1	67
24	1	1	1	-1	1	65
25	-1	-1	-1	1	1	44
26	1	-1	-1	1	1	45
27	-1	1	-1	1	1	78
28	1	1	-1	1	1	77
29	-1	-1	1	1	1	49
30	1	-1	1	1	1	42
31	-1	1	1	1	1	81
32	1	1	1	1	1	82

Pareto and Normal plot

Mette.Langaas@math.ntnu.no, TMA4267V2014

4

www.ntnu.no

Redundancy

- The number of runs in a full 2^k factorial design increases geometrically when k is increased.
- E.g. k = 7 factors gives $2^7 = 128$ runs and we can estimate
 - $\binom{7}{1} = 7$ main effects
 - $\binom{7}{2} = 21$ 2nd order interactions
 - $\binom{7}{3} = 35$ 3rd order interactions
 - $\binom{7}{4} = 35$ 4th order interactions
 - $\binom{7}{5} = 21$ 5th order interactions
 - $\binom{7}{6} = 7$ 6th order interactions
 - $\binom{7}{7} = 1$ 7th order interactions

Redundancy (cont.)

- There is a hierarchy in absolute magnitude: the main effects tend to be larger than the 2nd order interactions, which tends to be larger than the 3rd order interactions, which ...
- At some point higher order interactions tend to become negligible and can be discarded.
- If many factors are introduced into a design, it often happens that some have *no* distinguishable effect at all.
- Fractional factorial designs exploit this redundancy!

Full 2³ factorial experiment

How can we accomodate four factors here?

Std order	Α	В	С	AB	AC	BC	ABC
1	-	-	-	+	+	+	-
2	+	-	-	-	-	+	+
3	-	+	-	-	+	-	+
4	+	+	-	+	-	-	-
5	-	-	+	+	-	-	+
6	+	-	+	-	+	-	-
7	-	+	+	-	-	+	-
8	+	+	+	+	+	+	+

DOE: Fractional factorial design

BHH Reector example.

Observation: when the number of factors (k) is large, it may not be optimal to perform a full 2k factor. al design due to the possible reducency of the design. higher order interactions tend to be smaller than lower order interactions. Salchiers, only perform a first the full design.

Now: we nove in the opposite direction to solve this. We have a full 2⁸ factorial design with factors A, B, C; but we also want to have factor D in the experiment. What if we use the ABC column to define the levels of D. 1) D=ABC is called the "generator" of the design.

NOTATION 29-1 211 design with I=ABCD deliving relation

and D=ABC as design generator

With 4 factors:
4 main effect
$$A_1 D_1 C_1 P$$

 $\binom{44}{2} = \frac{4.3}{2} = b$ 2-way interactions (AB,AC,...)
 $\binom{44}{3} = \frac{4\cdot3\cdot2}{1\cdot2} = 4$ 3-way interactions (ABC, ABD)
 $\binom{44}{3} = \frac{1}{1\cdot2} = 4$ 3-way interactions (ABC, ABD)
 $4co, bco$)
 $\binom{44}{4} = 1$ 4-way interaction

⇒ 4+6+4+1= 15 possible effects (+1 intercept) Q: what can we estimate?

Column A and BCD ac equal

I = ABCD, end confounded with the intrapt.

Half fraction of 2⁴

- The design is called 2_{IV}^{4-1} .
- D=ABC is called the generator for the design.
- I=ABCD is called the *defining relation* for the design.
- The design is said to have resolution IV.
- The alias structure defines which effects are confounded:
 - A+BCD, B+ACD, C+ABD, D+ABC.
 - AB+CD, AC+BD, BC+AD.

We choose D=ABC and got a design of resolution II. What if we instead choose DEAB? 1) D=AB generator defining relation 2) I=ABD 3) Resolution: III 4-1 21 Alias pattern : $A = A \cdot T = A \cdot A \cdot B D = B D$ $B = B \cdot ABD = AD$ C = C. ABD = ABCD D= AB We will prefer a resolution II design to a

resolution III design.

Resolution

A design of resolution

- III does not confound main effets with one another, but does confound main effects with two-factor interactions.
- IV does not confound main effects and two-factor interactions, but does confound two-factor interactions with other two-factor interactions.
- V does not confound main effects and two-factor interactions with eachother, but does confound two-factor interactions with three-factor interactions and so on.

In general the resolution of a two-level factional design is *the length* of the shortest word in the defining relation.

Box, Hunter, Hunter: Reactor example

- A=feed rate (liters/min).
- B=Catalyst (%).
- C=Agitation rate (rpm).
- D=Temperature (deg C).
- E=Concentration (%).
- Response= (%) reacted.

Full factorial with $2^5 = 32$ experiments.

From Box, Hunter, Hunter (1978, 2005): "Statistics for Experimenters", Ch.12.2.

Half fraction with reactor example

- Instead of running a full factorial with $2^5 = 32$ experiments,
- we suggest running a half-fraction.
- We choose I = ABCDE as the defining relation.
- Alternative thinking:
 - Construct a full 2⁴ design for A, B, C and D.
 - The column of signs for the ABCD interaction is written and used to define the levels for factor E.
 - This means E = ABCD is the generator for the design, and I = ABCDE is the defining relation.
- What is the resolution for this design?
- Write down the aliasing pattern.

11

Reactor data: standard order

у -1 -1 -1 -1 -1 61 -1 -1 -1 -1 53 2 1 3 -1 -1 -1 -1 63 -1 -1 -1 61 4 5 -1 -1 1 -1 -1 53 6 1 -1 -1 56 1 -1 1 -1 -1 54 8 -1 -1 61 1 9 -1 -1 -1 1 -1 69 1 -1 61 -1 -1 1 -1 94 11 -1 12 -1 93 13 -1 66 -1 60 14 -1 95 15 -1 98 16 1

17	-1	-1	-1	-1	1	56
18	1	-1	-1	-1	1	63
19	-1	1	-1	-1	1	70
20	1	1	-1	-1	1	65
21	-1	-1	1	-1	1	59
22	1	-1	1	-1	1	55
23	-1	1	1	-1	1	67
24	1	1	1	-1	1	65
25	-1	-1	-1	1	1	44
26	1	-1	-1	1	1	45
27	-1	1	-1	1	1	78
28	1	1	-1	1	1	77
29	-1	-1	1	1	1	49
30	1	-1	1	1	1	42
31	-1	1	1	1	1	81
32	1	1	1	1	1	82

Ex: 25 helf fraction with E= ABCD as design generator and I= ABCDE defining relation. a) Resolution: I b) Aliao pattern: BCDE } main effect & t-way A · ABCOE = BCOE E AB. ABCOE = CDE] 2-way & 3-way ABC. ABCOE = DE

ABCD

AOCDE & interapt

A half fraction with highest resolution is obtained by 1) Write down a full factorial design in the first (k-1) factors.

2) Associate the kth factor with + or - times the (k-Nth factor interaction.

clicher. math. ntm. no

Interpretation of confounding: example

Suppose there are three factors, A, B, C, for which we know the true effects and interaction effects:

$$A = 8$$
$$B = 20$$
$$C = 2$$
$$AB = 4$$
$$AC = 2$$
$$BC = 6$$
$$ABC = 4$$

Also is known that average response is 70.

True regression model

The corresponding regression model is:

 $y = \beta_0 + \beta_1 z_1 + \beta_2 z_2 + \beta_3 z_3 + \beta_{12} z_{12} + \beta_{13} z_{13} + \beta_{23} z_{23} + \beta_{123} z_{123} + \epsilon$

where $z_{12} = z_1 z_2$, $z_{13} = z_1 z_3$, $z_{23} = z_2 z_3$, $z_{123} = z_1 z_2 z_3$, and where the coefficients β are half the corresponding effects, while $\beta_0 = 70$. The regression model is hence

$$y = 70 + 4z_1 + 10z_2 + z_3 + 2z_{12} + z_{13} + 3z_{23} + 2z_{123} + \epsilon$$

In the following we shall also for simplicity assume that the errors ϵ are 0. This makes it possible to compute the responses for any experiment for which the levels of A, B, C are specified.

Confounding example (cont.)

Assume now that a 2^{3-1} experiment is performed, with generator C = AB. And responses are computed using the true regression model (check!).

St. order		Α	В	C=AB	AB	AC	BC	ABC	ý
1	+	-	-	+	+	-	-	+	57
2	+	+	-	-	-	-	+	+	65
3	+	-	+	-	-	+	-	+	73
4	+	+	+	+	+	+	+	+	93
	Const.	<i>Z</i> 1	<i>Z</i> 2	<i>Z</i> 3	<i>Z</i> ₁₂	Z ₁₃	Z ₂₃	Z ₁₂₃	
Coeff.	70	4	10	1	2	1	3	2	

Confounding example (cont.)

It is now seen that in all of these 4 experiments are

Const. = Z_{123} $Z_1 = Z_{23}$ $Z_2 = Z_{13}$ $Z_3 = Z_{12}$

so for the performed experiment we may as well write the model as

$$y = (\beta_0 + \beta_{123}) + (\beta_1 + \beta_{23})z_1 + (\beta_2 + \beta_{13})z_2 + (\beta_3 + \beta_{12})z_3$$

Using that we know the values of the coefficients, the true model for the data is thus

$$y = (70+2) + (4+3)z_1 + (10+1)z_2 + (1+2)z_3$$

= 72 + 7z_1 + 11z_2 + 3z_3

Confounding example (cont.)

 Suppose now that we try to compute the main effect of A from our data. Apparently this will be

$$\ell_{A} = \frac{65+93}{2} - \frac{57+73}{2} = 79 - 65 = 14$$

which is also found as twice the coefficient before z_1 in the regression model above.

 Similarly, the apparent interaction effect of B and C would be computed as

$$\ell_{BC} = \frac{-57+65-73+93}{2} = 14$$

The truth (which is known to us) is, however, that A = 8 and BC = 6, so that it is the sum of A and BC which is 14.

This is what is meant by saying that the main effect of A and the interaction effect between B and C are *confounded* (mixed). The confounded effects are listed in R as the *alias structure*.

Factorial Fit: y versus A; B; C

Estimated Effects and Coefficients for y (coded units)

Term	Effect	Coef
Constant		72,000
А	14,000	7,000
В	22,000	11,000
С	6,000	3,000

Alias Structure I + A*B*C A + B*C B + A*C C⁺+ A*B

The bicycle example

TABLE 12.5. An eight-run experimental design for studying how time to cycle up a hill is affected by seven variables (I = 124, I = 135, I = 236, I = 1237).

run	seat up/down 1	dynamo off/on 2	handlebars up/down 3	gear low/medium 4 12	raincoat on/off 5 13	breakfast yes/no 6 23	tir e s hard/soft 7 123	time to climb hill (sec) y
1	-	-	-	+	+	+	-	69
2	+	-	-	-	_	+	+	52
3	_	+	-	-	+	-	+	60
4	+	+	-	+	_	-	_	83
5	-	-	+	+	-	-	+	71
6	+	-	+	-	+	-	-	50
7	-	+	+	-	-	+		59
8	+	+	+	+	+	+	+	88

From Box, Hunter, Hunter (1978, 2005): "Statistics for Experimenters", Ch.12.25

The bicycle example

- Set up a full factorial design in the three variables A, B, C.
- Use the generators: D=AB, E=AC, F=BC, G=ABC.
- Defining relations: I=ABD=ACE=BCF=ABCG.
- The design is of resolution III.
- It is a 1/16 fraction of the full 2^7 , and thus called 2_{III}^{7-4} .
- A design where every available contrast is associated with a factor is called a *saturated design*.