TMA4267 Linear Statistical Models V2014 (7) One-way ANOVA [2.6]

Mette Langaas

To be lectured: January 27, 2014 wiki.math.ntnu.no/emner/tma4267/2014v/start/

ANalysis Of VAriance (ANOVA)

Bingham and Fry (2010): Chapter 2

- The Chi-square distribution and the F-distribution [2.1, 2.3]
- Orthogonality and multivariate transformation formula [2.2, 2.4]
- Normal sample mean and variance [2.5]
- One-way ANOVA [2.6]
— Two-way ANOVA [2.7-2.8]

Today

Primary aim chapter 2: ANalysis Of VAriance - comparing means by studying variability.
One-way ANOVA : sums of squares and F-distribution, concrete example.

Concrete aggregates data

Aggregate:	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	
	551	595	639	417	563	
	457	580	615	449	631	
	450	508	511	517	522	
	731	583	573	438	613	
	499	633	648	415	656	
	632	517	677	555	679	
Total	3320	3416	3663	2791	3664	16,854
Mean	553.33	569.33	610.50	465.17	610.67	561.80

Table 13.1 of WMMY.

Concrete aggregates example

One factor: unequal sample sizes

Model

$$
X_{i j}=\mu_{i}+\varepsilon_{i j} \text { for } i=1,2, \ldots, r \text { and } j=1,2, \ldots, n_{i}
$$

The sample sizes for each group, n_{i} may vary. $\varepsilon_{i j} \sim N\left(0, \sigma^{2}\right)$. Let $n=\sum_{i=1}^{r} n_{i}$ be the total number of observations.
Group means:

$$
X_{i .}=\frac{1}{n_{i}} \sum_{j=1}^{n_{i}} X_{i j}
$$

and grand mean:

$$
X_{. .}=\frac{1}{n} \sum_{i=1}^{r} \sum_{j=1}^{n_{i}} X_{i j}=\frac{1}{n} \sum_{i=1}^{r} n_{i} X_{i .}
$$

where the latter is a weighted average over the group means.

TA 4267 -lecture 7, 27.01 .2014
One-way ANOVA

$$
\begin{array}{ll}
X_{i j}=\mu_{i}+\varepsilon_{i j} & \varepsilon_{i j} i . i . d N\left(0, \sigma^{2}\right) \\
X_{i,}=\frac{1}{n_{i}} \sum_{j=1}^{n_{1}} X_{i j} & \begin{array}{l}
i=1,2, . ., r \\
j=1,2, \ldots, n_{i}
\end{array}
\end{array}
$$

X.. $=\frac{1}{n} \sum_{i=1} \sum_{j=1}^{n_{1}} X_{i j}$ grand mean
(estimator population grand mean $\mu=\frac{1}{n} \sum_{i=1}^{r} n_{i} \mu_{i}$)

One factor: unequal sample sizes

ANOVA decomposition:

$$
\begin{aligned}
X_{i j}-X_{. .} & =\left(X_{i j}-X_{i .}\right)+\left(X_{i .}-X_{. .}\right) \\
\sum_{i=1}^{r} \sum_{j=1}^{n_{i}}\left(X_{i j}-X_{. .}\right)^{2} & =\sum_{i=1}^{r} \sum_{j=1}^{n_{i}}\left(X_{i j}-X_{i .}\right)^{2}+\sum_{i=1}^{r} \sum_{j=1}^{n_{i}}\left(X_{i .}-X_{. .}\right)^{2} \\
\sum_{i=1}^{r} \sum_{j=1}^{n_{i}}\left(X_{i j}-X_{. .}\right)^{2} & =\sum_{i=1}^{r} \sum_{j=1}^{n_{i}}\left(X_{i j}-X_{i .}\right)^{2}+\sum_{i=1}^{r} n_{i}\left(X_{i .}-X_{. .}\right)^{2} \\
\text { SS } & =\text { SSE }+ \text { SSA }
\end{aligned}
$$

One factor: unequal sample sizes

ANOVA decomposition: what happened to the cross-term?

$$
\begin{aligned}
2 \sum_{i=1}^{r} \sum_{j=1}^{n_{i}}\left(X_{i j}-X_{i .}\right)\left(X_{i .}-X_{. .}\right) & =2 \sum_{i=1}^{r}\left(X_{i .}-X_{. .}\right) \sum_{j=1}^{n_{i}}\left(X_{i j}-X_{i .}\right) \\
\sum_{j=1}^{n_{i}}\left(X_{i j}-X_{i .}\right) & =\sum_{j=1}^{n_{i}} X_{i j}-\sum_{j=1}^{n_{i}} X_{i .}=n_{i} X_{i .}-n_{i} X_{i .}=0
\end{aligned}
$$

We want to test if the treatment means differ.
$H_{0}: \mu_{1}=\mu_{2}=\cdots=\mu r$ vs H_{1} : at least two means differ
Next: look at distribution of SS, SSA and SSE when A) to true end B) Ho false
A) Ho true: $\mu_{1}=m_{2}=\cdots=\mu_{r}=\mu$ so that $X_{i j}$ i.i.d $N(\mu, \sigma)$
1)

$$
\begin{aligned}
& S S=\sum \sum\left(x_{i j}-x_{. .}\right) \\
& \text {Teo } 2.4 i i i \quad \frac{S S}{\sigma^{2}}=\frac{\sum \sum\left(x_{i j}-x_{. .}\right)}{\sigma^{2}} \sim x_{n-1}^{2} \\
& E\left(\frac{S S}{\sigma^{2}}\right)=n-1 \\
& E(S S)=\sigma^{2} \cdot(n-1) \Rightarrow E\left(\frac{S S}{n-1}\right)=\sigma^{2}
\end{aligned}
$$

2) SSE:

$$
\frac{n_{i} \cdot s_{i}^{2}}{\sigma^{2}}=\frac{1}{\sigma^{2}} \sum_{j=1}^{n_{i}}\left(x_{i j}-x_{i-}\right)^{2}
$$

when H_{0} is true (or false) $X_{i 1}, X_{i 2}, \ldots, X_{i n i}$ i.i.d $N\left(\mu_{i}, \sigma^{2}\right)$

$$
\frac{n_{i} \cdot S^{2}}{\sigma^{2}} \sim X_{n_{i}-1}^{2} \quad \text { from } \quad T_{e o} 24_{i i}
$$

Further

$$
\frac{8 S E}{\sigma^{2}}=\frac{\sum n_{i} S_{i}^{2}}{\sigma^{2}} \sim X_{n-r}^{2}
$$

due to X^{2}-addition property when

$$
\sum_{i=1}^{r}\left(n_{i}-1\right)=\underbrace{\sum n_{i}}_{n}-r=n-r
$$

Then $E\left(\frac{S S E}{\sigma^{2}}\right)=n-r$
and $E\left(\frac{\text { SSE }}{n-r}\right)=\sigma^{2}$
3) $S S A=\sum_{i=1}^{\Gamma} n_{i}\left(X_{i .}-X_{. .}\right)^{2}$

Remeraber $\delta S E=\sum_{i=1}^{n} n_{i} S i^{2}$
From ter $2.4 i \quad S_{i}^{2}$ is independent of X_{i}.
Also $S_{i}{ }^{2}$ is independent of X_{j}. for $j \neq i$, since they are based on different samples. Then S_{1}^{2} must also be independent of $X \ldots$ and of SSA. Therefore $\delta S A$ and $\delta S E$ ere independent.

Since:

$$
\begin{aligned}
& \frac{S S}{\sigma^{2}}=\frac{S S E}{\sigma^{2}}+\frac{S S A}{\sigma^{2}} \\
& x_{n-1}^{2} \\
& x_{n-r}^{2}
\end{aligned}
$$

and SSE and SSA ore independent, X^{2} subr.prop.
gives

$$
\begin{array}{ll}
\frac{S S A}{\sigma^{2}} \sim X^{2} \underbrace{(n-1)-(n-r)}_{r-1} & \\
E\left(\frac{S S A}{\sigma^{2}}\right)=r-1 & E\left(\frac{s S A}{r-1}\right)=\sigma^{2} \\
E\left(\frac{S S A}{r-1}\right)=\sigma^{2} & E\left(\frac{s S E}{n-r}\right)=\sigma^{2} \\
& E\left(\frac{s S}{n-1}\right)=\sigma^{2}
\end{array}
$$

$B: H_{0}$ is false
2) SSE: we have already seen that $\frac{\delta S E}{\sigma^{2}} \sim X_{n-r}^{2}$ when H_{0} is both true end false.

$$
E\left(\frac{s s E}{n-r}\right)=\sigma^{2}
$$

3) If the treatments differ (H_{0} false) $\frac{\text { SSA }}{r-1}$ should be large compered $\frac{S S E \text {. How large? }}{n-r}$.

$$
\begin{aligned}
S S A & =\sum_{i=1}^{r} n_{i}\left(x_{i .}-x_{1 .}\right)^{2} \\
& =\sum_{i=1}^{n_{i}} n_{i} x_{i .}^{2}-2 x . \cdot \underbrace{\sum_{i=1} n_{i} x_{i .}}_{n x_{1 .}}+x_{1 \cdot}^{2} \underbrace{\sum_{i=1}^{r} n_{i}}_{n} \\
& =\sum_{i=1}^{r} n_{i} x_{i .}^{2}-n X^{2} . \\
E(S S A) & =\cdots \geqslant(r-1) \sigma^{2}
\end{aligned}
$$

$$
\begin{aligned}
& E(S S A)=\sum_{i=1}^{\Gamma} n_{i} E\left(X_{i .}^{2}\right)-n E\left(X_{. .}^{2}\right) \\
& \operatorname{Var}(X)=E\left(X^{2}\right)-E(X)^{2} \\
& =\sum_{i=1}^{r} n_{i}\left[\operatorname{Var}\left(X_{i .}\right)+E\left(X_{i .}\right)^{2}\right]-n[\underbrace{\operatorname{Var}\left(X_{. .}\right)+E\left(X_{.1}\right)^{2}}] \\
& \begin{cases}x_{i j} \sim N\left(\mu_{i}, \sigma^{2}\right) & X . .<\frac{1}{n} \sum \sum x_{i j} \\
x_{i .}=\frac{1}{n_{i}} \sum x_{i j} & E\left(X_{. .}\right)=\mu \\
E\left(x_{i .}\right)=\mu_{i} & \operatorname{Var}\left(X_{. .}\right)=\frac{\sigma^{2}}{n} \\
\operatorname{Var}\left(x_{i}\right)=\frac{\sigma^{2}}{n} & \end{cases} \\
& =\sum_{i=1}^{r} n_{i}\left(\frac{\sigma^{2}}{n_{i}}+\mu_{i}^{2}\right)-n\left(\frac{\sigma^{2}}{n}+\mu^{2}\right) \\
& =r \sigma^{2}+\sum n_{i} \mu_{1}^{2}-\sigma^{2}-n \mu^{2} \\
& =(r-1) \sigma^{2}+\sum_{i=1}^{r} n_{i}(\underbrace{\mu_{i}-\mu})^{2} \\
& =0 \text { when all } \mu_{i}=\mu \\
& \text { else }>0
\end{aligned}
$$

When H to is true

$$
\begin{aligned}
F= & \frac{\frac{S S A}{\sigma^{2}} \sim X^{2 r-1}}{r-1} \\
\frac{\frac{S S E}{\sigma^{2}} \sim X^{2} n-r}{n-r} & \frac{\frac{S S A}{r-1}}{\frac{S S E}{n-r}} \\
& \sim F_{r-1, n-r}^{M S E}
\end{aligned}
$$

Bat when A_{0} is false the expected value of the numerator increases.
Hypothesis testing strategy:
Reject H_{0} if $F_{o b s}=\frac{S S A /(r-1)}{S S E /(n-r)} \geqslant f_{\alpha}, r-1, n-r$

One factor: unequal sample sizes

$H_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{r}=0$ vs. H_{1} : At least one pair of μ_{i} different
is then tested based on

$$
F=\frac{\frac{\text { SSA }}{r-1}}{\frac{\text { SSE }}{n-r}}
$$

Where H_{0} is rejected if $f_{\text {obs }}>f_{\alpha},(r-1),(n-r)$.

One-way AnOVA table

Source	$d t$	$S S$	$M S$	F	p-vdm
Treatment	$r-1$	$S S A$	$\frac{\delta S A}{r-1}$	MSA	
Error	$n-r$	$S J E$	$\frac{S S E}{n-r}$	$M S E$	
Total	$n-1$	SS	$\frac{S S}{n-1}$		

Numericalyy (concrefe data)					
	$d f$	SS			
	MS	F	ρ		
Treatment	4	85356	21339	43	0.00873
Erram	25	124020	496		

Treatment of tennis elbow (exam V2012, 3b)

The term tennis elbow is used to describe a state of inflammation in the elbow, causing pain. This injury is common in people who play racquet sports, however, any activity that involves repetitive twisting of the wrist (like using a screwdriver) can lead to this condition. The condition may also be due to constant computer keyboard and mouse use.
In a randomized clinical study the aim was to compare three different methods for treatment of tennis elbow,

- A: physiotherapy intervention,
- B: corticosteroid injections and
- C: wait-and-see (the patients in the wait-and-see group did not get any treatment but was told to use the elbow as little as possible).

Treatment of tennis elbow (cont.)

We will look at the short-term effect of treatment by studying measurements at 6 weeks. All patients participating in the study only had one affected arm.
We will look at the outcome measure called pain-free grip force. This was measured by a digital grip dynamometer and normalized to the grip force of the unaffected arm. A pain-free grip force of 100 would mean that the affected and the unaffected arm performed equally good.

Summary statistics for each of the treatment groups.

Treatment	Sample size	Average	Standard deviation
A (physiotherapy)	63	70.2	25.4
B (injection)	65	83.6	22.9
C (wait-and-see)	60	51.8	23.0
Total	188	69.0	

We would like to investigate if the expected pain-free grip force varies between the treatment groups. Write down the null- and alternative hypothesis and perform one hypothesis test using the summary statistics in the table above.
What are the assumptions you need to make to use this test?
What is the conclusion from the test?

