QPA EXERCISE SHEET, MA3203

Problem 1

(a) Construct the quiver Q and the path algebra A = kQ, where k is the rationals and Q is the quiver

$$Q: \qquad 1 \xrightarrow{a} 2 \xrightarrow{b} 3$$

The generators of *A* are stored as A.v1, A.v3, A.v3 (the three lazy paths corresponding to vertices 1, 2 and 3), A.a and A.b (the arrows). You can make linear combinations of the generators by writing for example t := $2 \star A.v2 + A.a$.

(b) Construct the following (right) *A*-module:

$$M: \qquad k^2 \xrightarrow{\begin{pmatrix} 1\\1 \end{pmatrix}} k \xrightarrow{0} 0$$

- (c) Try the following commands to get information about and compute with *M* and its elements.
 - DimensionVector (M) gives the dimensions of the vector spaces in the representation (that is, if the dimension vector of some *A*module is (1, 0, 2), then the module is on the form $k \rightarrow 0 \rightarrow k^2$).
 - Basis (M) gives a basis for *M*. Basis (M) [i] gives the *i*th basis element. You can make any element of *M* using the basis, for example m := Basis (M) [1] + 2*Basis (M) [2].
 - Given some element *p* of the algebra and *m* of the module, we compute *mp* by using the hat symbol: m^p. Do this for some elements.
 - You can examine the matrices of *M* by writing

MatricesOfPathAlgebraMatModule(M),

but note that you can not directly use the output to construct a new module if the zero vector space occurs at some position in *M*.

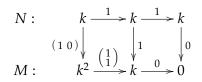
PROBLEM 2

We look at the same quiver *Q*, algebra *A* and module *M* as in the previous problem, in addition to the module *N* given by

$$N: \qquad k \xrightarrow{1} k \xrightarrow{1} k$$

Date: March 2013.

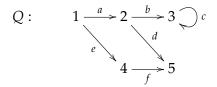
(a) Construct $f : N \to M$ where f is given by



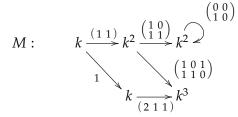
- (b) Find the kernel and cokernel of f. Use DimensionVector and MatricesOfPathAlgebraMatModule to verify that you have got the correct modules.
- (c) Using the method HomOverPathAlgebra (Mod1, Mod2), find a basis for Hom_A(N, M). The method call returns a list of the basis elements (you can access them with the [] operator).
- (d) Find a basis for $\operatorname{End}_A(M, M)$ and $\operatorname{End}_A(N, N)$. Use this to decide whether the modules are decomposable or not.

PROBLEM 3

Given the quiver



and the relations $\rho = \{c^2, ad - ef\}$, find the radical of the $kQ/\langle \rho \rangle$ -module *M* where



The radical is computed by the command <code>RadicalOfModule(M)</code>. Calculating by hand, it is not that hard to spot the dimension vector of the radical, but the maps are harder to find.

PROBLEM 4

Use ProjectiveCover (M) to find the projective cover of *M*. The function returns the map from the projective to *M*. Use Source (*map*) to find the projective itself. Find the top of *M* by using TopOfModule (M).

The indecomposable projectives can be found using the command

IndecomposableProjectiveModules(algebra).

They are given in the same order as the vertices.

QPA EXERCISE SHEET, MA3203

(PROBLEM 5)

Use QPA to do the following exercises on Problem sheet 4: 1 and 2.