TMA4267 Linear Statistical Models V2014 (5)
The Chi-square distribution [2.1], The F distribution [2.3] Orthogonality [2.4] with tranformation formula [2.2] Normal sample mean and variance [2.5]

Mette Langaas

To be lectured: January 20, 2014 wiki.math.ntnu.no/emner/tma4267/2014v/start/

ANalysis Of VAriance (ANOVA)

Bingham and Fry (2010): Chapter 2

- The Chi-square distribution and the F-distribution [2.1, 2.3]
- Orthogonality and multivariate tranformation formula [2.2, 2.4]
- Normal sample mean and variance [2.5]
- One-way ANOVA [2.6]
— Two-way ANOVA [2.7-2.8]

Concrete aggregates example

- Aggregates are inert granular materials such as sand, gravel, or crushed stone that, along with water and portland cement, are an essential ingredient in concrete.
- For a good concrete mix, aggregates need to be clean, hard, strong particles free of absorbed chemicals or coatings of clay and other fine materials that could cause the deterioration of concrete.
- We could like to examine 5 different aggregates, and measure the absorption of moisture after 48hrs exposure (to moisture).
- A total of 6 samples are tested for each aggregate.
- Research question: Is there a difference between the aggregates with respect to absorption of moisture?

Concrete aggregates data

Aggregate:	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	
	551	595	639	417	563	
	457	580	615	449	631	
	450	508	511	517	522	
	731	583	573	438	613	
	499	633	648	415	656	
	632	517	677	555	679	
Total	3320	3416	3663	2791	3664	16,854
Mean	553.33	569.33	610.50	465.17	610.67	561.80

Table 13.1 of WMMY.

Concrete aggregates example

Comparing means by analysing variability

Fisher (1918), Rothamsted Experimental Station.
Fisher wanted to compare crop yields using different fertilzers. He realised that if there was more variability between groups from different fertilizers than within groups, then this would be evidence against believing that the fertilizers have the same effect. Fisher:
compare means by analysing variability!

The Chi-square distribution [2.1]

pdf χ_{n}^{2} :

$$
f(y)=\frac{1}{2^{n / 2} \Gamma(n / 2)} y^{n / 2-1} e^{(-y / 2)} \text { for } y>0
$$

MGF χ_{n}^{2} :

$$
M_{Y}(t)=\frac{1}{(1-2 t)^{n / 2}}
$$

Addition property:
Let $X_{1} \sim \chi_{n}^{2}$ and $X_{2} \sim \chi_{m}^{2}$, and let X_{1} and X_{2} be independent. Then $X_{1}+X_{2} \sim \chi_{n+m}^{2}$.
Subtraction property:
Let $X=X_{1}+X_{2}$ with $X_{1} \sim \chi_{n}^{2}$ and $X \sim \chi_{n+m}^{2}$. Assume that X_{1} and X_{2} are independent. Then $X_{2} \sim \chi_{m}^{2}$.

TMA 4267 - lecture 5
Chapter 2: ANalysis of VAriance (ANOVA)
The X^{2}-distribution $[2,1]$
Let x_{i} be i.i.d $N(0,1)$. Then

$$
Y=X_{1}^{2}+X_{2}^{2}+\cdots+X_{n}^{2}
$$

is X^{2}-distributed w th n degrees of freedom.
From TMAt24s we remember finding the af of X^{2}, from $N(0,1)$ wing the transformation formula $[p 217$ wanly $]$

$$
f y(y)=\frac{1}{\sqrt{2}} \frac{1}{r(1 / 2)} y^{\frac{1}{2}-1} e^{-y / 2} f y>0
$$

We may also wee MGF: $X \sim N(0,1) \Rightarrow Y=x^{2}$

$$
\begin{aligned}
& M_{x^{2}}(t)=\int_{-\infty}^{\infty} e^{t x^{2}} \cdot \phi(x) d x \quad \phi=p d f N(\sigma, 1) \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{t x^{2}} e^{-\frac{1}{2} x^{2}} d x=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(1-2 t) x^{2}} d x \\
& y=\sqrt{1-2 t} x \quad \begin{array}{c}
\text { only convergence } \\
t<\frac{1}{2}
\end{array} \\
& a_{y}=\sqrt{1-2 t} d x \quad
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\sqrt{2 a r}} \int_{-a^{-\infty}}^{\infty} e^{-\frac{1}{2} y^{2}} \frac{1}{\sqrt{1-2 t}} d y \\
& =\frac{1}{\sqrt{1-2 t}} \cdot 1=\frac{1}{\sqrt{1-2 t}} \text { for } t<\frac{1}{2}
\end{aligned}
$$

Whan $X_{1,}, X_{n}$ or identicd and indepondent

$$
\begin{aligned}
& Y_{=} \sum x_{i}^{2}, M_{y}(t)\left[M_{x^{2}}(t)\right]^{n} \\
& M_{y}(t)=\left[\frac{1}{(1-2 t)^{1 / 2}}\right]^{n}=\frac{1}{(1-2 t)^{n / 2}}
\end{aligned}
$$

R: ${ }_{\mathrm{p}}$ Chisq

$$
\begin{aligned}
& \begin{array}{l}
r \\
d
\end{array} \quad \text { What abant } E(y) \text { and vor }(y) \text { ? } \\
& p \\
& q \quad E(y)=E\left(X_{1}^{2}\right)+\cdots+E\left(X_{n}^{2}\right)=n \\
& E\left(x_{i}^{2}\right)=\underbrace{\operatorname{Var}\left(x_{i}\right)}_{1}+\underbrace{E\left(x_{i}\right)^{2}}_{0}=1
\end{aligned}
$$

$$
\operatorname{Var}\left(x_{i}^{2}\right)=\underbrace{E\left(x_{i}^{4}\right)}_{\substack{9 \\ \text { is harem }}}-\underbrace{E\left(x_{i}^{2}\right)^{2}}_{1}=3-1=2
$$

that this is 3
in $N(0,1)$

$$
\operatorname{Var}(y)=\sum_{i=1}^{n} \operatorname{Var}\left(x_{i}^{2}\right)=2 n
$$

but may also find this

$$
\left.\frac{d^{4} H_{x}(t)}{d t^{4}}\right|_{t=0}=\mu_{y}
$$

The pat of x_{n} is $f(y)=\frac{1}{2^{\frac{n}{2}} r\left(\frac{n}{2}\right)} \cdot y^{\frac{n}{2}-1} e^{-\frac{1}{2} y}$
x^{2} addition property
$X_{1} \sim X_{n_{1}}^{2}$ and $X_{2} \sim X_{n_{2}}^{2} . X_{1}$ and X_{2} are independent.
This $x_{1}+x_{2} \sim x_{n_{1}+n_{2}}^{2}$.
Proof: follow directly by writing $X_{1}=b_{1}^{2}+\ldots+U_{n 1}^{2}$ and $X_{2}=U_{n+1}^{2}+\cdots+u_{n_{1}+n_{2}}^{2}$ and using def of X^{2}.
x^{2} subtraction property
$X=X_{1}+X_{2}$ with $X_{1} \sim X_{n_{1}}^{2}$ and $X \sim X_{n_{1}+n_{2}}$. Assume that X_{1} and X_{2} is independent, then $x_{2} \sim x_{n_{2}}^{2}$.
Proof: use MGF.

The Fisher distribution [2.3]

"Tabeller og formeler i statistikk":
If Z_{1} and Z_{2} are independent and χ^{2}-distributed with ν_{1} and ν_{2} degrees of freedom, then

$$
F=\frac{Z_{1} / \nu_{1}}{Z_{2} / \nu_{2}}
$$

is F (isher)-distributed with ν_{1} and ν_{2} degrees of freedom.

- The expected value of F is $\mathrm{E}(F)=\frac{\nu_{2}}{\nu_{2}-2}$.
- The mode is at $\frac{\nu_{1}-2}{\nu_{1}} \frac{\nu_{2}}{\nu_{2}+2}$.
- Identity:

$$
f_{1-\alpha, \nu_{1}, \nu_{2}}=\frac{1}{f_{\alpha, \nu_{2}, \nu_{1}}}
$$

The F-distribution [2.3]

$$
\begin{aligned}
& U \sim x_{m}^{2} \text { הindependent } \Rightarrow F=\frac{\frac{u}{m}}{\frac{v}{n}} \sim F_{m, n} \\
& V \sim x_{n}^{2} \in \text { in }
\end{aligned} \Rightarrow
$$

Fisher distributan with m end n degrees of fredom

$$
\begin{aligned}
& f(x)= \frac{m^{m / 2} n^{n / 2}}{B\left(\frac{m}{2}, \frac{n}{2}\right)} \cdot \frac{x^{\frac{m-2}{2}}}{(m x+n)^{m+n} \frac{2}{2}} \\
& \text { Beta fuction } B(\alpha, \beta)=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}
\end{aligned}
$$

The Fisher distribution with different degrees of freedom ν_{1} and ν_{2} (given in the legend).
$[2.2+2.4]$ Tools ..
Transformation formula fra TMA4245

1) $Y=u(\mathbb{Z})$ one-to-one function u

$$
\begin{aligned}
X= & u^{-1}(y)=w(y) \\
& f_{y}(y)=f_{x}(w(y)) \cdot\left|w^{\prime}(y)\right|_{\frac{d x}{d y}}^{\alpha^{2}}
\end{aligned}
$$

2) Now, multivariate verst on

$$
\begin{array}{cl}
\underset{n \times 1}{X} \rightarrow \sum_{n \times 1} & \text { Let } y=u(x) \text { as before } x=w(y) \\
\mathcal{L}_{x}(x) & f_{y(y)}^{J} \\
f_{y}(y)=f_{x}(w(y)) \cdot a b s(7)
\end{array}
$$ joint pass

whee $F=\operatorname{det}\left\{\frac{\partial x_{i}}{\frac{\partial}{\lambda}}\right\}$
$n \times n$ matrix

In particular :

$$
Y=A X+b
$$

$$
\exists=\operatorname{det}\left\{\frac{\partial x_{i}}{\partial y_{j}}\right\}=\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}
$$

$$
\begin{array}{r}
A \cdot A^{-1}=I \\
\operatorname{det}\left(A \cdot A^{-1}\right)=\operatorname{det}(I)=1 \\
\operatorname{det}(A) \cdot \operatorname{det}\left(A^{-1}\right)=1 \\
\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{der}(A)}
\end{array}
$$

And, if A is orthogonal: $\quad A^{\top}=A^{-1}$

$$
\operatorname{det}\left(A^{-1}\right)=\operatorname{det}\left(A^{\top}\right)=\operatorname{det}(A)
$$

cofactar expansion
such that
$\operatorname{det}(A \cdot A-1)=1$ (prev. page)
$\operatorname{det}(A)^{2}=1$

$$
\operatorname{det}(A)= \pm 1
$$

In formula $a b s(\exists)=1$

O-thoginality theorem [Teo 2.2]

$$
\begin{aligned}
& x_{1}, x_{2}, \ldots, x_{n} \text { i.i.d } N\left(0, \sigma^{2}\right) . \\
& X=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
\end{aligned}
$$

Let $Y=A X$ wher A is orthogonal. $n \times 1$ axn $n \times 1$
Then $Y_{i}=\{Y\}$, are i.i.d $N\left(\sigma, \sigma^{2}\right)$. $\hat{\eta}$ means: dereal nri of Y-vector

Proof via Jacobian
We know that $f_{y}(y)=f_{x}(w(y)) \cdot \operatorname{abs}(7)$ where $\quad x=w(y)=A^{-1} Y=A^{\top} Y$
and $J=\operatorname{det}\left(A^{-1}\right)= \pm 1$ and $\operatorname{abs}(7)=1$.

$$
\begin{aligned}
f_{x}(x) & =\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi}} \frac{1}{\sigma} \cdot \exp \left\{-\frac{1}{2 \sigma^{2}} x_{i}^{2}\right\} \\
& =(2 \pi)^{-\frac{n}{2}} \sigma^{-n} \exp \left\{-\frac{1}{2 \sigma^{\prime}} \sum x_{i}^{2}\right\} \\
\Sigma x_{i}^{2} & =x^{\top} x=\left(A^{\top} Y\right)^{\top}\left(A^{\top} y\right)=Y^{\top} \underbrace{\top} A^{\top} Y=Y^{\top} Y=\Sigma y_{i}^{2} \\
f_{y}(y) & =f_{x}(w(y)) \cdot 1 \\
& =(2 \pi)^{-\frac{n}{2}} \sigma^{-n} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum y_{i}^{2}\right\} \\
& =\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi}} \frac{1}{\delta} \cdot \exp \left\{-\frac{1}{2 \sigma^{2}} \cdot y^{2}\right\}
\end{aligned}
$$

that is $Y_{1}, . ., Y_{n}$ are i.i.d $N\left(0, \sigma^{2}\right)$
\bar{x} and s^{2} in normal samples $[2,5]$

$$
\begin{aligned}
& x_{n}, x_{2}, \ldots, x_{n} \\
& \quad \text { i. i.d } N\left(\mu, \sigma^{2}\right)
\end{aligned}
$$

$$
\bar{X} \sim N\left(\mu, \sigma^{2}\right)
$$

Estimates:

$$
\begin{aligned}
& \hat{\mu}=\frac{1}{n} \sum_{i=1}^{n} x_{i}=\bar{x} \\
& \delta^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
\end{aligned}
$$

Normal samples [2.5]

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from $N\left(\mu, \sigma^{2}\right)$. Further, let $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ and $S^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$.
Then the following holds:
$-\bar{X}$ and S^{2} are independent.
$-\bar{X} \sim N\left(\mu, \sigma^{2} / n\right)$.

- $n S^{2} / \sigma^{2} \sim \chi_{n-1}^{2}$.

