$\rm MA3203$ - Problem sheet 4

Problem 1. Let $\Lambda = k\Gamma$ for a field k, where Γ is the quiver:

$$1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$$

Find the projective covers and the kernel of the projective covers of the following representations :

(1) $k \xrightarrow{0} k \xrightarrow{0} 0$. (2) $k \xrightarrow{1} k \xrightarrow{0} k$. (3) $k^2 \xrightarrow{(10)} k \xrightarrow{(1)} k^2$.

Problem 2. Given $\Lambda = k\Gamma/\langle \rho \rangle$ for a field k, where Γ is the quiver:

$$1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$$

and the relations $\rho = \{\beta \alpha\}$. Find the projective covers and the kernel of the projective covers of the following representations:

(1) $k \xrightarrow{1} k \xrightarrow{0} k^2$. (2) $k \xrightarrow{\begin{pmatrix} 0\\1 \end{pmatrix}} k^2 \frac{(10)}{(11)} k$. (3) $0 \xrightarrow{0} k^2 \frac{\begin{pmatrix} 10\\1 \\ 0 \end{pmatrix}}{(10)} k$.

Problem 3. Let $f: A \to B$ and $g: B \to C$ be two essential epimorphisms of left Λ -modules. Show that gf is an essential epimorphism.

Problem 5.

(i) Consider the following commutative diagram with exact rows in Mod Λ :

$$0 \longrightarrow A \longrightarrow B \longrightarrow C$$

$$\downarrow^{g} \qquad \downarrow^{h}$$

$$0 \longrightarrow A' \longrightarrow B' \longrightarrow C'$$

Show that there exists an $f: A \to A'$ such that the diagram is commutative. Also show that if g and h are isomorphisms, then f is also an isomorphism. (ii) Consider now the following commutative diagram with exact rows in Mod Λ :

Show that there exists an $h: C \to C'$ such that the diagram is commutative. Also show that if f and g are isomorphisms, then h is also an isomorphism. **Problem 5.** Let Λ be an artin algebra, M a finitely generated Λ -module and P an indecomposable projective Λ -module.

Show that $\operatorname{Hom}_{\Lambda}(P, M) \neq (0)$ if and only if $P/\mathfrak{r}P$ is a composition factor of M.

Problem 6. Let Λ be an artin algebra and S a simple Λ -module. Let e be a primitive idempotent in Λ .

Show that there is a projective cover $\Lambda e \longrightarrow S$ if and only if $eS \neq 0$.