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Box, Hunter, Hunter: Reactor example

— A=feed rate (liters/min).
— B=Catalyst (%).

— C=Agitation rate (rpm).
— D=Temperature (deg C).
— E=Concentration (%).
— Response= (%) reacted.

Full factorial with 2° = 32 experiments.
From Box, Hunter, Hunter (1978, 2005): "Statistics for Experimenters", Ch.12.2.
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: standard order

Reactor data
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Pareto and Normal plot
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Redundancy

— The number of runs in a full 2 factorial design increases
geometrically when k is increased.

— E.g. k = 7 factors gives 27 = 128 runs and we can estimate

= 7 main effects

21 2nd order interactions

35 3rd order interactions

35 4th order interactions

21 5th order interactions

= 7 6th order interactions

=1 7th order interactions
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Redundancy (cont.)

— There is a hierarchy in absolute magnitude: the main effects
tend to be larger than the 2nd order interactions, which tends
to be larger than the 3rd order interactions, which ...

— At some point higher order interactions tend to become
negligible and can be discarded.

— If many factors are introduced into a design, it often happens
that some have no distinguishable effect at all.

— Fractional factorial designs exploit this redundancy!

\
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Full 23 factorial experiment

How can we accomodate four factors here?

Stdorder | A| B | C | AB | AC | BC | ABC
1] - -1 -1+ + + -
21+ - - - - + +
3 + -] - + - +
41+ |+ | - | + - - -
51 - - |+ ] + - - +
6|+ -|+| - + - -
70 -1+ +] - - + -
8|+ |+ |+ ]| + + + +
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Half fraction of 2¢

— The design is called 27, .
— D=ABC is called the generator for the design.
— |=ABCD is called the defining relation for the design.

— The design is said to have resolution IV.
— The alias structure defines which effects are confounded:

e A+BCD, B+ACD, C+ABD, D+ABC.
e AB+CD, AC+BD, BC+AD.
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Resolution

A design of resolution

[l does not confound main effets with one another, but
does confound main effects with two-factor
interactions.

IV does not confound main effects and two-factor
interactions, but does confound two-factor interactions
with other two-factor interactions.

V does not confound main effects and two-factor
interactions with eachother, but does confound
two-factor interactions with three-factor interactions
and so on.

In general the resolution of a two-level factional design is the length
of the shortest word in the defining relation.
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Box, Hunter, Hunter: Reactor example

— A=feed rate (liters/min).
— B=Catalyst (%).

— C=Agitation rate (rpm).
— D=Temperature (deg C).
— E=Concentration (%).
— Response= (%) reacted.

Full factorial with 2° = 32 experiments.
From Box, Hunter, Hunter (1978, 2005): "Statistics for Experimenters", Ch.12.2.
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Half fraction with reactor example

— Instead of running a full factorial with 25 = 32 experiments,
— we suggest running a half-fraction.

— We choose | = ABCDE as the defining relation.

— Alternative thinking:

e Construct a full 2% design for A, B, C and D.

e The column of signs for the ABCD interaction is written and
used to define the levels for factor E.

e This means E = ABCD is the generator for the design, and
| = ABCDE is the defining relation.

— What is the resolution for this design?
— Write down the aliasing pattern.

\
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: standard order

Reactor data
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Interpretation of confounding: example

Suppose there are three factors, A, B, C, for which we know the
true effects and interaction effects:

A = 8
B = 20
c =2
AB = 4
AC = 2
BC = 6
ABC = 4

Also is known that average response is 70.
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True regression model

The corresponding regression model is:

Y = Bo+ 5121 + BazZo + 323 + 12212 + 13213 + P23 Zoz + [1232Z123 +€

where zio = 212>, 213 = 2123, Zo3 = Zo2Z3, Z123 = 212223, and where
the coefficients g are half the corresponding effects, while 5y = 70.
The regression model is hence

y:70—‘r4Z1 —|—1022+Z3+2Z12+Z13—|—3223+2Z123+6

In the following we shall also for simplicity assume that the errors ¢
are 0. This makes it possible to compute the responses for any
experiment for which the levels of A, B, C are specified.

\
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Confounding example (cont.)

Assume now that a 23~ experiment is performed, with generator
C = AB. And responses are computed using the true regression

model (check!).

St. order A B C=AB|AB AC BC | ABC | y
1 + - - + + - - + | 57
2 + + - - - - + + | 65
3 + -+ - - + - + |73
4 + + o+ + + + + + 93
Const. | z1 2 Z3 Zip 213 2Zo3 | Z123
Coeff. 70 4 10 1 2 1 3 2

\
\
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Confounding example (cont.)

It is now seen that in all of these 4 experiments are

Const. = Z123
21 = 223
Z2 = Z13
Z3 = Z12

so for the performed experiment we may as well write the model as

¥y = (Bo + B123) + (B1 + Baz)z1 + (B2 + B13)z2 + (B3 + B12)2Z3

Using that we know the values of the coefficients, the true model
for the data is thus

y = (70+2)+(4+3)z1 +(10+ 1)z + (1 + 2)z3
= 724721+ 112, + 323
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Confounding example (cont.)

— Suppose now that we try to compute the main effect of A from
our data. Apparently this will be

_ 65+93 B 57+ 73
N 2 2
which is also found as twice the coefficient before z; in the
regression model above.

— Similarly, the apparent interaction effect of B and C would be
computed as

la =79-65=14

-57 -7 3
loo = 5 —1—652 3+9 _ 14

The truth (which is known to us) is, however, that A = 8 and
BC = 6, so that it is the sum of A and BC which is 14.

\
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This is what is meant by saying that the main effect of A and the
interaction effect between B and C are confounded (mixed). The
confounded effects are listed in R as the alias structure.

Factorial Fit: y versus A; B; C

Estimated Effects and Coefficients for y (coded units)

Term Effect Coef
Constant 72,000
A 14,000 7,000
B 22,000 11,000
C 6,000 3,000

Alias Structure
I + Ax*BxC

A + Bx*C
B + AxC
C + AxB
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The bicycle example

TABLE 115, An eight-run experimental design for studying how time to cycle up  hill is affected by seven variables
(1= 124,1= 1351= 136,1 = 1237).

time to

seat dynamo  handlebars raincoat  breakfast tires climb hill
nw‘dun offfon up/down hwmndnm onjofl yes/no hard/soft (sec)
run 2 3 5 6 7 ¥y
I.2 n 3 123
] - - - + + + - 69
2 + - - - - + + 52
3 - + - - + - + 60
4 + + - * - - - 83
] - — + + = - + mn
6 + - + - + - - 50
7 - + + - - + - 9
8 + + + + + + + 88

From Box, Hunter, Hunter (1978, 2005): “Statistics for Experimenters”, Ch.12.25
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The bicycle example

— Set up a full factorial design in the three variables A, B, C.
— Use the generators: D=AB, E=AC, F=BC, G=ABC.

— Defining relations: I=ABD=ACE=BCF=ABCG.

— The design is of resolution IlI.

— ltis a 1/16 fraction of the full 27, and thus called 2], .

— A design where every available contrast is associated with a
factor is called a saturated design.
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