MA2201 - OPPGAVESETT 8

Avsnitt 3.6

- 1) En Sylon 3-undergroppe av en groppe med order 12 har orden 3.
- 3) En groppe av order 24 m² ha eater 1 eller 3 Sylow 2-oudrgropper.
- 5) Vi har at $|S_{1}|=24$, s_{1}^{2} ar teorem $\frac{36\cdot11}{24}$ er antall mulije S_{2} lou 3-undrzwym $\frac{1}{24}$ eller 4. Vi finar

$$\sigma_{i} = (2,3,4)$$

$$\sigma_3 = (1,2,n)$$
 $\sigma_4 = (1,2,3)$

Her An $|\langle \sigma_{i} \gamma | = 3$ for i=1,2,3,4 of $\langle \sigma_{i} \rangle \neq \langle \sigma_{i} \rangle \neq \langle \sigma_{i} \rangle$ for $i\neq_{j}$: On i lar $\gamma=(r_{ij})$ so i at

02 = (1,3,4)

Her du vist at 38 tSn s.a. drun groppm blir konjongete undegroppe.

(11) Vi lar H van en undergroppe av en groppe G. Vi vil vise at

GH = {gEG|gHz=+}

er en undergroppe av G. Vi fir:

(i) La abelin. Da er alla"=1 og 545'=4. Folgelig er

(ab) M (a5') = a (b Mb') a' = a Ma' = H,
og Gn ~ Work.

(ii) Aperbart et et Gru da ette = h.

liii) Lu a E Gn. De her n' a Ma'= H.

eller a M= Ha, eller M= a'Ma=a'H(a')-1

by helydig er a' e Gn.

Følgelig er Gn en undrgruppe av G. I

12) La P betegne Sylon p-ondryroppe, Vet de at $\forall g \in G$ er $P' = gPg^{-1}$ en ondryroppe ar lit orde son P. Mu de ar P' e Sylon P-ondryroppe, m dem skalle væn omit. Følgeleg ar P' = P, og $P = gPg^{-1}$, $\forall g \in G$. Altai er P er novad ondryroppe ar G.

Da 9 pp debr Gr er 19/ < 1G1, og P er a eth undryverpr.

M

13) Vi lar & von en groppe av orde 49.

Av teora 36.8 3H&G s.a. |4|=9. H er en 3-gruppe, og av lemma 36.6 er

(G:H) = (N[H]:H) (mod p) => |G| = |N[H] (mod 23).

Ma vi vet

H = N[h] = G => 9 < |N[h] | < 45.

Vider mi N[H] | 161 ved Lagranges trova, so | Gol= k. |N[H] | dr k=1, X.S. Men dette gir og:

|N[H]].k=[N[H]] (mod 27),
(men 3 |N[H] skilat (mod))

mon du trois 27 + [N[H]] mi kel, of $|N[n]| = |G_1|$, of $N[n] = G_1$, of $H \sim \frac{d_1 men}{d_2 men}$

hormal.

lan date gepres

14) Vi vil benise korollar 36.4:

ha be von en endlig groppe. De er Gr en p-groppe huis og ben | Gol= ph.

Ben's:

(i) La IGI=pr. Ved Lagranger teom vil orden til alle undrappper ar Go dele order til G. Det vil si Hen => Inlpriog Green p-grype. sorder a=p liil La G von en p-groppe, og ante 9 to von en p-groppe, og ante 14 p er s.n. 9/16/1. Ved Cauchys teom finns de H&G s.a. 141=9, des en ac G Ma de e itelee G e p-groppe. og 97 p. Følgelig må 16/1=pa, de antegele om et glibel er ged.

16) La G van en endelig groppe, og la plible. La P van en Sylon p-gruppe, og N en p-vndrgruppe.

Ar trover 36.8 FP'&Cr dr P' er a Sylow p-groppe of \$\$\frac{4}{8} \text{P}!.

Av teom 36.10 $\exists g \in G$ s.a. $g \upharpoonright g^{-1} = P$. De folger det at $g \bowtie g^{-1} \leq P$.

17) Vi lar G van en groppe s.a. $|G| = 35^3$, og vil vin at G he a normal groppe an orde 125.

Av teorer 36.8 har in H&Gr s.a. IHI=53. Me as Sylon S-undryruppe, og følgelig er antall Sylon S-undryrupper n = [(mod 5). Vidne er de n= 5k+1. Me n | IGI og (5k+1) | 353. Da mi k-0 og n=1. Av oppgan 12 er de H a normal undryruppe nr Gr.

Al

18) Vi vil vise at det ibbe films simple gropper an order 251 = 3.5.17.

Lu 161=255. Av trovan 36.8 v det a 466 s.a. 141=3, og av 1emm 36.6 e

(NEM]: H) = (G:H) (mod p) => |N[H][= |G| (mod a).

Me | Go| = k | N[h] , de | k = | 1 / 5,17. Vet at

9 + | N[h] |, su' delle giv | k = | Chool of, si

| k = | 5/7 | N[h] + = tal

of the simple.

20 heller si Sylver 17-medegrapper.

19) hu be vær er groppe av order prin der Ocmep. Vi vil vin at be ikke er simpel.

> Av teom 36.8 ut vi JHEG de |H|=pr. Lemma 36.6 gir da

Neller 3. Feorem! (N[n]: h) = (6:h) (mod p) => |N[h] | = |61 (mod pr+1).

Du map gir dette [N[h]]=[6], os N[h]=6, os folgelig er H en normal undgruppe, og folgelig er Grikle simpl.

221 La P, von en nord p-gruppe. Par l'Pl=pi. La vida P2 von a Sylon p-gruppe. Av trone 36.8 (5) not is at let fines a Sylor y-greype P3 S.a. P, EP3. Me au teom 36.10 3gela s.a. gP3g-1=P2. Ma da mi gpiggez. Mn gpiggen, de pie normal, si PisPz

$\mathbf{TMA4150}/\mathbf{MA2201} \ - \ \mathbf{MIDTSEMESTERPR} \\ \mathbf{\emptyset VE} \ \ \mathbf{2007}$

Mandag 12. mars 2007 - Bokmål

Studentnummer: Oh Brig.	
Prøven består av 10 flervalgsoppgaver. På noen av oppgavene er det mer enn ett antall riktige svar skal gå fram av oppgaveteksten. Sett nøyaktig så mange kryss so svar. Lykke til!	
Oppgave 1 Hvilke to av følgende mengder er grupper under den gitte binære ope Mengden av 3×3 -matriser med reelle koeffisienter og positiv determinant untiplikasjon $\{1,2,3,4,5\}$ under multiplikasjon modulo $\{1,3,4,5\}$ under multiplikasjon modulo $\{1,3,4,5\}$ under waltiplikasjon m	
Oppgave 2 Hvor mange ikke-isomorfe abelske grupper finnes det av orden 100?	\mathcal{R}
Oppgave 3 Hva er ordenen til elementet $(6,8,12)$ i gruppen $\mathbb{Z}_9 \times \mathbb{Z}_{10} \times \mathbb{Z}_{15}$? $\square \ 3 \square \ 5 \square \ 12 \boxtimes \ 15 \square \ 18$	A
Oppgave 4 Gruppen $\mathbb{Z}_3 \times \mathbb{Z}_{36} \times \mathbb{Z}_{10}$ er isomorf med nøyaktig én av disse grupper \square $\mathbb{Z}_8 \times \mathbb{Z}_9 \times \mathbb{Z}_3 \times \mathbb{Z}_5$ \boxtimes $\mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_3 \times \mathbb{Z}_9 \times \mathbb{Z}_5$ \square $\mathbb{Z}_3 \times \mathbb{Z}_{360}$ \square $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_5$ \square $\mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_5 \times \mathbb{Z}_2$	ne. Hvilken?
Oppgave 5 Hvilke tre av avbildningene under er gruppehomomorfier? $\boxtimes \phi_1: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, \phi_1(a,b) = a - b$ $\square \phi_2: (\mathbb{R}, +) \to (\mathbb{R}, +), \phi_2(x) = \sqrt{x}$ $\boxtimes \phi_3: S_4 \to S_5, \phi_3\left(\begin{pmatrix} 1 & 2 & 3 & 4 \\ a_1 & a_2 & a_3 & a_4 \end{pmatrix}\right) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ a_1 & a_2 & 3 & a_3 & a_4 \end{pmatrix}$ $\square \phi_4: S_5 \to S_5, \phi_4(\sigma) = \sigma^{-1}$ $\boxtimes \phi_5: (\mathbb{R}^*, \cdot) \to (\mathbb{R}^*, \cdot), \phi_5(x) = x $	L
Oppgave 6 La $\sigma = (143)(25) \in S_6$	v (
Hvor mange venstre restklasser hører til undergruppen $\langle \sigma \rangle \leq S_6$ generert av σ ?	
\Box 5 \Box 6 \Box 90 \Box 120 \Box 144	Λ

Oppgave 7 Hvilke to av utsagnene er sanne?
We have the distribution of stable. By Hvis G er en gruppe av orden 77, og N er en normal undergruppe av G (der $\{e\} \neq N \neq G$), så er faktorgruppen G/N syklisk.
\Box Hvis H_1 og H_2 er undergrupper av en gruppe G , så er også unionen $H_1 \cup H_2$ en undergruppe av G .
\Box Hvis $\phi:G\to G'$ er en vilkårlig homomorfi, og $a\in G$ har orden n , så har $\phi(a)\in G'$ også orden n .
$lacktriangleq$ Antall undergrupper i S_3 , bortsett fra $\{e\}$ og S_3 selv, er 4.
Oppgave 8 La $G=\mathrm{GL}(2,\mathbb{R})$ være gruppen av inverterbare 2×2 -matriser med reelle koeffisienter under matrisemultiplikasjon. La H være den normale undergruppen
$H = \{X \in G \mid \det(X) = 1\}$
Faktorgruppen G/H er isomorf med nøyaktig én av gruppene under. Hvilken?
\square ($\mathbb{R}_{>0},\cdot$), de positive reelle tall under multiplikasjon
\boxtimes (\mathbb{R}^*, \cdot), de reelle tall $\neq 0$ under multiplikasjon
\square (\mathbb{R} , +), de reelle tall under addisjon
\Box (C, +), de komplekse tall under addisjon
\square (\mathbb{C}^*, \cdot), de komplekse tall $\neq 0$ under multiplikasjon
Oppgave 9 La G være en gruppe og $H \leq G$ en undergruppe. La V_H være mengden av venstre restklasser som hører til H . Nøyaktig ett av argumentene under er et riktig bevis for at V_H er en G -mengde under $*$ når $g*(xH)=(gx)H$. Hvilket? We hvis $yH=xH$, så er $y=hx$ for en $h\in H$, så $g*(yH)=g*(hxH)=g*(xh'H)=g*(xH)$ (hvor $h'\in H$), så virkningen er veldefinert. Videre er $e*(xH)=(ex)H=(xH)$, og $g_1*(g_2*(xH))=g_1*((g_2x)H)=(g_1g_2x)H=(g_1g_2)*(xH)$, så kravene for gruppevirkning er tilfredsstilt. Hvis $yH=xH$, så er $y=xh$ for en $h\in H$, og $g*(yH)=(gy)H=(gxh)H=(gx)*(hH)=(gx)H$
Oppgave 10 På hvor mange forskjellige måter kan vi fargelegge hjørnene i et kvadrat, når vi har fire farger tilgjengelig og kan bruke hver farge så mange ganger vi vil? To måter regnes som like dersom vi ikke kan se forskjell på dem når kvadratet kan bevege seg fritt i rommet.
\square 12 \square 55 \square 60 \square 92 \square 256
Tips: Du kan bruke Burnsides formel, som er gitt ved
$r \cdot G = \sum_{g \in G} X_g $