# TMA4267 Linear Statistical Models V2014 (23) 

 Model selection [ISLR6.1] Shrinkage [ISLR6.2]Mette Langaas

To be lectured: March 24, 2014 wiki.math.ntnu.no/emner/tma4267/2014v/start/
(Lecture 23) PART 7 : Model selection [ISLR 6.1]
shrinkage [ISLR 6.2]
and dimension reduction CisLe 6.3

$$
+10.2]
$$

Last time: Model selection $\begin{aligned} & \text { best subsets }\left(2^{p}+1\right) \\ & \text { stepwise }<\text { forward } \\ & \text { bechwerd }\end{aligned}$


$$
\left(\frac{P(p+1)}{2}+1\right)
$$

$\left.\begin{array}{l}\text { Mallows } C_{p} \\ \text { (-ATC) } \\ \text { Riadj } \\ \text { BiC }\end{array}\right\} \begin{aligned} & \text { mimic the were of } \\ & \text { a test detach }\end{aligned}$
Ald rain:
All subsets: Mallows $C_{p}$ : model with $J_{\text {predictors }}$ is the best: $X_{1}, X_{2}, X_{3}, X_{3}, X_{8}$
$R^{2}$ adj: 3 predictor peered

$$
x_{1}, x_{2}, x_{3}
$$

## Acid rain

occurs when emissions of sulfur dioxide (SO2) and oxides of nitrogen (NOx) react in the atmosphere with water, oxygen, and oxidants to form various acidic compounds. These compounds then fall to the earth in either dry form (such as gas and particles) or wet form (such as rain, snow, and fog).

## Acid rain in Norwegian lakes

Measured pH in Norwegian lakes explained by content of

- x1: $\mathrm{SO}_{4}$ : sulfate (the salt of sulfuric acid),
- x2: $\mathrm{NO}_{3}$ : nitrate (the conjugate base of nitric acid),
- x3: Ca: calsium,
- x4: latent Al: aluminium,
- x5: organic substance,
- x6: area of lake,
- x7: position of lake (Telemark or Trøndelag),
pH is a measure of the acidity of alkalinity of water, expressed in terms of its concentration of hydrogen ions. The pH scale ranges from 0 to 14. A pH of 7 is considered to be neutral. Substances with pH of less that 7 are acidic; substances with pH greater than 7 are basic.

Acid rain data


## Acid rain (1). Best subset

```
regfit.full=regsubsets ( \(\mathrm{y}^{\sim}\)., data=ds)
sumreg <- summary(regfit.full)
Subset selection object
Call: regsubsets.formula(y ~ ., data \(=\) ds)
1 subsets of each size up to 7
Selection Algorithm: exhaustive
                    x1 x2 x3 x4 x5 x6 x7
1 ( 1 ) " " " " " " "*" " " " " " "
2 ( 1 ) "*" " " "*" " " " " " " " "
3 ( 1 ) "*" "*" "*" " " " " " " " "
4 ( 1 ) "*" "*" "*" " " "*" " " " "
5 ( 1 ) "*" "*" "*" " " "*" " " "*"
6 ( 1 ) "*" "*" "*" "*" "*" " " "*"
7-( 1 ) "*" "*" "*" "*" "*" "*" "*"
```


## Acid rain (2)

```
# to mimic test set: R2adj and Cp
plot(1:7, sumreg$adjr2,type="l")
which.max(sumreg$adjr2) #5
plot(1:7, sumreg$cp,type="l")
which.min(sumreg$cp) #3
# so, model 3 or 5 is suggested for us
# model 3: x1+x2+x3
# model 5: x1+x2+x3+x5+x7
which.min(sumreg$bic) #3
```


## Acid rain (3): Forward

```
# stepwise
regfitF=regsubsets(y~}.,data=ds,method="forward")
sumregF <- summary(regfitF)
Selection Algorithm: forward
    x1 x2 x3 x4 x5 x6 x7
1 ( 1 ) " " " " " " "*" " " " " " "
2 ( 1 ) " " " " "*" "*" " " " " " "
3 ( 1 ) "*" "*" "*" " " " " " " " "
4 ( 1 ) "*" "*" "*" "*" " " " " " "
5 ( 1 ) "*" "*" "*" "*" "*" " " " "
6 ( 1 ) "*" "*" "*" "*" "*" " " "*"
7 ( 1 ) "*" "*" "*" "*" "*" "*" "*"
which.max(sumregF$adjr2)#5
which.min(sumregF$cp) #3
```


## Acid rain (4): Backward

regfitB=regsubsets( $\mathrm{y}^{\sim}$., data=ds,method="backward") sumregB <- summary(regfitB)
Selection Algorithm: backward

which.max (sumregB\$adjr) \#5
\# backward finds same as best subset which.min(sumregB\$cp) \#3

Shrinkage methods [IsLe 6.2]
Model selection: use least squares (LSS), but only fit a subset of the predictors.
Now : add penalty to LS criterion丁
pay a price for large coefficient.
Ridge regression (from 1970s) [RR]

$$
S S E=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}=\sum_{i=1}^{n}\left(y_{i}-\beta_{0} p_{1} x_{11}-\cdots \beta_{p} x_{i p}\right)^{2}
$$

In LS estimation we minimize SSE.
$\hat{\beta}^{R}$ (ridge) is the result from a penchied minimization of

$$
\operatorname{SSE}^{R}(\lambda)=\operatorname{SSE}+\lambda \cdot \sum_{j=1}^{P} \beta_{j}^{2}
$$

where $\lambda \geq 0$ is a tuning parameter - to bedeternined separately.

$$
\operatorname{sis}^{R}(\lambda)=\left(Y-X_{\beta}\right)^{T}\left(Y-X_{\beta}\right)+\lambda \beta^{+} \beta
$$

(homework, see ch 3)

$$
\hat{\beta}^{e}=\left(x^{\top} x+\lambda I\right)^{-1} x^{\top} y
$$

When $\lambda=0$ we get the osdinery $L S$ solution.

$$
\lambda \rightarrow \infty \text { all } \hat{\beta}^{e}=0
$$

$$
\frac{\left\|\hat{\beta}_{\lambda}^{R}\right\|_{2}}{\|\hat{\beta}\|_{2}}=\frac{\sqrt{\sum_{j=1}^{p} \hat{\beta}_{j}^{2}}}{\sqrt{\sum_{j=1}^{p} \hat{\beta}_{j}^{R}} \hat{c}_{\text {Ls }}} \quad \text {, ridge } \quad 1 \text { when } \lambda=0 \text { when } \lambda \rightarrow \infty
$$

used in plots, on $x$-axis -instead of $\lambda$.
Remark: we don't went to shrink the intercept, so that is not included in the penally.

## Credit data

> names(credit)
[1] "Income"
"Limit"
"Rating"
"Cards"
"Age"
[7] "Gender"
"Student"
"Married"
"Ethnicity" "Balan
> dim(credit)
[1] 40011

- Response: Balance, amount due at the end of the month (some have 0 ).
- Income
- Limit (credit limit)
- Rating (credit rating)
- Cards: number of credit cards (1-9).
- Education: number of years (5-20).
- Gender
- Student or not.
- Married or not.
- Ethicity three levels (African American, Asian, Caucasian), coded as factor.


## Credit data: Ridge regression




Figure 6.4 from An Introduction to Statistical Learning (2013)

Why use ridge instead of LS?
When $\lambda$ increase the flexibility of the Re fit vill decrease, which will result in increased bias but decreased variance (remember: bias-var.ance trade -off).

Simulation study (A) to show this:

$$
\begin{aligned}
& \left.p=45 \leftarrow p_{1}, \beta_{2}, . .\right) \beta_{4 s} \text { all } \neq 0 \\
& h=50
\end{aligned}
$$

RR works beet in situations whee LS estimates have high variance (and many predicts are truly non-lero).

Computationally fart!

## Simulated data (A): Ridge regression




Figure 6.5 from An Introduction to Statistical Learning (2013)

Scale issue
$Q$ : Let $X_{1}$ be a measwerent in NOK.

Instead use $x_{1}$ to be KNOK (1000's of NOKS)
Befae $x_{1}=1000$, now $x_{1}=1$.
What happens with the LS solution fer the new coding?
Solution: no problem $\hat{\beta}_{n}$ is just scaled accordingly
In RR the scale matters, end $\hat{\beta}_{1}^{e}$ can change substantially if $x_{1}$ is changed. This is because of the $\sum \beta_{j}^{2}$-penalty. Solution: work with standardized predictos:

$$
\tilde{x}_{i j}=\frac{x_{i j}}{\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i j}-\overline{x_{j}}\right)^{2}}}
$$

So all predictos are on the same scale.

## Question

You perform ridge regression on a problem where your third predictor, $x 3$, is measured in dollars. You decide to refit the model after changing $x 3$ to be measured in cents. Which of the following is true?
$\mathrm{A} \hat{\beta}_{3}$ and $\hat{y}$ will remain the same.
B $\hat{\beta}_{3}$ will change, but $\hat{y}$ will remain the same.
C $\hat{\beta}_{3}$ will remain the same, but $\hat{y}$ will change.
D $\hat{\beta}_{3}$ and $\hat{y}$ will both change.
Vote at clicker.math.ntnu.no, classroom TMA4267.

Lasso regression
Problem with ridge: all $p$ predictor are included in the fitted model. The $\hat{\beta}^{R}$ are shrunk, but not to zero unless $\lambda=\infty$. This males inleppretation hard.
Lasso:

$$
\operatorname{SSE}^{L}(\lambda)=\operatorname{SSE}+\lambda \cdot \underbrace{\sum_{j=1}^{p}\left|\beta_{j}\right|}_{\|\beta\|_{1}\left(L_{1} \text { norm }\right)}
$$

There is no closed farm solution
for $\hat{\beta}^{-}$hel, but the Lu-penally will for large enough $\lambda$ force some $\hat{\beta} j$ 's to be exactly equal to zero.
$\Rightarrow$ Lasso gives a sparse model, and does variable selection.

Crest data $\rightarrow$ lasso eshmotes

## Credit data: Lasso regression




Figure 6.6 from An Introduction to Statistical Learning (2013)

Comparing ridge end lasso $\rightarrow$ perform different for $0<\lambda<\infty$.

Simulated data (A): $n=50, p=45 \quad$ [Figure 6.8] $\left.\begin{array}{l}\text { lasso }=\text { solid } \\ \text { dotted }=\text { ridge }\end{array}\right\}$ ridge is the best
data perfect for lasso
Simulated data (B) : $n=50, p=2$ end 43 noise cover.ales
$\Rightarrow$ lasso is the bert
[fig 6.9$]$
Neighter rigde or lasso dominates the other in all situation.

## Simulated data (A): Ridge and lasso




Figure 6.8 from An Introduction to Statistical Learning (2013)

Alternative formulation and graphres

RR:

$$
\operatorname{minimize}_{\beta}\{S S E\} \text { subject to } \sum \beta_{j}^{2} \leqslant S
$$

Lasso:

$$
\underset{B}{\operatorname{minimize}}\{S S E\} \text { subject to } \sum\left(F_{j}\right) \leqslant s
$$

$$
\beta
$$

where there is a one-to-one between $\lambda$ end $s$. penalty $\underset{\text { constraint }}{ }$
$P=2$ : graphical display

## Simulated data (B): Ridge and lasso




Figure 6.9 from An Introduction to Statistical Learning (2013)

## Graphically: Lasso (left) and ridge (right)



Figure 6.7 from An Introduction to Statistical Learning (2013)

