

TMA4267 Linear Statistical Models V2014 (6)

Normal sample mean and variance [2.5] One-way ANOVA [2.6]

Mette Langaas

To be lectured: January 21, 2014 wiki.math.ntnu.no/emner/tma4267/2014v/start/

ANalysis Of VAriance (ANOVA)

Bingham and Fry (2010): Chapter 2

- The Chi-square distribution and the F-distribution [2.1, 2.3]
- Orthogonality and multivariate transformation formula [2.2, 2.4]
- Normal sample mean and variance [2.5]
- One-way ANOVA [2.6]
- Two-way ANOVA [2.7-2.8]

Today

Primary aim chapter 1: ANalysis Of VAriance – comparing means by studying variability.

Normal sample: proof about important properties of sample mean \bar{X} and sample variance S^2 .

One-way ANOVA : use proof above to show properties of sample sums of squares.

Normal samples [2.5]

Let $X_1, X_2, ..., X_n$ be a random sample from $N(\mu, \sigma^2)$. Further, let $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$ and $S^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$. Then the following holds:

 $-\bar{X}$ and S^2 are independent.

$$- \bar{X} \sim N(\mu, \sigma^2/n).$$

$$- nS^2/\sigma^2 \sim \chi^2_{n-1}$$

$$\overline{X}$$
 end S^2 in normal samples [2.5]
, identically
 $X_{n_1} X_{2_2} \dots X_n$ i.i.d RU from $N(\mu_1 \sigma^2)$.
Independent distributed
Estimators: $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i = X$
 $S^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$

i) X and S² are independent. Z = 2 a) $Z_i = \frac{X_i - \mu}{\sigma} \iff X_i = \sigma Z_i + \mu$ Zi i.I.d N(0,1) b) Z~N(0,t) E(2)= 72E(2;)=0 $Var(\bar{z}) = \bar{n} = \sum Var(\bar{z}_i) = \bar{n} = \frac{1}{n}$

 $C) = \frac{\Sigma(x_i - \overline{x})^{\nu}}{\sigma^{\nu}}$ Wing Xi=ZiOtM X= 20+M $X_{i} - \overline{X} = 2i\sigma + \mu - \overline{2}\sigma - \mu = \sigma(2i - \overline{2})$

 $\frac{\Omega S^{2}}{\Omega^{2}} = \frac{\Sigma}{\Sigma} (2i - \overline{2})^{L}$ n.Z d) $\int_{121}^{n} (z_i - \overline{z})^2 = \int_{121}^{n} z_i^2 - 2\overline{z} \sum_{i=1}^{n} \overline{z}_i + n\overline{z}^2$ $= \int 2^{2} - n \tilde{2}^{2}$ $\sum z_{i}^{2} = \sum (z_{i} - \overline{z})^{2} + n\overline{z}^{2}$ $n S^{2}$ $n \left(\frac{\overline{x}-\mu}{\mu}\right)^{2}$

e) Let P be an orthogened metrix with
first row [
$$\frac{1}{16}$$
 $\frac{1}{16}$... $\frac{1}{16}$].
This is called a Helmert transform. Many such
metrices are possible and an befound e.g. by the
Gram - Schnidt procedure. One such matrix may be
 $\begin{pmatrix} \frac{1}{16} & \frac$

Let W=PZ nel nen nel $W_1 = [P]_{row_1} Z = \frac{1}{m} (2 + 2 + 2 + 2) = \sqrt{n \cdot 2}$ ทวิ $W_1^2 = n \cdot \tilde{Z}^2$ $\hat{\nabla}_{W_{i}}^{n} = W^{\dagger}W = (P_{2})^{\dagger}P_{2}^{2} = Z^{\dagger}P^{\dagger}P_{2}^{2} = Z^{\dagger}Z^{2}$ $\hat{\sum}_{i=1}^{n} W_{i}^{2} = \hat{\sum}_{i=1}^{n} W_{i}^{2} - W_{i}^{2} = \hat{\sum}_{i=1}^{n} (z_{i} - \overline{z})^{2}$

f)
$$Z_{n_1} Z_{n_2} \cdots_{n_r} Z_{n_r}$$
 are i.i.d $N(0,1)$
 $W_{2} P_{2}$
 $W_{n_1} W_{2_2} \cdots_{n_r} W_{n_r}$ are i.i.d $N(0,1)$ due to
orthogonality theorem
Therefore W_{1} will be independent of $W_{2_1} W_{3_1} \cdots_{n_r} W_{n_r}$
And W_{1^2} will be independent of $W_{2_1} W_{3_1} \cdots_{n_r} W_{n_r}$
and of $\frac{1}{2} W_{1^2}^{2}$
Since $W_{1} = V_{1} Z = V_{1} \left(\frac{\overline{X} - M_{1}}{\overline{C}} \right)_{1}$ it is
independent of $\sum_{i=2}^{n} W_{i}^{2} = \sum_{i=1}^{n} (2i - \overline{Z})^{2} = \frac{1}{\overline{C}^{2}} \cdot S^{2}$
 \Rightarrow This means that \overline{X} and S^{2} are independent

 \tilde{u}) $\bar{X} \sim N(\mu, \tilde{X})$ Mx(t) = exp (µtt 20°t2) $M_{\tilde{x}}(t) = \left[M_{x}\left(\frac{t}{n}\right)\right]^{n} = \exp\left(n \cdot \frac{mt}{n} + n \cdot \frac{t}{2}\sigma^{2} \frac{t^{2}}{n^{2}}\right)$ $=\exp\left(\mu t + \frac{1}{2} \frac{\sigma^2}{n} \cdot t^2\right)$ We recognise this as $N(\mu, \frac{\sigma}{n})$

 $\frac{1}{2} \frac{n s^{2}}{\sigma^{2}} \sim N_{n-1}^{2}$

(1) We have $\frac{\Lambda S^{1}}{\sigma^{2}} = \sum_{i=1}^{n} (2i - 2i)^{2} = \sum_{i=1}^{n} (2i - n)^{2}$

b) we know that Zin N(0,1) and Zy..., In ore

independent, so that

$$Z_i^2 \wedge X_j^2$$
 and $\hat{\Sigma} Z_i^2 \wedge X_n^2$

U Further $\frac{\overline{x}-\mu}{\sqrt{n}} \sim \ln \overline{z} \sim N(0,1)$ and $n \overline{z} \sim \chi_{1}^{2}$

d) Subtraction property X2: $X_{M} + X_{Z}$? /' lent since X and S² arc Independ 18

Note: If X and S' are independent => data OIFP normal Teo 2.6: Fisher's 6mm X1,..., Xn ild N(0,02) $Y_i = \sum_{i=1}^{n} C_{ij} X_j \quad i = A_j - j P P C M$ where the row of C=h c, 3 are orthogonal for i=1,...,p. $If S' = \sum_{k=1}^{n} x_{i}^{2} - \sum_{k=1}^{p} Y_{i}^{2}$ then S2 is independent of Yn,..., & (i) ('u) $S^2 \sim X_{n-p}^{*}$ typo in book

Rothamsted Experimental Station

- founded in 1843 by John Bennet Lawes on his inherited 16t century estate, Rothamsted Manor,
 - wanted to investigate the impact of inorganic and organic fertilizers on crop yield
 - had founded a fertilizer manufacturing company in 1842
- Lawes appointed the chemist Joseph Henry Gilbert to the directorship of the chemical laboratory
- the two began a series of field experiments to examine the effects of inorganic fertilizers and organic manures on the nutrition and yield of a number of important crops

- http://www.stats.uwo.ca/faculty/bellhouse/stat499lecture13.pdf

The Broadbalk Field Trial at Rothamsted

- this was the first field trial started by Lawes and Gilbert
- began in 1843
- purpose was to investigate the relative importance of different plant nutrients (N, P, K, Na, Mg) on grain yield of winter wheat
- weeds were controlled by hand hoeing and fallowing
 - now some herbicides are used
- The experiment continues to this day

http://www.stats.uwo.ca/faculty/bellhouse/stat499lecture13.pdf

Concrete aggregates example

- Aggregates are inert grahular materials such as sand, gravel, or crushed stone that, along with water and portland cement, are an essential ingredient in -concrete.
- For a good concrete mix, aggregates need to be clean, hard, strong particles free of absorbed chemicals or coatings of clay and other fine materials that could cause the deterioration of concrete.
- We could like to examine 5 different aggregates, and measure the absorption of moisture after 48hrs exposure (to moisture).
- A total of 6 samples are tested for each aggregate.
- Research question: Is there a difference between the
 - aggregates with respect to absorption of moisture?

Concrete aggregates data

Aggregate:	1	2	3	4	5	
	551	595	639	417	563	
	457	580	615	449	631	
	450	508	511	517	522	
	731	583	573	438	613	
	499	633	648	415	656	
	632	517	677	555	679	
Total	3320	3416	3663	2791	3664	$16,\!854$
Mean	553.33	569.33	610.50	465.17	610.67	561.80

Table 13.1 of WMMY.

Concrete aggregates example

(

Notation
(sample)
$$X_{i.} = \frac{1}{n_i} \sum_{j=1}^{n_i} X_{ij}$$
 group mean
 $X_{..} = \frac{1}{n} \sum_{l=1}^{n_i} X_{lj} = \frac{1}{n} \sum_{l=1}^{n_i} n_i \cdot X_{l.}$
grand near

bullet
$$X_{ij} = averaged aut$$

 $SS = \sum_{i=1}^{n} (X_{ij} - X_{ij})^2 = \sum \sum (X_{ij} - X_{ij} - X_{ij})^2$

Homework = continue, here